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Abstract: The paper investigates H∞ consensus problem of heterogeneous multi-agent systems
including agents with first- and second-order integrators in the presence of disturbance and
communication time delays under Markov switching topologies. Based on current messages,
outdated information stored in memory and communication time delay information from neighbors,
a more general kind of distributed consensus algorithm is proposed, which is faster consensus
convergence. By applying stochastic stability analysis, model transformation techniques and graph
theory, sufficient conditions of mean square consensus and H∞ consensus are obtained, respectively.
Finally, simulation examples are given to illustrate the effectiveness of obtained theoretical results.
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1. Introduction

In recent years, coordination control of multi-agent systems has become an interesting and
attractive topic in control community. Moreover, consensus problem is a basic and critical issue of
coordination control.

At present, there have been many results on consensus reported in literatures [1–27]. In [1],
authors provided consensus preliminary work of multi-agent systems, where several basic consensus
algorithms were established and convergence analysis was also carried out. Then, consensus problems
were taken into account for continuous- and discrete-time multi-agent systems in [2] and some useful
graph lemmas were introduced. Based on sampled data approach, consensus protocols with sampled
interval for the second-order multi-agent systems were proposed in [3]. In order to accelerate consensus
convergence, outdated and current positions information was utilized to design controllers for the
first-order multi-agent systems in [4]. Moreover, in the context of complex environment, agents have
to be separated into small groups to execute different tasks. Then, we say that it is group consensus.
By use of models transformation, it is shown that group consensus of heterogeneous multi-agent
systems was addressed in [5]. Furthermore, asynchronous group consensus was achieved if the union
graph had a spanning tree in [6].

It is well known that time delay widely exists in practical networks. Form the viewpoint of
systems stability, researchers mainly focus on time delays how much impact on networks [7–12].
For example, when time delay was changing in [7], average consensus could be reached if there were
balanced and connected communication graphs. In [8], output consensus problem was discussed for
discrete-time multi-agent systems including output time delays. By applying Laplace transformation
approaches, authors in [9] were concerned with consensus analysis of high-order multi-agent systems
with different time delays. Since there was input time delays in [10], a kind of group consensus
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algorithms were proposed for heterogeneous multi-agent systems and stability analysis of closed loop
system was discussed in frequency domain. Moreover, due to external disturbance, H infinity control
for multi-agent systems with time delays was investigated in [11]. Furthermore, authors in [12] dealt
with H infinity consensus problem by applying periodic sampled data approach and graph theory
under switching leader-follower topologies. Additionally, other results of networks can be found
in [13–20], to name a few.

Since there are some factors like packet dropouts or limited communication distance in practical
systems, communication links between agents may be dynamically different, which leads to stochastic
switching topologies. Moreover, if they satisfy the property of a Markov chain, it is worth studying
consensus problems of multi-agent systems [21–27]. For example, assume that some of transition
probabilities were unknown for Markov jump systems, authors in [21] adopted two methods to
realize H infinity performance by use of Finsler’s Lemma and iterative theory, respectively. In view
of an active leader, authors in [22] applied sampled data method to derive necessary and sufficient
consensus conditions for discrete-time multi-agent systems under switching topologies driven by a
Markov chain. Based on event-triggered idea, the filter was design for discrete-time systems in [23]
and made the estimated signal satisfy H infinity performance with disturbance. Moreover, by using
systems transformations, mean square consensus problems were turned to be stability analysis of
closed-loop systems with stochastic switching signals in [24]. Furthermore, if communication link
failures occurred, consensus problems with and without leader of heterogeneous multi-agent systems
were studied in [25]. In [26], authors modeled dynamics of the second-order multi-agent systems
with input controller. In [27], mean square consensus with saturation was considered. Based on
consensus idea, controller laws for network were proposed in [28] for realistic cases. In addition, sleep
scheduling method in [29] and separation of time scale in [30] were adopted to deal with network
problems, respectively.

The main contribution of the paper is summarized as follows. (1) Compared with literatures [1–7],
a more general kind of consensus algorithms is proposed based on three types of output messages.
However, proposed algorithms in the paper are different from ones with output information in the
literature [8,17–20]. (2) In contrast to similar algorithms in literatures [11,16], proposed consensus
algorithms are faster consensus convergence, which is shown by simulation example in Section 4.
(3) Based on model transformation techniques and graph theory, mean square consensus is changed to
be the problem of stochastic stability of closed-loop systems. Moreover, continuous-time heterogeneous
multi-agent systems were discussed under the fixed topology in [11], while we investigate consensus
of discrete-time cases under directed Markovian switching topologies.

2. Graph Theory

Before we give the main results, fundamental graph theory used in the article is introduced ahead.
Suppose that there are n1 + n2 agents, which consists n1 first-order agents and n2 second-order agents.
We use G = (E ,A) to express the graph corresponding to communication topology, where E is a
collection of communication edges and A = [aij]n1+n2,n1+n2

is the adjacency matrix. Note that if there
exists communication information exchange from the ith agent to the jth agent, we define aij > 0;
otherwise aij = 0. Moreover, if messages transmission is directional for any two agents, G is called
a directed graph. Then, Laplacian matrix is defined L = [lij]n1+n2,n1+n2

with lij = −aij for i 6= j and

lii = −
n1+n2

∑
j=1,j 6=i

aij with i = j.

In the graph G, if a node could not receive any information from others but could transfer
messages to at least a node, it is called the root node. The directed graph G has a spanning tree if there
exists at least a path from the root node to others.
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3. Main results

3.1. Mean Square Consensus of Heterogeneous Multi-Agent Systems without Disturbance

The dynamical equations of the first-order agents are modeled as follows:

xi(k + 1) = mxi(k) + ui(k)T + g1iw1i(k) (1)

yi = cixi(t), i = 1, . . . , n1 (2)

where xi(k) ∈ R1, ui(k) ∈ R1, yi(t) ∈ R1 represent position, input control and output of the ith
agent, respectively. And ci is a constant, R1 is the set of vectors, w1i(k) ∈ L2[0, ∞) denotes external
disturbance, L2[0, ∞) is the set of square-integrable functions, g1i > 0 is a constant, m is a constant
coefficient, T is a sampling time.

The dynamics of the second-order agents are considered as follows

xi(k + 1) = mxi(k) + vi(k)T + g2iw2i(k) (3)

vi(k + 1) = vi(k) + ui(k)T + g3iw3i(k) (4)

yi(t) = cixi(t) (5)
_
y i(t) = divi(t), i = n1 + 1, . . . , n1 + n2 (6)

where xi(k) ∈ R1, vi(k) ∈ R1, ui(k) ∈ R1 denote the ith agent’s position, velocity, input control,
respectively. And yi(t),

_
y i(t) denote the ith agent’s output, g2i > 0 and g3i > 0 are constants,

w2i(k) ∈ L2[0, ∞) and w3i(k) ∈ L2[0, ∞) are external disturbances. m is the same to the one in (1).
In some practical situations, information of positions and velocities could not be directly obtained

at some times. However, output messages are easily measured. Then, based on output yi(t) and
_
y i(t),

consensus algorithms with communication time delays are proposed as follows

ui(k) =


k1

n1+n2
∑

j=1
aij[yj(k− τ)− yi(k− τ )]− α

n1+n2
∑

j=n1+1
aij

_
y j(k− τ)− k1εiyi(k− τ), i = 1, . . . n1,

k2
n1+n2

∑
j=1

aij
[
yj(k− τ)− yi(k− τ)

]
+ β

n1+n2
∑

j=n1+1
aij

[
_
y j(k− τ)−_

y i(k− τ)
]
− k3

_
y i(k), i = n1 + 1 . . . n1 + n2,

(7)

where τ > 0 is communication time delay among agents, k1 > 0, k2 > 0, k3 > 0, α > 0, β > 0, ε1 > 0
are constants and εi = 0 for i = 2, . . . , n1. Moreover, yj(k− τ) and

_
y j(k− τ) denote received messages

of the ith agent from the jth agent at time kT, yi(k− τ) and
_
y i(k− τ) are the outdated information

stored in memory of the ith agent at time (k− τ)T,
_
y i(k) is current output of the ith agent.

Replacing yi(t) and
_
y i(t) in (7) by ones in (2), (5), (6), we have

ui(k) =


k1

n1+n2
∑

j=1
aij[cjxj(k− τ)− cixi(k− τ )]− α

n1+n2
∑

j=n1+1
aijdjvj(k− τ)− k1εicixi(k− τ), i = 1, . . . n1,

k2
n1+n2

∑
j=1

aij
[
cjxj(k− τ)− cixi(k− τ)

]
+ β

n1+n2
∑

j=n1+1
aij
[
djvj(k− τ)− divi(k− τ)

]
− k3divi(k), i = n1 + 1 . . . n1 + n2.

(8)

Remark 1. In [1–7], authors used positions and velocities to design consensus algorithms. In order to overcome
the difficulty of directly obtaining the above information at certain times, consensus algorithms with output
information are proposed in this paper, which are different from those with output signals in [8,17–20]. Moreover,
authors in [4] applied history information to make agents converge much faster. Mainly inspired by the idea
in [4], we utilize outdated data to construct consensus algorithms. And (7) is made up of three parts, which is
time delay messages of the jth agent, outdated memory and current information of the ith agent.
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Remark 2. Note that authors directly used position information to design controllers and behavior of every
agent was identical in literature [4], while output information is utilized to construct algorithms and dynamic
of every agent is different in this paper. In addition, directed stochastic switching topologies are consider in
the paper.

The estimated signal is denoted by z(k) as follows

z(k) =
[

D1 D2

][ ξ(k)
_
y (t)

]
(9)

where D1 and D2 are constant matrices,
_
y (t) =

_
Dv(t), ξ(k),

_
D, v(k) are identical to ones in (11).

Definition 1. [24] Under the proposed algorithms (7), systems (1), (3), (4) reach mean square consensus
without disturbance if lim

k→∞
E(xi(k)− xj(k))

2 = 0, i = 1, . . . , n1,

lim
k→∞

E(vi(k)− vj(k))
2 = 0, i = n1 + 1, . . . , n1 + n2

Definition 2. [12,21,23,31] H∞ consensus problem investigated in this paper is to design the consensus
algorithm (7), such that the following conditions are satisfied

(1) Under the consensus algorithm (7), systems (1), (3), (4) reach mean square consensus with w(k) = 0;
(2) Under zero initial condition, for any nonzero w(k) 6= 0, the following inequality holds for γ > 0

E

{
∞

∑
k=0

zT(k)z(k)

}
≤ γ2

∞

∑
k=0

wT(k)w(k)

Lemma 1. [2,3] The Laplacian matrix L has exactly one zero eigenvalues and all other eigenvalues have positive
real parts, if and only if the directed graph associated with L has a spanning tree.

Set x f (k) = [ xT
1 (k) . . . xT

n1
(k) ]

T
, xs(k) = [ xT

n1+1(k) . . . xT
n1+n2

(k) ]
T

. In order to express

clearly, we divide L into the form

[
L11 L12

L21 L22

]
, where L11 ∈ Rn1×n1 , L12 ∈ Rn1×n2 , L22 ∈ Rn2×n2 ,

Rn1×n1 is the set of n1 × n1 dimensional matrices. Moreover, L is denoted by

[
L11 L12

L21 L22

]
with

L11 = L11 + diag{ε1, . . . , 0}.
Then, combining (1)–(6) with (7) yields[

x f (k + 1)
xs(k + 1)

]
=

[
mI 0
0 mI

][
x f (k)
xs(k)

]
+

[
−k1L11T −k1L12T

0 0

][
C1x f (k− τ)

C2xs(k− τ)

]
+

[
0

v(k)T

]

+

[
g1 0
0 g2

][
w1(k)
w2(k)

]
+

[
αL12

_
DT

0

]
v(k− τ)

(10)

where

w1(k) =

 w11(k)
...

w1,n1(k)

, w2(k) =

 w2,n1+1(k)
...

w2,n1+n2(k)

, v(k) =

 vn1+1(k)
...

vn1+n2(k)

, C1 = diag{c1, . . . , cn1},

g1 = diag
{

g11, . . . , g1,n1

}
, g2 = diag

{
g2,n1+1, . . . , g2,n1+n2

}
, C2 = diag

{
cn1+1, . . . , cn1+n2

}
,
_
D =

diag
{

dn1+1, . . . , dn1+n2

}
. And I is an identity matrix with appropriate dimensions. 0 is a suitable

dimensional matrix (or vector) from the context with every element being zero.
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We let ξ(k) = L

[
C1x f (k)
C2xs(k)

]
. It follows from (10) that

ξ(k + 1) = L

[
C1x f (k + 1)
C2xs(k + 1)

]

= L

[
mI 0
0 mI

][
C1x f (k)
C2xs(k)

]
+ L

[
C1 0
0 C2

][
−k1L11T −k1L12T

0 0

][
C1x f (k− τ)

C2xs(k− τ)

]
+ L

[
C1 0
0 C2

][
0

v(k)T

]

+L

[
C1 0
0 C2

][
g1 0
0 g2

][
w1(k)
w2(k)

]
+ L

[
C1 0
0 C2

][
αL12

_
DT

0

]
v(k− τ)

=

[
mI 0
0 mI

]
L

[
C1x f (k)
C2xs(k)

]
− L

[
k1C1T 0

0 0

]
L

[
C1x f (k− τ)

C2xs(k− τ)

]
+

[
L12C2T
L22C2T

]
v(k) + F

[
w1(k)
w2(k)

]
+

_
Lv(k− τ)

=

[
mI 0
0 mI

]
ξ(k)− L̃ξ(k− τ) +

[
L12C2T
L22C2T

]
v(k) + F

[
w1(k)
w2(k)

]
+

_
L v(k− τ)

(11)

where L̃ = L

[
k1C1T 0

0 0

]
, F = L

[
C1 0
0 C2

][
g1 0
0 g2

]
,
_
L =

 αL11C1L12
_
DT

αL21C1L12
_
DT

.

Together (4) with (8), it implies

v(k + 1) = (I − k3
_
DT)v(k)− k2T[ L21 L22 ]

[
C1x f (k− τ)

C2xs(k− τ)

]
− βL22

_
DTv(k− τ) + g3w3(k)

= (I − k3
_
DT)v(k)− [ 0 k2T ]

[
L11 L12

L21 L22

][
C1x f (k− τ)

C2xs(k− τ)

]
− βL22

_
DTv(k− τ) + g3w3(k)

= (I − k3
_
DT)v(k)−

[
0 k2T

]
ξ(k− τ)− βL22

_
DTv(k− τ) + g3w3(k),

(12)

where g3 = diag
{

g3,n1+1, . . . , g3,n1+n2

}
, w3(k) =

[
wT

3,n1+1(k) . . . wT
3,n1+n2

(k)
]T

.
Changing (11) and (12) into a matrix form results in

[
ξ(k + 1)
v(k + 1)

]
=


[

mI 0
0 mI

] [
L12C2T
L22C2T

]
0 I − k3

_
DT


[

ξ(k)
v(k)

]
+

 −L̃
_
L[

0 −k2T
]
−βL22

_
DT

[ ξ(k− τ)

v(k− τ)

]
+

[
F 0
0 g3 I

] w1(k)
w2(k)
w3(k)



Set η(k) =

[
ξ(k)
v(k)

]
. Rewriting the above equation yields

η(k + 1) = Rη(k) + Bη(k− τ) + Cw(k), (13)

where

R =


[

mI 0
0 mI

] [
L12C2T
L22C2T

]
0 I − k3

_
DT

, B =

 −L̃
_
L[

0 −k2T
]
−βL22

_
DT

, C =

[
F 0
0 g3 I

]
, w(k) =

 w1(k)
w2(k)
w3(k)

.

Considering the case that communication switching topologies satisfy property of the Markov
chain, (13) can be expressed as follows

η(k + 1) = Rσ(k)η(k) + Bσ(k)η(k− τ) + Cσ(k)w(k), σ(k) ∈=
{

1, . . . s1

}
(14)

where σ(k) is a switching signal driven by a Markov chain, which takes vales in the set
{

1, . . . s1

}
with s1 being a positive number. Then, we use π =

[
πij
]

s1×s1
to represent the transition probability
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matrix with Pr
{

σ(k + 1) = Gj
∣∣σ(k) = Gj

}
= πij where πij ≥ 0 denotes the transition rate from the

topology associated with graph Gi to the one corresponding to graph Gi and satisfies
s1
∑

j=1
πij = 1 for i ∈.

After above models transformations, mean square consensus problems of systems (1), (3), (4)
turns to be stability analysis of system (14).

Theorem 1. Assume that each communication graph Gi contains a directed spanning tree for i = 1, . . . , s1.
When w(k) = 0, if there exist positive definite matrices Pi, Q for constants k1 > 0, k2 > 0, τ > 0, T > 0,
α > 0, β > 0 and ε1 > 0, such that the following inequalities hold

RT
i

s1
∑

j=1
πijPjRi + τQ− Pi RT

i

s1
∑

j=1
πijPjBi

∗ BT
i

s1
∑

j=1
πijPjBi − τQ

 < 0, i = 1, . . . , s1. (15)

Then, under the proposed consensus algorithm (7), systems (1), (3), (4) can reach mean square consensus.

Proof. Choose the Lyapunov function modified based on ones in [21,23,31]

V(η(k), σ(k)) = ηT(k)Piη(k) + τ
k−1

∑
l=k−τ

ηT(l)Qη(l) (16)

where Pi, Q are positive definite matrices. Taking difference of (16) in the stochastic process sense,
we have

E[∆V(k)] = ηT(k + 1)
s1
∑

j=1
πijPjη(k + 1)− ηT(k)Piη(k) + τ

(k−1)+1
∑

l=k−τ+1
ηT(l)Qη(l)− τ

k−1
∑

l=k−τ
ηT(l)Qη(l)

= ηT(k)RT
i

s1
∑

j=1
πijPjRiη(k) + 2ηT(k− τ)BT

i

s1
∑

j=1
πijPjRiη(k) + ηT(k− τ)BT

i

s1
∑

j=1
πijPjBiη(k− τ)− ηT(k)Piη(k)

+τ
[
ηT(k)Qη(k) + ηT(k− 1)Qη(k− 1) + . . . + ηT(k− τ + 1)Qη(k− τ + 1)

]
−τ
[
ηT(k− 1)Qη(k− 1) + . . . + ηT(k− τ + 1)Qη(k− τ + 1) + ηT(k− τ)Qη(k− τ)

]

=
[

η(k) η(k− τ)
]

RT
i

s1
∑

j=1
πijPjRiη(k) + τQ− Pi RT

i

s1
∑

j=1
πijPjBi

∗ BT
i

s1
∑

j=1
πijPjBi − τQ


[

η(k)
η(k− τ)

]

From condition (15), we can see E(∆V(k)) < 0. Thus, we obtain lim
k→∞

E(ηT(k)η(k)) = 0. In view of

η(k) =
[

ξT(k) vT(k)
]T

, lim
k→∞

E(ξT(k)ξ(k)) = 0 and lim
k→∞

E(vT(k)v(k)) = 0 are derived. Since

every communication graph has a spanning tree, according to Lemma 1, L has only one zero

eigenvalue, which implies rank(L) = n1 + n2 − 1. Then, there exists an invertible matrix
_
P to make

the following transformation,

_
P{L + diag{ε1, 0, . . . , 0}}

_
P
−1

=
_
P L

_
P
−1

+
_
Pdiag{ε1, 0, . . . , 0}

_
P
−1

=


0 0 . . . 0
0 J1 . . . 0
...

...
. . .

...
0 0 . . . Jr

+
_
Pdiag{ε1, 0, . . . , 0}

_
P
−1

,

(17)
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where Ji is a Jordan normal matrix for i = 1, . . . , r with r ≤ n1 + n2 − 1.
Noting (17), we have

rank(L) = rank(L + diag{ε1, 0, . . . , 0})

= rank(
_
P [L + diag{ε1, 0, . . . , 0}]

_
P
−1

).

From above analysis, we can see rank(L) = n1 + n2. It is obvious that L is a nonsingular

matrix. Due to ξ(k) = L
[

CT
1 xT

f (k) CT
2 xT

s (k)
]T

with nonsingular matrices C1 and C2, it implies

lim
k→∞

E(xi(k))
2 = 0. Furthermore, we have lim

k→∞
E(xi(k)− xj(k))

2 = 0 for i, j = 1, . . . , n1 + n2 and

lim
k→∞

E(vi(k)− vj(k))
2 = 0 for i, j = n1 + 1, . . . , n1 + n2. Therefore, using Definition 1, under the

proposed consensus algorithm (7), we say systems (1), (3), (4) can reach mean square consensus. �

Next, we will discuss less messages needed than one in (7) to construct consensus algorithms.
Then, if we only use time delay messages of yj(k− τ),

_
y j(k− τ) and outdated information yi(k− τ),

(7) is turned to be

ui(k) =


k1

n1+n2
∑

j=1
aij[yj(k− τ)− yi(k− τ )]− α

n1+n2
∑

j=n1+1
aij

_
y j(k− τ)− k1εiyi(k− τ), i = 1, . . . n1,

k2
n1+n2

∑
j=1

aij
[
yj(k− τ)− yi(k− τ)

]
+ β

n1+n2
∑

j=n1+1
aij

[
_
y j(k− τ)−_

y i(k− τ)
]
, i = n1 + 1 . . . n1 + n2.

(18)

Moreover, consensus algorithms in [16] is a specific one of (18). In addition, if we only use output
information related with position and current messages, (7) is changed to be

ui(k) =


k1

n1+n2
∑

j=1
aij[yj(k− τ)− yi(k− τ )]− k1εiyi(k− τ), i = 1, . . . n1,

k2
n1+n2

∑
j=1

aij
[
yj(k− τ)− yi(k− τ)

]
− k3

_
y i(k),i = n1 + 1 . . . n1 + n2.

(19)

Then, we can see that (19) is more general consensus algorithm than one in [11]. Moreover,
algorithms (18) and (19) are specific cases of (7). However, (7) needs more output information than
algorithms (18) and (19), which leads to complicated controller. And Section 4 gives a convergence
comparison of (7), (18), (19) by simulation examples. Thus, we obtain that consensus convergence in
(7) is faster than ones in (18) and (19). Thus, there is a trade-off between faster convergence of (7) and
simpler controllers of (18) and (19).

Remark 3. Theorem 1 extends the results in [5,25] to the one with communication time delays under Markovian
switching topologies.

3.2. H∞ Consensus of Heterogeneous Multi-Agent Systems with Disturbance

In the section, we will discuss H∞ consensus with disturbance w(k) 6= 0. Under switching
topologies driven by a Markov chain, (9) can be rewritten

z(k) = D1,σ(k)ξσ(k)(k) + D2,σ(k)vσ(k)(k)

=
[

D1,σ(k) D2,σ(k)

]
ησ(k)(k)

(20)

where D2 = D2
_
D, σ(k) is identical to the one in (14).
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Theorem 2. Assume that each communication graph Gi contains a directed spanning tree. If there exist
constants k1 > 0, k2 > 0, k3 > 0, g1 > 0, g2 > 0, g3 > 0, τ > 0, T > 0, α > 0, β > 0, γ > 0 and ε1 > 0,
constant matrices D1i, D2i, positive definite matrices Pi, Q, such the following linear matrix inequalities hold

Σi =



Ωi RT
i

s1
∑

j=1
πijPjBi RiT

s1
∑

j=1
πijPjCi

∗ BT
i

s1
∑

j=1
πijPjBi − τQ BiT

s1
∑

j=1
πijPjCi

∗ ∗ CiT
s1
∑

j=1
πijPjCi − γ2 I


< 0, i = 1, . . . , s1 (21)

where Ωi = RT
i

s1
∑

j=1
πijPjRi + τQ +

[
D1i

T

DT
2i

][
D1i D2i

]
− Pi. Thus, under the consensus algorithm (7),

systems (1), (3), (4) can solve H∞ consensus problem.

Proof. Choose the Lyapunov function as the one in (16). Then, calculating difference of (16) with
w(k) 6= 0, we have

E(∆V(k)) =
[
ηT(k)RT

i + ηT(k− τ)BT
i + wT(k)CT

i

] s1
∑

j=1
πijPj

[
Riη(k) + Biη(k− τ) + Ciw(k)

]
− ηT(k)Piη(k)

+τηT(k)Qη(k)− τηT(k− τ)Qη(k− τ)

= ηT(k)RT
i

s1
∑

j=1
πijPjRiη(k) + 2ηT(k− τ)BT

i

s1
∑

j=1
πijPjRiη(k) + 2ηT(k)RT

i

s1
∑

j=1
πijPjCiw(k)− ηT(k)Piη(k)

+2ηT(k− τ)BT
i

s1
∑

j=1
πijPjCiw(k) + wT(k)CT

i

s1
∑

j=1
πijPjCiw(k) + ηT(k− τ)BT

i

s1
∑

j=1
πijPjBiη

T(k− τ)

+τηT(k)Qη(k)− τηT(k− τ)Qη(k− τ)

Observing (20) and condition (21), we have

E(zT(k)z(k)− γ2wT(k)w(k) + ∆V(k)) = ψT(k)Σiψ(k) < 0

where ψ(k) =
[

ηT(k) ηT(k− τ) wT(k)
]T

.
Recalling the zero initial condition of η(0) = 0 and following a similar method in [23], we have

E
(

∞
∑

k=0
zT(k)z(k)− γ2

∞
∑

k=0
wT(k)w(k)

)
= −E

(
∞
∑

k=0
∆V(k)

)
+

∞
∑

k=0
ψT(k)Σiψ(k)

≤ E(V(0)) +
∞
∑

k=0
ψT(k)Σiψ(k) ≤ 0

From above analysis, we derive E
(

∞
∑

k=0
zT(k)z(k)

)
≤ γ2

∞
∑

k=0
wT(k)w(k). According to Definition 2,

under the algorithm (7), systems (1), (3), (4) solve H∞ consensus problem. �

Remark 4. In [11], H∞ consensus problems of continuous-time multi-agent systems were investigated. However,
we focus on the case of discrete-time multi-agent systems.

4. Simulations

In this section, consider a multi-agent system consisting of four multi-agents, where agents
1–2 have first-order integrators and agents 3–4 are second-order integrators. The communication
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information flows jumped between graphs {G1, G2} associated with switching topologies. The graph
is shown in Figure 1. And assume that the transition probability matrix is as follows

π =

[
0.6 0.4
0.3 0.7

]
.
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If there exists the information flow from the ith agent to the jth agent, we set aij = 1; otherwise
it is zero. Choose m = 1, τ = 0.1, T = 0.1, k1 = k2 = 1.5, β = 1.8, k3 = 1, ε1 = 0.9, α = 0.2, ci = 1,
di = 1 for i = 1, . . . , 4. When w(k) = 0, linear matrix inequality in (15) is feasible checked by Matlab
tools. According to Theorem 1, systems (1), (3), (4) achieve mean square consensus. Figures 2–4 show
trajectories of position and velocity in systems (1), (3), (4) by applying consensus algorithms (7), (18),
(19), respectively. From these pictures, we can see that consensus convergence of (7) is faster than ones
in (18) and (19).
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For the case of w(k) 6= 0, we select w(k) = 1
1+k2 , γ = 5.2, g11 = g12 = 0.1, g23 = g24 = 0.1,

g33 = 0.2, g34 = 0.2, D1 =
[

0.1 0.1 0.5 0.1
]
, D2 =

[
0.1 0.1

]
. By verification of Matlab tools,

linear matrix inequality in (21) is feasible. According to Theorem 2, systems (1), (3), (4) solve H∞

consensus problem. Figure 5 gives the picture of the estimated signal z(k).
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5. Conclusions

In this paper, H∞ consensus problem of heterogeneous multi-agent system including the first- and
second-order agents under Markov switching topologies with external interference. And consensus
algorithms with communication time delay via output are proposed. By using stochastic stability
theory, linear matrix inequality technique and graph theory, sufficient H∞ consensus conditions are
derived. Finally, we give simulation examples to demonstrate the effectiveness of proposed results in
this paper.

In addition, if we choose inappropriate parameters k1, k2, k3, α, β and so on, consensus
convergence of proposed algorithms (7) may not outperform compared with other algorithms. Thus,
our future work is to find range of appropriate parameters in consensus algorithms by theoretical
analysis of convergence.
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