A Potential Oncoprotective Role of Cytomegalovirus Against Breast Cancer: Worldwide Correlation and Survey of Evidence
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Arguments in Favor of CMV-Mediated Carcinogenesis and Oncomodulation
4.2. Arguments in Favor of CMV Oncoprevention
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subfamily: Betaherpesvirinae. International Committee on Taxonomy of Viruses. 2024. Available online: https://ictv.global/report/chapter/orthoherpesviridae/orthoherpesviridae/cytomegalovirus (accessed on 16 March 2024).
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Fowler, K.; Mucha, J.; Neumann, M.; Lewandowski, W.; Kaczanowska, M.; Grys, M.; Schmidt, E.; Natenshon, A.; Talarico, C.; Buck, P.O.; et al. A systematic literature review of the global seroprevalence of cytomegalovirus: Possible implications for treatment, screening, and vaccine development. BMC Public Health 2022, 22, 1659. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, M.; Doerr, H.W.; Cinatl, J., Jr. Oncomodulation by human cytomegalovirus: Evidence becomes stronger. Med. Microbiol. Immunol. 2009, 198, 79–81. [Google Scholar] [CrossRef]
- Cinatl, J., Jr.; Vogel, J.-U.; Kotchetkov, R.; Doerr, H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: A novel role for viral infection in tumor progression. FEMS Microbiol. Rev. 2004, 28, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G. The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses 2018, 10, 408. [Google Scholar] [CrossRef]
- Taher, C.; de Boniface, J.; Mohammad, A.-A.; Religa, P.; Hartman, J.; Yaiw, K.-C.; Frisell, J.; Rahbar, A.; Söderberg-Naucler, C. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS ONE 2013, 8, e56795. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Richardson, A.; Graham, P.; Gislefoss, R.E.; Jellum, E.; Rollag, H. Breast cancer, cytomegalovirus and Epstein–Barr virus: A nested case–control study. Br. J. Cancer 2010, 102, 1665–1669. [Google Scholar] [CrossRef]
- Cobbs, C.S. Cytomegalovirus and brain tumor: Epidemiology, biology and therapeutic aspects. Curr. Opin. Oncol. 2013, 25, 682–688. [Google Scholar] [CrossRef]
- Barami, K. Oncomodulatory mechanisms of human cytomegalovirus in gliomas. J. Clin. Neurosci. 2010, 17, 819–823. [Google Scholar] [CrossRef]
- Pasquereau, S.; Al Moussawi, F.; Karam, W.; Assaf, M.D.; Kumar, A.; Herbein, G. Cytomegalovirus, Macrophages and Breast Cancer. Open Virol. J. 2017, 11, 15–27. [Google Scholar] [CrossRef]
- Alsamarai, A.; Abdulla, S.S.; Aljumaili, Z. Epstein- Bar Virus and Cytomegalovirus Infection Association with Breast Cancer: EBV and CMV. Int. J. Med. Sci. 2022, 4, 8–36. Available online: https://isnra.net/index.php/ijms/article/view/357 (accessed on 17 February 2024).
- Janković, M.; Knežević, A.; Todorović, M.; Đunić, I.; Mihaljević, B.; Soldatović, I.; Protić, J.; Miković, N.; Stoiljković, V.; Jovanović, T. Cytomegalovirus infection may be oncoprotective against neoplasms of B-lymphocyte lineage: Single-institution experience and survey of global evidence. Virol. J. 2022, 19, 155. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Ardeljan, A.; Frankel, L.R.; Cardeiro, M.; Kim, E.; Nagel, B.M.; Takabe, K.; Rashid, O. Human Cytomegalovirus (CMV) Infection Associated with Decreased Risk of Bronchogenic Carcinoma: Understanding How a Previous CMV Infection Leads to an Enhanced Immune Response Against Malignancy. Cureus 2023, 15, e37265. [Google Scholar] [CrossRef]
- Nagel, B.; Frankel, L.; Ardeljan, A.; Cardeiro, M.; Rashid, S.; Takabe, K.; Rashid, O.M. The Association of Human Cytomegalovirus Infection and Colorectal Cancer: A Clinical Analysis. World J. Oncol. 2023, 14, 119–124. [Google Scholar] [CrossRef]
- Britsch, I.; van Wijngaarden, A.P.; Helfrich, W. Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy. Cancers 2023, 15, 3767. [Google Scholar] [CrossRef]
- Luo, X.-H.; Meng, Q.; Liu, Z.; Paraschoudi, G. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21. Clin. Immunol. 2020, 217, 108456. [Google Scholar] [CrossRef]
- Yang, R.; Liang, J.; Xu, G.X.; Ding, L.M.; Huang, H.M.; Su, Q.Z.; Yan, J.; Li, Y.C. Human cytomegalovirus glycoprotein B inhibits migration of breast cancer MDA-MB-231 cells and impairs TGF-β/Smad2/3 expression. Oncol. Lett. 2018, 15, 7730–7738. [Google Scholar] [CrossRef]
- Çuburu, N.; Bialkowski, L.; Pontejo, S.M.; Sethi, S.K.; Bell, A.T.F.; Kim, R.; Thompson, C.D.; Lowy, D.R.; Schiller, J.T. Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proc. Natl. Acad. Sci. USA 2022, 119, e2116738119. [Google Scholar] [CrossRef] [PubMed]
- Bigley, A.B.; Baker, F.L.; Simpson, R.J. Cytomegalovirus: An unlikely ally in the fight against blood cancers? Clin. Exp. Immunol. 2018, 193, 265–274. [Google Scholar] [CrossRef]
- Koldehoff, M.; Ross, S.R.; Dührsen, U.; Beelen, D.W.; Elmaagacli, A.H. Early CMV-replication after allogeneic stem cell transplantation is associated with a reduced relapse risk in lymphoma. Leuk. Lymphoma 2016, 58, 822–833. [Google Scholar] [CrossRef]
- Elmaagacli, A.H.; Steckel, N.K.; Koldehoff, M.; Hegerfeldt, Y.; Trenschel, R.; Ditschkowski, M.; Christoph, S.; Gromke, T.; Kordelas, L.; Ottinger, H.D.; et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: Evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 2011, 118, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, J.; Noguchi, M.; Kurauchi, K.; Tanioka, S.; Fukano, R.; Okamura, J. Effect of Cytomegalovirus Reactivation on Relapse after Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Acute Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 300–306. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). GLOBOCAN 2020: Global Cancer Observatory; World Health Organization: Geneva, Switzerland, 2020; Available online: https://gco.iarc.fr/ (accessed on 27 October 2022).
- Herbein, G.; Nehme, Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? Mol. Ther.-Oncolyt. 2020, 17, 1–8. [Google Scholar] [CrossRef]
- Geder, L.; Sanford, E.J.; Rohner, T.J.; Rapp, F. Cytomegalovirus and cancer of the prostate: In vitro transformation of human cells. Cancer Treat. Rep. 1977, 61, 139–146. [Google Scholar]
- Herbein, G. Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022, 14, 812. [Google Scholar] [CrossRef]
- Oseguera, C.A.V.; Spencer, J.V. cmvIL-10 stimulates the invasive potential of MDA-MB-231 breast cancer cells. PLoS ONE 2014, 9, e88708. [Google Scholar] [CrossRef]
- Söderberg-Nauclér, C. New mechanistic insights of the pathogenicity of high-risk cytomegalovirus (CMV) strains derived from breast cancer: Hope for new cancer therapy options. EBioMedicine 2022, 81, 104103. [Google Scholar] [CrossRef]
- Nakhaie, M.; Charostad, J.; Azaran, A.; Arabzadeh, S.A.M.; Motamedfar, A.; Iranparast, S.; Ahmadpour, F.; Talaeizadeh, A.; Makvandi, M. Molecular and Serological Prevalence of HCMV in Iranian Patients with Breast Cancer. Asian Pac. J. Cancer Prev. 2021, 22, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Nauclér, C.S.; Geisler, J.; Vetvik, K. The emerging role of human cytomegalovirus infection in human carcinogenesis: A review of current evidence and potential therapeutic implications. Oncotarget 2019, 10, 4333–4347. [Google Scholar] [CrossRef]
- Herbein, G.; Kumar, A. The oncogenic potential of human cytomegalovirus and breast cancer. Front. Oncol. 2014, 4, 230. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, X.; Hasing, M.E.; Pang, X.; Ghosh, S.; McMullen, T.P.W.; Brindley, D.N.; Hemmings, D.G. Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers 2022, 14, 1148. [Google Scholar] [CrossRef]
- Khasawneh, A.I.; Himsawi, N.; Sammour, A.; Al Shboul, S.; Alorjani, M.; Al-Momani, H.; Shahin, U.; Al-Momani, H.; Alotaibi, M.R.; Saleh, T. Association of Human Papilloma Virus, Cytomegalovirus, and Epstein–Barr Virus with Breast Cancer in Jordanian Women. Medicina 2024, 60, 699. [Google Scholar] [CrossRef] [PubMed]
- Touma, J.; Pantalone, M.R.; Rahbar, A.; Liu, Y.; Vetvik, K.; Sauer, T.; Söderberg-Naucler, C.; Geisler, J. Human Cytomegalovirus Protein Expression Is Correlated with Shorter Overall Survival in Breast Cancer Patients: A Cohort Study. Viruses 2023, 15, 732. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, Q.; Wang, H.-B.; Wang, B.; Li, L. Protein and DNA evidences of HCMV infection in primary breast cancer tissues and metastatic sentinel lymph nodes. Cancer Biomark. 2018, 21, 769–780. [Google Scholar] [CrossRef]
- Geisler, J.; Touma, J.; Rahbar, A.; Söderberg-Nauclér, C.; Vetvik, K. A Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers 2019, 11, 1842. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Belcher, J.D.; Marker, P.H.; Wilcken, D.E.; Vercellotti, G.M.; Wang, X.L. Cytomegalovirus inhibits p53 nuclear localization signal function. J. Mol. Med. 2000, 78, 642–647. [Google Scholar] [CrossRef]
- Spencer, J.V.; Liu, J.; Deyarmin, B.; Hu, H.; Shriver, C.D.; Somiari, S. Cytokine levels in breast cancer are highly dependent on cytomegalovirus (CMV) status. Breast Cancer Res. Treat. 2024, 208, 631–641. [Google Scholar] [CrossRef]
- Blanco, R.; Muñoz, J.P. Human Cytomegalovirus Infection and Breast Cancer: A Literature Review of Clinical and Experimental Data. Biology 2025, 14, 174. [Google Scholar] [CrossRef]
- Oberstein, A.; Shenk, T. Cellular responses to human cytomegalovirus infection: Induction of a mesenchymal-to-epithelial transition (MET) phenotype. Proc. Natl. Acad. Sci. USA 2017, 114, E8244–E8253. [Google Scholar] [CrossRef]
- Pandey, J.P.; Namboodiri, A.M.; Mohan, S.; Nietert, P.J.; Peterson, L. Genetic markers of immunoglobulin G and immunity to cytomegalovirus in patients with breast cancer. Cell. Immunol. 2017, 312, 67–70. [Google Scholar] [CrossRef]
- El Baba, R.; Pasquereau, S.; Ahmad, S.H.; Diab-Assaf, M.; Herbein, G. Oncogenic and Stemness Signatures of the High-Risk HCMV Strains in Breast Cancer Progression. Cancers 2022, 14, 4271. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G. High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022, 14, 2462. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.H.; Pasquereau, S.; El Baba, R.; Nehme, Z.; Lewandowski, C.; Herbein, G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected with Cytomegalovirus. Front. Immunol. 2021, 12, 772160. [Google Scholar] [CrossRef]
- Oseguera, C.A.V.; Spencer, J.V. Human cytomegalovirus interleukin-10 enhances matrigel invasion of MDA-MB-231 breast cancer cells. Cancer Cell Int. 2017, 17, 24. [Google Scholar] [CrossRef]
- Bishop, R.K.; Oseguera, C.A.V.; Spencer, J. Human Cytomegalovirus interleukin-10 promotes proliferation and migration of MCF-7 breast cancer cells. Cancer Cell Microenviron. 2015, 2, e678. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathy, M.K.; Pasquereau, S.; Al Moussawi, F.; Abbas, W.; Coquard, L.; Khan, K.A.; Russo, L.; Algros, M.-P.; Valmary-Degano, S.; et al. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018, 30, 167–183. [Google Scholar] [CrossRef]
- Moussawi, F.A.; Kumar, A.; Pasquereau, S.; Tripathy, M.K.; Karam, W.; Diab-Assaf, M.; Herbein, G. The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci. Rep. 2018, 8, 12574. [Google Scholar] [CrossRef]
- Yurochko, A.D.; Kowalik, T.F.; Huong, S.M.; Huang, E.S. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J. Virol. 1995, 69, 5391–5400. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Xie, W.; Schmittling, R.; Learn, C.; Friedman, A.; McLendon, R.E.; Sampson, J.H. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology 2008, 10, 10–18. [Google Scholar] [CrossRef]
- Cobbs, C.S. Cytomegalovirus is a tumor-associated virus: Armed and dangerous. Curr. Opin. Virol. 2019, 39, 49–59. [Google Scholar] [CrossRef]
- Haidar Ahmad, S.; El Baba, R.; Herbein, G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int. 2023, 23, 119. [Google Scholar] [CrossRef] [PubMed]
- Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers 2018, 10, 52, Erratum in Cancers 2018, 10, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcucci, F.; Stassi, G.; De Maria, R. Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nat. Rev. Drug Discov. 2016, 15, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.; Xu, X.; Overbeek, G.; Vasaikar, S.; Patro, C.P.K.; Kostopoulou, O.N.; Jung, M.; Shafi, G.; Ananthaseshan, S.; Tsipras, G.; et al. Human cytomegalovirus may promote tumour progression by upregulating arginase-2. Oncotarget 2016, 7, 47221–47231. [Google Scholar] [CrossRef]
- Maussang, D.; Verzijl, D.; van Walsum, M.; Leurs, R.; Holl, J.; Pleskoff, O.; Michel, D.; van Dongen, G.A.; Smit, M.J. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 13068–13073. [Google Scholar] [CrossRef]
- Branch, K.M.; Garcia, E.C.; Chen, Y.M.; McGregor, M.; Min, M.; Prosser, R.; Whitney, N.; Spencer, J.V. Productive Infection of Human Breast Cancer Cell Lines with Human Cytomegalovirus (HCMV). Pathogens 2021, 10, 641. [Google Scholar] [CrossRef]
- Richardson, A.K.; Currie, M.J.; Robinson, B.A.; Morrin, H.; Phung, Y.; Pearson, J.F.; Anderson, T.P.; Potter, J.D.; Walker, L.C. Cytomegalovirus and Epstein-Barr virus in breast cancer. PLoS ONE 2015, 10, e0118989. [Google Scholar] [CrossRef]
- Richardson, A.K.; Walker, L.C.; Cox, B.; Rollag, H.; Robinson, B.A.; Morrin, H.; Pearson, J.F.; Potter, J.D.; Paterson, M.; Surcel, H.-M.; et al. Breast cancer and cytomegalovirus. Clin. Transl. Oncol. 2019, 22, 585–602. [Google Scholar] [CrossRef]
- Erlach, K.C.; Podlech, J.; Rojan, A.; Reddehase, M.J. Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: An unpredicted novel function of cytomegalovirus. J. Virol. 2002, 76, 2857–2870. [Google Scholar] [CrossRef]
- Peric, Z.; Wilson, J.; Durakovic, N.; Ostojic, A.; Desnica, L.; Vranjes, V.R.; Marekovic, I.; Serventi-Seiwerth, R.; Vrhovac, R. Early human cytomegalovirus reactivation is associated with lower incidence of relapse of myeloproliferative disorders after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018, 53, 1450–1456. [Google Scholar] [CrossRef]
- Geris, J.M.; Spector, L.G.; Pfeiffer, R.M.; Limaye, A.P.; Yu, K.J.; Engels, E.A. Cancer risk associated with cytomegalovirus infection among solid organ transplant recipients in the United States. Cancer 2022, 128, 3985–3994. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Qiu, D.; Marquardt, K.; Bein, G.; Hackstein, H. Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang. 2004, 86, 41–44. [Google Scholar] [CrossRef]
- Staras, S.A.S.; Dollard, S.C.; Radford, K.W.; Flanders, W.D.; Pass, R.F.; Cannon, M.J. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin. Infect. Dis. 2006, 43, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Ahlfors, K. IgG antibodies to cytomegalovirus in a normal urban Swedish population. Scand. J. Infect. Dis. 1984, 16, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Varga, M.; Görög, D.; Kári, D.; Környei, E.; Kis, É.; Túryné, H.; Jankovics, I.; Péter, A.; Toronyi, É.; Sárváry, E.; et al. Cytomegalovirus seroprevalence among solid organ donors in Hungary: Correlations with age, gender, and blood group. Transplant. Proc. 2011, 43, 1233–1235. [Google Scholar] [CrossRef]
- Bate, S.L.; Dollard, S.C.; Cannon, M.J. Cytomegalovirus seroprevalence in the United States: The national health and nutrition examination surveys, 1988–2004. Clin. Infect. Dis. 2010, 50, 1439–1447. [Google Scholar] [CrossRef]
- Lachmann, R.; Loenenbach, A.; Waterboer, T.; Brenner, N.; Pawlita, M.; Michel, A.; Thamm, M.; Poethko-Müller, C.; Wichmann, O.; Wiese-Posselt, M. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS ONE 2018, 13, e0200267. [Google Scholar] [CrossRef]
- Cannon, M.J.; Schmid, D.S.; Hyde, T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef]
- Marshall, G.S.; Rabalais, G.P.; Stewart, J.A.; Dobbins, J.G. Cytomegalovirus seroprevalence in women bearing children in Jefferson County, Kentucky. Am. J. Med. Sci. 1993, 305, 292–296. [Google Scholar] [CrossRef]
- Clarke, C.A.; Glaser, S.L.; Gomez, S.L.; Wang, S.S.; Keegan, T.H.; Yang, J.; Chang, E.T. Lymphoid malignancies in US Asians: Incidence rate differences by birthplace and acculturation. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1064–1077. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, Z.; Yi, D.; Ma, S. Racial Differences in Three major NHL Subtypes: Descriptive epidemiology. Cancer Epidemiol. 2015, 39, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, M.; Knezevic, T.; Tomic, A.; Milicevic, O.; Jovanovic, T.; Djunic, I.; Mihaljevic, B.; Knezevic, A.; Todorovic-Balint, M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int. J. Mol. Sci. 2024, 25, 3741. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.S.; Lee, J.J.; Cheng, S.P. No evidence of association between human cytomegalovirus infection and papillary thy-roid cancer. World J. Surg. Oncol. 2014, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, J.F.; van Hecke, W.; Jansen, M.K.; Spliet, W.G.; Broekhuizen, R.; Bovenschen, N. No evidence for human cytomegalovirus infection in pediatric medulloblastomas. Neuro-Oncology 2016, 18, 1461–1462. [Google Scholar] [CrossRef]
- Janković, M.; Milićević, O.; Todorović-Balint, M.; Đunić, I.; Mihaljević, B.; Jovanović, T.; Knežević, A. Cytomegalovirus seropositivity relates inversely to cancer incidences across races and ethnicities: Implications for oncoprevention. medRxiv 2023. [Google Scholar] [CrossRef]
Tumor/Localization | Correlation Analysis | Univariate Linear Regression Analysis | Multivariate Linear Regression Analysis ** | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Spearman’s ρ | p-Value | Stand. Coeff. β | p-Value | R2 | Adj. R2 | Stand. Coeff. β | p-Value | R2 | Adj. R2 | |
1. Melanoma (skin) | −0.763 | 0.001 * | −0.719 | <0.001 * | 0.518 | 0.511 | −0.529 | <0.001 * | 0.573 | 0.561 |
2. Kidney | −0.754 | 0.001 * | −0.792 | <0.001 * | 0.627 | 0.622 | −0.493 | <0.001 * | 0.771 | 0.765 |
3. Breast | −0.719 | 0.001 * | −0.754 | <0.001 * | 0.569 | 0.563 | −0.470 | <0.001 * | 0.690 | 0.681 |
4. Kaposi’s sarcoma † | −0.007 | 0.953 | 0.135 | 0.255 | 0.018 | 0.004 | 0.031 | 0.836 | 0.041 | 0.013 |
5. All cancers | −0.732 | 0.001 * | −0.776 | <0.001 * | 0.603 | 0.597 | −0.482 | <0.001 * | 0.745 | 0.737 |
6. All cancers (excluding skin non-melanoma) | −0.726 | 0.001 * | −0.778 | <0.001 * | 0.605 | 0.599 | −0.462 | <0.001 * | 0.770 | 0.763 |
Model Characteristics | Univariate Linear Regression Analysis | ||||
---|---|---|---|---|---|
Tumor/Localization | R2 | Adjusted R2 | Standardized Coefficients β | 95% CI | p-Value |
1. Melanoma (skin) | 0.518 | 0.511 | −0.719 | −55.518–−34.870 | <0.001 |
2. Kidney | 0.627 | 0.622 | −0.792 | −24.206–−16.731 | <0.001 |
3. Breast | 0.569 | 0.563 | −0.754 | −157.096–−103.411 | <0.001 |
4. Kaposi’s sarcoma | 0.018 | 0.004 | 0.135 | −0.626–2.321 | 0.255 |
5. All cancers | 0.603 | 0.597 | −0.776 | −617.383–−418.339 | <0.001 |
6. All cancers (excluding skin non-melanoma) | 0.605 | 0.599 | −0.778 | −511.328–−347.189 | <0.001 |
Multivariate Linear Regression Analysis | Model Characteristics | |||||
---|---|---|---|---|---|---|
Tumor/Localization | Factor | Stdand. Coeff. β | 95% Confidence Interval (CI) | p-Value | R2 | Adjusted R2 |
1. Melanoma (skin) | CMV | −0.529 | −46.017–−20.828 | <0.001 | 0.573 | 0.561 |
HDI | 0.306 | 6.219–29.515 | <0.001 | |||
2. Kidney | CMV | −0.493 | −16.622–−9.031 | <0.001 | 0.771 | 0.765 |
HDI | 0.484 | 8.128–15.149 | <0.001 | |||
3. Breast | CMV | −0.470 | −110.714–−51.989 | <0.001 | 0.690 | 0.681 |
HDI | 0.454 | 45.398–99.712 | <0.001 | |||
HDI | 0.244 | −1.787–17.442 | 0.109 | |||
4. Kaposi’s sarcoma | CMV | 0.031 | −1.695–2.088 | 0.836 | 0.041 | 0.013 |
HDI | −0.182 | −2.812–0.686 | 0.230 | |||
HDI | 0.065 | −8.125–12.595 | 0.668 | |||
5. All cancers | CMV | −0.482 | −427.382–−220.202 | <0.001 | 0.745 | 0.737 |
HDI | 0.478 | 200.918–392.535 | <0.001 | |||
6. All cancers (excluding skin non-melanoma) | CMV | −0.462 | −338.43–−175.618 | <0.001 | 0.770 | 0.763 |
HDI | 0.513 | 188.415–338.997 | <0.001 |
Statement/Conclusion | Reference No. (This Work) |
---|---|
Inhibition of tumor cell migration CMV gB as a potential TGF-β/Smad signaling inhibitor | [18] |
Adverse impact on the advancement of B-cell lymphoma in a murine model | [61] |
Immune-mediated oncoprotective effect | [19] |
Mitigation of risk for disease relapse | [20,21,22,23,62] |
Lack of connection between CMV serology and a number of solid organ tumors | [63] |
Inverse correlation between CMV seroprevalence and tumor frequency | [13,74,77] |
Lack of CMV DNA in a variety of tumors | [75,76] |
Prior CMV infection reduces tumor incidence | [14,15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankovic, M.; Glumac, S.; Knezevic, A.; Tomic, A.; Miljanovic, D.; Cupic, J.; Banko, A.; Kablar, D.; Celic, I.; Urosevic, S.; et al. A Potential Oncoprotective Role of Cytomegalovirus Against Breast Cancer: Worldwide Correlation and Survey of Evidence. Diseases 2025, 13, 181. https://doi.org/10.3390/diseases13060181
Jankovic M, Glumac S, Knezevic A, Tomic A, Miljanovic D, Cupic J, Banko A, Kablar D, Celic I, Urosevic S, et al. A Potential Oncoprotective Role of Cytomegalovirus Against Breast Cancer: Worldwide Correlation and Survey of Evidence. Diseases. 2025; 13(6):181. https://doi.org/10.3390/diseases13060181
Chicago/Turabian StyleJankovic, Marko, Sofija Glumac, Aleksandra Knezevic, Ana Tomic, Danijela Miljanovic, Jovana Cupic, Ana Banko, Djurdjina Kablar, Ivana Celic, Sara Urosevic, and et al. 2025. "A Potential Oncoprotective Role of Cytomegalovirus Against Breast Cancer: Worldwide Correlation and Survey of Evidence" Diseases 13, no. 6: 181. https://doi.org/10.3390/diseases13060181
APA StyleJankovic, M., Glumac, S., Knezevic, A., Tomic, A., Miljanovic, D., Cupic, J., Banko, A., Kablar, D., Celic, I., Urosevic, S., & Lazarevic, I. (2025). A Potential Oncoprotective Role of Cytomegalovirus Against Breast Cancer: Worldwide Correlation and Survey of Evidence. Diseases, 13(6), 181. https://doi.org/10.3390/diseases13060181