Study on Characteristics of Enhancement-Mode Gallium-Nitride High-Electron-Mobility Transistor for the Design of Gate Drivers
Abstract
:1. Introduction
2. Measuring System
3. Electrical Characteristics of E-mode GaN HEMT when di/dt and dv/dt Occur
3.1. Applying Various LD Values to Measure the Changes in Ids and Vds when di/dt and dv/dt Occur
3.2. Applying Different LG Values to Measure the Changes of Vds and Vgs When di/dt and dv/dt Occur
3.3. Applying Different LS Values to Measure the Changes of Ids, Vds, and Vgs When di/dt and dv/dt Occur
3.4. Applying Different LS Values to Measure the Changes of Ids, Vds, and Vgs When di/dt and dv/dt Occur
4. Framework and Application of Gate Driver Circuit
5. Conclusions
- When the dv/dt of Vds and the di/dt of Ids are excessively large, the LD of the Ids circuit loop may first be reduced before LS is reduced.
- When the dv/dt of Vgs is excessively large, the LG of the Vgs circuit loop may first be reduced.
- When LD, LG, and LS are maintained at a minimum value, the optimal operating frequency for GS61004B is 100 kHz–2 MHz.
- The gate driver circuit is suitable for 120-W synchronous buck converter.
Funding
Conflicts of Interest
References
- Radić, A.; Ahssanuzzaman, S.M.; Mahdavikhah, B.; Prodić, A. High-Power Density Hybrid Converter Topologies for Low-Power DC-DC SMPS. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 3582–3586. [Google Scholar]
- Halder, T. Power Density & Thermal Limits of the Flyback SMPS, the Flyback SMPS. In Proceedings of the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10 January 2016; pp. 1–5. [Google Scholar]
- Avila, A.; Garcia-Bediaga, A.; Oñederra, O.; Ruias, A.; Rodriguez, A. Comparative Analysis of GaN HEMT vs. Si Cool MOS for a High-Frequency MMC Topology. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. 1–9. [Google Scholar]
- Balda, J.C.; Mantooth, A. Power-semiconductor devices and components for new power converter developments. IEEE Power Electron. Mag. 2016, 3, 53–56. [Google Scholar] [CrossRef]
- Millan, J.; Godignon, P.; Perpina, X.; Perez-Tomas, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Ramachandran, R.; Nymand, M. Experimental demonstration of a 98.8% efficient isolated DC-DC GaN converter. IEEE Trans. Ind. Electron. 2017, 64, 9104–9113. [Google Scholar]
- Han, D.; Morris, C.T.; Lee, W.; Sarlioglu, B. A case study on common Mode electromagnetic interference characteristics of GaN HEMT and Si MOSFET power converters for EV/HEVs. IEEE Trans. Transp. Electrif. 2017, 3, 168–179. [Google Scholar] [CrossRef]
- Kaminski, N. State of the Art and the Future of Wide Band-Gap Devices. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–9. [Google Scholar]
- Han, D.; Noppakunkajorn, J.; Sarlioglu, B. Comprehensive efficiency, weight, and volume comparison of SiC- and Si-based bidirectional DC-DC converters for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2014, 63, 3001–3010. [Google Scholar] [CrossRef]
- Biela, J.; Schweizer, M.; Waffler, S.; Kolar, J.W. SiC versus Si-evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors. IEEE Trans. Ind. Electron. 2011, 58, 2872–2882. [Google Scholar]
- Lidow, A.; Strydom, J.; de Rooij, M.; Reusch, D. GaN Transistors for Efficient Power Conversion; Wiley: Hoboken, NJ, USA, 2014; pp. 1–10. [Google Scholar]
- GaN System Inc. Top Cooled 650V Enhancement Mode GaN Transistor Preliminary Datasheet (GS66508T); GaN System Inc.: Ottawa, ON, Canada, 2015. [Google Scholar]
- Transphorm Inc. AEC-Q101 Qualified 650V Cascode GaN FET in TO-247 (TPH3205WSBQA); Transphorm Inc.: Goleta, CA, USA, 2017. [Google Scholar]
- GaN System Inc. How to Drive GaN Enhancement Mode HEMT (GN001); GaN System Inc.: Ottawa, ON, Canada, 2016. [Google Scholar]
- Diodes Incorporated. 1N4148 datasheet (1N4148WS); Diodes Incorporated: Plano, TX, USA, 2016. [Google Scholar]
- GaN System Inc. 100V Enhancement Mode GaN Transistor Datasheet (GS61004B); GaN System Inc.: Ottawa, ON, Canada, 2004. [Google Scholar]
- Irwin, J.D.; Nelms, R.M. Engineering Circuit Analysis, 11th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
Key Parameter | E-Mode GaN HEMT | GaN HEMT | Unit | |
---|---|---|---|---|
Static | RDS(ON) (150 °C) | 37 | 105 | mΩ |
Dynamic | QG | 6.5 | 28 | nC |
QGS | 1.4 | 10 | nC | |
QGD | 2.8 | 6 | nC | |
Reverse Operation | QRR | ≈0 | 136 | nC |
Symbol | Value | Unit |
---|---|---|
Vdc | 12 | V |
Idc | 0.1–2.0 | A |
fs | 100–2000 | kHz |
LD | 0.01–3.00 | μH |
LS | 0.01–3.00 | μH |
LG | 0.01–3.00 | μH |
RG_ON | 2 | Ω |
RG_OFF | 0 | Ω |
D1 and D2 | 1N4148 | - |
1N4148 specification [15] | ||
Fabricant | Diodes | - |
Non-Repetitive Peak Reverse Voltage (VRM) | 100 | V |
Forward Continuous Current (IFM) | 300 | mA |
Reverse Recovery Time (tRR) | 4 | ns |
Vds,max of GS61004B | 100 | V |
Ids,max of GS61004B | 30 | A |
Vgs,max of GS61004B | 7 | V |
Symbol | Value | Unit |
---|---|---|
Vin(min) | 36.8 | V |
Vin(max) | 57.6 | V |
Po | 120 | W |
Vo | 12 | V |
Io | 10 | A |
ΔVo/Vo | 1 | % |
ΔIo/Io | 10 | % |
fs | 800 | kHz |
Duty ratio | 0.18 | - |
L1 | 2.7 | μH |
Co | 380 | μF |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.-Y. Study on Characteristics of Enhancement-Mode Gallium-Nitride High-Electron-Mobility Transistor for the Design of Gate Drivers. Electronics 2020, 9, 1573. https://doi.org/10.3390/electronics9101573
Tang S-Y. Study on Characteristics of Enhancement-Mode Gallium-Nitride High-Electron-Mobility Transistor for the Design of Gate Drivers. Electronics. 2020; 9(10):1573. https://doi.org/10.3390/electronics9101573
Chicago/Turabian StyleTang, Sheng-Yi. 2020. "Study on Characteristics of Enhancement-Mode Gallium-Nitride High-Electron-Mobility Transistor for the Design of Gate Drivers" Electronics 9, no. 10: 1573. https://doi.org/10.3390/electronics9101573
APA StyleTang, S.-Y. (2020). Study on Characteristics of Enhancement-Mode Gallium-Nitride High-Electron-Mobility Transistor for the Design of Gate Drivers. Electronics, 9(10), 1573. https://doi.org/10.3390/electronics9101573