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Abstract: The near-threshold design is widely employed in the energy-efficient circuits, but it suffers
from a high sensitivity to process variation, which leads to 2X delay variation due to temperature
effects. Hence, it is not negligible. In this paper, we propose an analytical model for gate delay
variation considering temperature effects in the near-threshold region. The delay variation model
is constructed based on the log-skew-normal distribution by moment matching. Moreover, to deal
with complex gates, a multi-variate threshold voltage approximation approach of stacked transistors
is proposed. Also, three delay metrics (delay variability, ±3σ percentile points) are quantified and
have a comparison with other known works. Experimental results show that the maximum of delay
variability is 5% compared with Monte Carlo simulation and improves 5X in stacked gates compared
with lognormal distribution. Additionally, it is worth mentioning that, the proposed model exhibits
excellent advantages on −3σ and stacked gates, which improves 5X–10X in accuracy compared with
other works.

Keywords: temperature; delay variation; near-threshold; log-skew-normal distribution

1. Introduction

By technology downscaling deep into the nanometer era, the near-threshold design has become
one of the most efficient ways for high energy efficiency application [1–4]. However, it suffers from
a much higher sensitivity to process, voltage and temperature variations [5–7]. In view of transistor
operation mechanisms, MOSFET changes from strong inversion to weak inversion with decreasing
voltage, and its primary current also changes from drift to diffusion current [8]. In the near-threshold,
since these two kinds of current cannot be ignored, its current formula is different from that of
sub/super-threshold regime [9,10]. Kumar et al. [11] and Saurabh et al. [12] reveal the relationship of
nominal delay with temperature in low voltage, which show the temperature has important effects in
the low voltage. Kaul et al. [2] show that delay variability has a 2X improvement due to temperature
effects. Consequently, the effects of temperature play an important role in the delay and delay variation,
and cannot be ignored.

A lot of works have studied on the effect of temperature on the delay variation. In [13,14], they
present the model of delay variability and temperature in the subthreshold regime, which is inversely
proportional to temperature. Kiamehr et al. [15] introduce the adjustment of temperature-aware
voltage scaling considering the process, but from the view of current, subthreshold regime is adopted.
For stacked gates, a method is proposed in [16], which shows the dependence of mean and variance
on temperature based on lognormal (LN) distribution for a CMOS inverter and gates with transistor
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stacks in the subthreshold regime. Also, for stacked transistors, they assume that each transistor is
independent. However, due to the connection of the intermediate node, the stacked transistors are
dependent, and no longer follow the same Gaussian distribution. Nevertheless, the relationship of
delay variation with temperature under near-threshold supply voltage has not been revealed.

For near-threshold region, Balef et al. [17] use log-skew-normal (LSN) distribution to model the
delay distribution across all voltage regions with its distribution parameters determined by fitting from
the Monte Carlo (MC) samples. But it does not reveal the relationship with the process parameters and
the environment parameters and takes numerous MC simulations. A transregional current and delay
model was developed in [18] in closed-form for near-threshold. But LN distribution is introduced for
the delay variation computing. Nevertheless, due to the difference in current expression, LN is no
longer suitable for near-threshold, so the computation of maximum/minimum delay is unsuitable.
Therefore, it does not provide a reasonable analytical delay variation model for the near-threshold
regime and does not have analysis on stacked gates.

In this paper, a novel analytical delay variation model with temperature in the near-threshold is
proposed, and also extended to gates with stacked transistors. The main contributions of the work are
as followed.

• A novel analytical delay variation model with temperature is derived by LSN distribution with
moment matching for the near-threshold regime.

• Due to the existence of the intermediate node, the two stacked transistors are no longer
independent. So a multi-variate threshold voltage approximation approach of stacked transistors
is proposed for the computation of delay variation for staked gates with temperature consideration,
which shows remarkable accuracy advantage compared with previous works.

The rest of the paper is organized as follows. Section 2 introduces the related properties of LSN
distribution. The delay distribution models for a single transistor and stacked transistors are addressed
in Section 3. For stacked transistors, a multi-variate threshold voltage approximation approach is
proposed. And the delay variation model is derived by LSN distribution with moment matching.
Section 4 shows the experimental results that three metrics (delay variability, maximum and minimum
delay) are compared with SPICE MC simulation and other previous works. Section 5 concludes
the paper.

2. The Properties of LSN Distribution

Since this paper mainly analyzes and derives based on LSN distribution, some basic properties
used are introduced in this section.

2.1. Properties of Skew Normal Distribution

If X is a random variable and follows a skew-normal (SN) distribution, that is X ∼ SN
(
ε, ω2, λ

)
,

its PDF ( fSN (X)) and CDF (FSN (X)) are represented as

fSN (X) =
2
ω

φ

(
X− ε

ω

)
Φ
(

λ
X− ε

ω

)
(1)

FSN (X) = Φ
(

X− ε

ω

)
−2T

(
X− ε

ω
, λ

)
(2)

where φ and Φ are the PDF and CDF of the standard normal distribution, ε, ω, and λ are the location,
scale, and shape parameters of the SN distribution, T (H, A) is Owen’s T function and can be given by
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T(H, A) =
1

2π

∫ A

0

e
−H2

2 (1+x2)

1 + x2 dx (3)

The mean (µ), variance
(
σ2), and skewness (γ1) (they are also called first, second and third

moment) of the random variable X are written in Equation (4) [19].
µ = ε + ωβ

√
2
π

σ2 = ω2 (1− 2
π β2)

γ1 = 4−π
2

( 2
π β2)

3
2

(1− 2
π β2)

3
2

(4)

where

β=
λ√

1 + λ2
(5)

2.2. Properties of Log-Skew-Normal Distribution

If Y is a random variable and has an exponent relationship with X
(
Y = eX), it follows

log-skew-normal distribution, that is Y ∼ LSN
(
ε, ω2, λ

)
. And its PDF ( fSN (X)) and CDF (FSN (X))

are represented as

fLSN (Y) =
2

ωy
φ

(
ln (Y)− ε

ω

)
Φ
(

λ
ln (Y)− ε

ω

)
(6)

FLSN (Y) = Φ
(

ln (Y)− ε

ω

)
−2T

(
ln (Y)− ε

ω
, λ

)
(7)

According to [19], the mean and variance of Y are illustrated in Equation (8). Besides,
the variability (σY/µY) of Y can be easily computed by dividing σY by µY.{

µY = 2eεeω2/2φ (βω)

σ2
Y = 2e2εeω2

(
eω2

φ (2βω)− 2φ2 (2βω)
) (8)

For this work, maximum/minimum delay (±3σ percentile points) is also the important metric.
In order to obtain ±3σ percentile points, Equation (9) must be solved.

FLSN (Y) =Φ (±3) (9)

But it cannot be easily solved for the LSN distribution due to the existence of Owen’s T function.
To resolve this issue, a reasonable approximation is introduced in this paper to transform the form of
the Owen’s T function. If the value of shape parameter (λ) in LSN distribution is close to 1, Owen’s T
function has the following function.

T (h, 1) =
1
2

Φ (h) (1−Φ (h)) (10)

Equation (9) can be derived by

Φ2
(

ln (Y)− ε

ω

)
= Φ (±3) (11)
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It can be clearly shown from Equation (11) that the maximum/minimum delay at 3σ/ − 3σ

percentile point of Y locates at Ymax/Ymin, which is Ymax = eε+Φ−1
(√

Φ(3)
)

ω ≈ eε+3.21ω

Ymin = eε+Φ−1
(√

Φ(−3)
)

ω ≈ eε−1.79ω
(12)

According to the previous analysis, the variability and the maximum/minimum value of Y can
be obtained.

2.3. Conclusion of Different Distribution

This section will list the properties of three distributions, which are lognormal, log-skew-normal
and Gaussian distribution and usually adopted in the path delay analysis. For skew-normal
distribution, λ controls the shape of the CDF, it is evident that when λ = 0, SN reduces to normal
distribution with mean ε and variance ω. The characteristics of different distributions is summarized
in Table 1.

Table 1. The property of lognormal, log-skew-normal and Gaussian distributions.

Lognormal Log-Skew-Normal Gaussian

X X ∼ N
(
ε, ω2) X ∼ SN

(
ε, ω2, λ

)
X ∼ N

(
ε, ω2)

Y Y = eX ∼ LN
(
ε, ω2) Y = eX ∼ LSN

(
ε, ω2, λ

)
Y = X ∼ N

(
ε, ω2)

µ eε+ ω2
2 2eεeω2/2φ (βω) ε

σ2
(

eω2−1
)
·
(

eε+ ω2
2

)2
2e2εeω2

(
eω2

φ (2βω)− 2φ2 (2βω)
)

ω2

σ
µ

√
eω2−1

√
2e2εeω2 (eω2 φ(2βω)−2φ2(2βω))

2eεeω2/2φ(βω)
ω
ε

Ymax eε+3ω eε+3.21ω ε+3ω

Ymin eε−3ω eε−1.79ω ε− 3ω

3. Delay Variation Model Based on LSN Distribution

In this section, delay variation models of a single transistor and stacked transistors based on LSN
distribution are introduced, respectively. By moment matching, the distribution parameters of LSN
can be computed. The detailed process of the proposed model is introduced in the following.

3.1. Delay Variation Model for Single Transistor

Recently, Keller et al. [18] pointed out that near-threshold on-state current is expressed as follows.

Ion = µCox (n− 1)
W
L

(
kT
q

)2
K0e

K1
VDD−[Vth0−κ(T−T0)]

nkT/q +K2

(
VDD−[Vth0−κ(T−T0)]

nkT/q

)2

(13)

where µ is the mobility of carriers, Cox is the oxide capacitance for unit area, n is the subthreshold slope
factor, W and L are width and length of a transistor, k is the Boltzmann constant, q is the elementary
charge, K0, K1 and K2 are process-independent constants, which are 0.54, 0.69 and −0.033 [18]. VDD
is the operation voltage, Vthn0 is the threshold voltage at the temperature T0. κ is the temperature
coefficient for threshold voltage, and T is the absolute temperature.

Simplicity, Equation (13) can be rewritten as

Ion = K3T2eX (14)

where K3 is expressed as µCox (n− 1) (W/L)
(
k
/

q
)2K0 .
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Although µ is also related to temperature, the mobility contributes only 2% compared with thermal
and threshold voltage [12]. Therefore, in this work, the dependence of mobility with temperature is
also ignored.

And X is noted as

X = K1
VDD − [Vth0 − κ (T − T0)]

nkT/q
+ K2

(
VDD − [Vth0 − κ (T − T0)]

nkT/q

)2
(15)

Since the random variable X is a quadratic function of threshold voltage Vth which follows
Gaussian distribution, the mean (µ), variance (σ2), and skewness (γ1) of X can also be calculated by
definition and expressed as

µX=
qK1
nk

1
T VDD − qK1

nk
1
T [µ0 − κ (T − T0)] +

q2K2

(nk)2
1

T2 VDD
2

−2 q2K2

(nk)2
1

T2 VDD [µ0 − κ (T − T0)] +
q2K2

(nk)2
1

T2

(
[µ0 − κ (T − T0)]

2 + σ0
2
)

σX
2 = q2K2

(nk)2
1

T2

[
2σ4

0 + 4σ2
0

(
VDD − [µ0 − κ (T − T0)] +

nkK1
2K2

T
)2
]

γ1X =



(
q2K2

(nk)2
1

T2

)3
E
[
V6

DT′

]
− 3

4

(
qK1
nk

1
T

)2 q2K2

(nk)2
1

T2 E
[
V4

DT′

]
+ 3

16
q2

(nk)2
K4

1
K2

1
T2 E

[
V2

DT′

]
− K6

1
64K3

2


/

σX
3 + −3µXσX

2−µX
3

σX3

(16)

where µ0 and σ0 are the mean and standard deviation of Vth0, and E
[
V6

DT′

]
, E
[
V6

DT′

]
, E
[
V6

DT′

]
can be

computed by integration and the final form is illustrated in
E
[
V6

DT′

]
= 15σ6

0+45σ4
0 (V

′
DD)

2+15σ2
0 (V

′
DD)

4+(V
′
DD)

6

E
[
V4

DT′

]
= 3σ4

0 + 6σ2
0 (V

′
DD)

2 + (V
′
DD)

4

E
[
V2

DT′

]
=σ2

0 + (V
′
DD)

2

(17)

where

V
′
DD =

(
VDD − [µ0 − κ (T − T0)] +

nk
2q

K1

K2
T
)2

(18)

With a simper linear RC-delay model, the delay of a gate can be written as

Td = k f
VDDCL

Ion
=

k f VDDCL

K3

1
T2 e−X (19)

3.2. Delay Variation Model for Stacked Transistors

In this section, we broaden the proposed model to gates with stacked transistors , including
stacked transistors, such as NAND, shown in Figure 1. Due to the existing of intermate node Vx,
the stacked transistors are not independent. In order to extend the proposed model, a multi-variate
threshold threshold voltage approximation approach is proposed.
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A

B

IU

ID

VX

CL

VDD

...
Figure 1. The schematic of stacked transistors.

IU and ID are the current through the up and down series-connected transistor as shown in
Figure 1, which can be computed by

IU = K3T2eK1
VDD−VX−VthU

nkT/q +K2

( VDD−VX−VthU
nkT/q

)2

·
(

1− e−
VDD−VX

kT/q

)
ID = K3T2eK1

VDD−VthD
nkT/q +K2

( VDD−VthD
nkT/q

)2

·
(

1− e−
VX

kT/q

) (20)

where Vx is the intermediate node voltage of the two stacked transistors, VthU and VthD are the
threshold voltage for up and down transistors and illustrated in Equation (21), respectively.{

VthU = VthU0 + κ (T − T0)
VthD = VthD0 + κ (T − T0)

(21)

where VthU0 and VthD0 are the threshold voltage of up and down transistor at temperature T0.
Due to the two transistors are series-connected, so the IU = ID. However, Vx cannot be solved

analytically, because it causes a transcendental equation. Therefore, a linear approximation method is
introduced to determine the relationship between VthU and VthD. Through running MC simulation for
a NAND2 cell at 0.55 V and 25 ◦C, related simulation results are plotted in Figure 2, which show that
the voltage Vx changes approximate linearly with VthU and VthD. Moreover, the slope with different
temperatures can be considered constant whose specified fitting parameters are listed in Table 2.
The maximum error is 3.12% across the entire temperature. Thereby, the equation form of Vx can be
determined by a bivariate linear model, which is shown in

VX = kUVthU + kDVthD + kC (22)

where kU , kD, and kC are the fitting parameters.
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V X(V
)

V t h D ( V )

(b) VthD

Figure 2. The relationship of Vx with VthU and VthD: (a) VthU ; (b) VthD.

Table 2. Coefficients and errors at different temperature.

Temperature kU kD kC Error

−25 ◦C −0.70 0.54 0.13 3.12%
25 ◦C −0.69 0.53 0.14 2.64%
75 ◦C −0.68 0.51 0.14 2.27%

125 ◦C −0.66 0.50 0.15 1.98%

By substituting Vx into Equation (20), the discharge current for the NAND2 gate can be written as

Istack = K3T2e
K1

VDD−Vth_st
nkT/q +K2

(
VDD−Vth_st

nkT/q

)2

(23)

where Vth_st is the equivalent threshold voltage in the stacked gate and is given by

Vth_st = (kU + 1) · (VthU0 + κ (T − T0))
+ kD (VthD0 + κ (T − T0)) + kC0

(24)

Because the VthU0 and VthD0 both follow Gaussian distribution, the parameter of Vth_st can be
obtained easily by Gaussian distribution operation.

Assuming that VthU0 ∼ N (µU0, σU0) and VthD0 ∼ N (µD0, σD0), the mean and variance of Vth_st
can be expressed by 

µst = (kU + 1) · (µU0 + κ (T − T0))
+ kD (µD0 + κ (T − T0)) + kC0

σst =
√
(kU + 1)2σ2

U0 + k2
Lσ2

L0

(25)

If X is noted as

X = K1
VDD −Vth_st

nkT/q
+ K2

(
VDD −Vth_st

nkT/q

)2
(26)

So we can expand the single transistor model to stacked transistors, and the expression of Td_st is
formulated by Equation (27), which has the same form as single transistor.

Td_st =
k f VDDCL

K3T2 e−X (27)
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3.3. Moment Matching

According to [17], LSN distribution is suggested for the modeling of the delay distribution and
shows remarkable accuracy in the near-threshold region. Therefore, X is assumed skew-normal
distribution, the distribution parameters are ε, ω and λ, and the basic propertied of SN and LSN are
introduced in Section 2. The specified flow of moment matching is illustrated in Figure 3. The mean,
variance and skewness can be computed from SN distribution Equation (4) and definition Equation (16),
respectively. Then, the three distribution parameters can be calculated by equaling the two equations,
which are given as: 

ε=µ−
√

2
π ωβ

ω =

√
σ2

1− 2
π β2

λ =
√

K∗
1+( 2

π−1)K∗

(28)

where

K∗ =
π

2

(
2

4− π
γ1

) 2
3

(29)

Eq.(4)

(mean, variance, skewness)

obtained by SN distribution

moment matching

X

specified 

expression

Eq.(20)

Distribution parameters

Eq.(24)(25)

 variability and maximum/minimum of Td

Eq.(16)

(mean, variance, skewness)

obtained by defination

 , ,  

 2, ,
d d dd t t tT LSN   

 2, ,X SN   

Figure 3. Flowchart of moment matching of log-skew-normal (LSN).

Equations (19) and (27) can be transformed into

Td = e
−X+ln

(
k f VDDCL

K3
1

T2

)
(30)
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Thereby, three distribution parameters (εTd , ωTd and λTd ) of Td are expressed as
εTd

= −µX+ ln
( k f VDDCL

K3
1

T2

)
−
√

2
π ωTd

βTd

ωTd
=
√

σX2

1− 2
π βTd

2

λTd
=
√

K∗
1+( 2

π−1)K∗

(31)

where βTd =
√

K∗
1+ 2

π K∗
.

Then, according to Table 1, the variability and maximum/minimum of delay can be calculated.

(
σ

µ

)
Td

=

√
2e2εTd eωTd

2
(

eω2
φ (2βTdωTd)− 2φ2 (2βTdωTd)

)
2eεTd eωTd

2/2φ (βTdωTd)
(32)

{
Tdmax ≈ eεTd+3.21ωTd

Tdmin ≈ eεTd−1.79ωTd
(33)

The delay variability and maximum/minimum delay value increase with decreasing temperature
and voltage. However, due to the near-threshold regime with complicated current expression,
a log-skew-normal distribution is adopted and its distribution parameters are obtained by moment
matching, they have no explicit relationship with temperature and voltage. But these expressions can
be verified by the following experiments and described in the next section.

4. Experiments and Result Comparisons

According to the above proposed delay variation model, experiments are carried out on the gates
with a single transistor and stacked transistors under all kinds of metrics, such as delay variability,
and maximum/minimum delay value, in SMIC40nmLL technology. For a single transistor, we take
INV as an example; for stacked transistors, NAND2 is used as an instance. Because the proposed
method is analytical, it has the inherent advantage in terms of runtime. Taking NAND as an example,
under the same server resources, it takes 40 s to obtain three metrics by SPICE MC method, while it
only needs 0.6 s by the proposed model in this paper. Therefore, it has increased by more than 60 times
in runtime. For the perspective of accuracy, detailed comparisons with the similar analytical methods
in [13,16,18] are done. Since they do not have the contrast of ±3σ point, the corresponding calculations
are listed in Table 3 to allow a fair comparison with our work to validate the effectiveness of our model.

In order to validate our proposed model based on LSN, SPICE MC simulations are conducted
to compare variability of INV and NAND2 with different temperatures at the supply voltage of
0.35 V and 0.55 V, respectively, as shown in Figure 4. The x-axis represents the temperature (from
−25∼125 ◦C) and the y-axis represents the value of current variability (left figures) or the relative error
(right figures). Besides, different combinations of gates and voltages are illustrated in Figure 4a–d,
respectively. The four left figures show that the delay variabilities are greater in 0.35 V than that of in
0.55 V, and have a tendency that they increase with decreasing temperature in all model. In all models,
our LSN model and MC simulation match best with maximum error 5% in NAND. For INV, due to
the same current formula with [18], the delay variabilities are the same as each other, which are better
than the result of LN distribution in [13,16]. Besides, in terms of the complex gate at 0.55 V, the stacked
threshold approximation is more suitable and the error is about 2% at the 0.55 V which is less than 10%
and 20% in the others. It improves 5X at least in accuracy. In addition, the error keeps constant across
the entire temperature, which shows the excellent stability.



Electronics 2019, 8, 501 10 of 15

(a) INV 0.35 V

(b) INV 0.55 V

(c) NAND 0.35 V

(d) NAND 0.55 V

Figure 4. Comparison of delay variability with different temperature under different gates and voltages:
(a) INV 0.35 V; (b) INV 0.55 V; (c) NAND 0.35 V; (d) NAND 0.55 V.
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Table 3. Comparison of methods in different works.

[13,16] [18] This Work

Distribution LN LN LSN

Current ION = I0 · e
q

nkT (VDD−Vth) Ion = I0K0eK1
(VDD−Vth)

nkT/q +K2

( VDD−Vth
nkT/q

)2

Stack threshold Vth_st = VthU = VthD Vth_st = f (VX)

Delay variability Equations (15) and (5) in [13,16] Equation (58) Equation (24)

+3σ eε+3ω Equation (25)
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Figure 5 is the dependence of maximum delay on temperature, which still presents the relationship
of INV and NAND at different voltage across the entire temperature range. The four figures show that
the maximum delays increase with decreasing voltage and temperature, due to lower current at the
low voltage and low temperature. From the left absolute value figures of Figure 5b,d, the LSN model
is agreement with MC simulation; and the right error figures show that the errors of LSN model are
less than 5% and keep stable across the entire temperature range. Figure 6a,c show the dependence
with temperature in 0.35 V. Method in [18] performs best for INV and worst for NAND, but [13,16]
perform worst for INV and have the same accuracy with proposed method for NAND. Therefore,
from overall view, LSN performs better in the two kinds of gates compared with the published works.

Figure 6 shows the result of minimum delay. The four figures show that the minimum delays
have same tendency with maximum, which are increase with decreasing voltage and temperature.
From left figures, no matter under what kinds of gates and voltage, the LSN model and MC data show
remarkable consistency with each other. More detailed error information can be seen from error figures.
The error is almost 2% in all four conditions, which improves 5X–10X and shows a distinct advantage
over the other two state-of-the-art works. Therefore, as for −3σ, the proposed model features more
obvious advantages, because of the reasonable of LSN equivalent model and the effectiveness of the
threshold approximation of stacked transistors.

Above all, LSN model proposed in this work outperforms the model in previous works under
different voltages and gates across entire temperature and has a strong agreement with SPICE MC
simulation result.
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(a) INV 0.35 V

(b) INV 0.55 V

(c) NAND 0.35 V

(d) NAND 0.55 V

Figure 5. Comparison of maximum delay with different temperature under different gates and voltages:
(a) INV 0.35 V; (b) INV 0.55 V; (c) NAND 0.35 V; (d) NAND 0.55 V.
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(a) INV 0.35 V

(b) INV 0.55 V

(c) NAND 0.35 V

(d) NAND 0.55 V

Figure 6. Comparison of minimum delay with different temperature under different gates and voltages:
(a) INV 0.35 V; (b) INV 0.55 V; (c) NAND 0.35 V; (d) NAND 0.55 V.

5. Conclusions

This paper proposes a LSN-based methods for current and delay variation model. In order to
obtain the distribution parameters, the moment matching is adopted. Besides, a multi-variate threshold
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voltage approximation approach of stacked transistors is proposed and makes the method easily extend
to stacked gate. The model is validated at different voltages and gates across the entire temperature.
In addition, it also provides a detailed analysis on the dependence of the three important metrics
(delay variability and maximum/minimum delay value)on the temperature, which are consistence
to SPICE MC simulation with maximum delay variability 5% and performs very well , especially at
minimum delay with a 5X–10X error improvement compared with other works.
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