Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes
Abstract
:1. Introduction
2. Models and Methods
3. Device Structures and Mechanism
4. Results and Comparisons
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Term | Description | Values/Unit |
MOSFET | Metal–oxide–semiconductor field-effect transistor | / |
UMOSFET | Trench gate MOSFET | / |
DMOSFET | Planar gate MOSFET | / |
IGBT | Insulated gate bipolar transistors | / |
SWITCH-MOS | A SBD-wall-integrated trench MOSFET | |
DSI-MOS | Dual-SBD-integrated UMOSFET | / |
PSI-MOS | The planar gate SBD-integrated MOSFET | / |
TPL-MOS | The trench gate structure with three p-type-protecting layers | / |
SBD | Schottky barrier diodes | / |
LSBD | The width of the SBD window | μm |
SBH | Schottky barrier height | / |
IDL | Inter-metal dielectric layer | / |
JTFE | The leakage current of thermionic-field emission | A/cm2 |
The SBH | eV | |
The effective Richardson constant | 146 (A/cm2/K2) | |
The tunneling models | / | |
Schottky barrier lowering potential | eV | |
μLF | The total low-field mobility | cm2/V·s |
The bulk mobility | cm2/V·s | |
The surface phonon mobility | cm2/V·s | |
The Coulomb mobility | cm2/V·s | |
The surface roughness mobility | cm2/V·s | |
JFET | Junction field effect transistor | / |
SC | Short-circuit | / |
d | The vertical distance between the p-base regions and the mesa surface of the DSI-MOS | 1.1 μm |
BV | The breakdown voltage | V |
VGS | The gate-source voltage | V |
Ron-sp | Specific on-resistance at VGS = 15 V | mΩ·cm2 |
LJFET | The width of the JFET regions | |
J | The current density | 500 A/cm2 |
VF | The forward voltage drop at J = 500 A/cm2 | V |
Jh | The hole current density | 10 A/cm2 |
VFh | The triggering-on voltage of body pin diodes at Jh = 10 A/cm2 | V |
VDS | The drain-source voltage | V |
Eox-max | The maximum electric field in the gate oxide at VDS = 1200 V | MV/cm |
ESBD-max | The maximum electric field in the SBD contact surface at VDS = 1200 V | MV/cm |
DJFET | The JFET doping concentration | cm−3 |
RS | The spreading resistance | Ω |
Ron,sp × Eox-max | The figure of merit | mΩ·MV·cm |
QG | The total gate charge | nC/cm2 |
QGD | The miller charge | nC/cm2 |
DUT | The device under test | / |
Tmax | The maximum lattice temperatures | K |
Tj | The junction temperature | |
ESCPU | The average critical energy per unit area | J/cm2 |
References
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications; Wiley: Singapore, 2014. [Google Scholar]
- Cooper, J.A., Jr.; Agarwal, A. SiC power-switching devices—The second electronics revolution? Proc. IEEE 2002, 90, 956–968. [Google Scholar] [CrossRef]
- Zhang, Q.; Callanan, R.; Das, M.K.; Ryu, S.; Agarwal, A.; Palmour, J. SiC Power Devices for Microgrids. IEEE Trans. Power Electron. 2010, 25, 2889–2896. [Google Scholar] [CrossRef]
- Harada, S.; Kobayashi, Y.; Ariyoshi, K.; Kojima, T.; Senzaki, J.; Tanaka, Y.; Okumura, H. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field. IEEE Electron Device Lett. 2016, 37, 314–316. [Google Scholar] [CrossRef]
- Spejo, L.B.; Knoll, L.; Minamisawa, R.A. 6.5 kV SiC PiN and JBS Diodes’ Comparison in Hybrid and Full SiC Switch Topologies. Electronics 2024, 13, 4548. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, F.; Dimitrijev, S.; Han, J.; Yan, G.; Wen, Z.; Zhao, W.; Wang, L.; Liu, X.; Sun, G.; et al. Comparative study of electrical characteristics for n-type 4H–SiC planar and trench MOS capacitors annealed in ambient NO. Chin. Phys. B 2017, 26, 107101. [Google Scholar] [CrossRef]
- Dong, L.; Sun, G.; Yu, J.; Zheng, L.; Liu, X.; Zhang, F.; Yan, G.; Li, X.; Wang, Z. Growth of 4H-SiC epilayers with low surface roughness and morphological defects density on 4 degrees off-axis substrates. Appl. Surf. Sci. 2013, 270, 301–306. [Google Scholar] [CrossRef]
- Baliga, B.J. Wide Bandgap Semiconductor Power Devices: Materials. Physics, Design, and Applications; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Namai, M.; An, J.; Yano, H.; Iwamuro, N. Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage. Jpn. J. Appl. Phys. 2018, 57, 074102. [Google Scholar] [CrossRef]
- An, J.; Namai, M.; Iwamuro, N. Experimental and theoretical analyses of gate oxide and junction reliability for 4H-SiC MOSFET under short-circuit operation. Jpn. J. Appl. Phys. 2016, 55, 124102. [Google Scholar] [CrossRef]
- Hino, S.; Hatta, H.; Sadamatsu, K.; Nagahisa, Y.; Yamamoto, S.; Iwamatsu, T.; Yamamoto, Y.; Imaizumi, M.; Nakata, S.; Yamakawa, S. Demonstration of SiC-MOSFET Embedding Schottky Barrier Diode for Inactivation of Parasitic Body Diode. Mat. Sci. Forum 2017, 897, 477–482. [Google Scholar] [CrossRef]
- Hsu, F.J.; Yen, C.T.; Hung, C.C.; Hung, H.T.; Lee, C.Y.; Lee, L.S.; Huang, Y.F.; Chen, T.L.; Chuang, P.J. High Efficiency High Reliability SiC MOSFET with Monolithically Integrated Schottky Rectifier. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 45–48. [Google Scholar] [CrossRef]
- Kawahara, K.; Hino, S.; Sadamatsu, K.; Nakao, Y.; Yamashiro, Y.; Yamamoto, Y.; Iwamatsu, T.; Nakata, S.; Tomohisa, S.; Yamakawa, S. 6.5 kV schottky-barrier-diode-embedded SiC-MOSFET for compact full-unipolar module. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 45–48. [Google Scholar] [CrossRef]
- Sung, W.; Baliga, B.J. On Developing One-Chip Integration of 1.2 kV SiC MOSFET and JBS Diode (JBSFET). IEEE Trans. Ind. Electron. 2017, 64, 8206–8212. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ohse, N.; Morimoto, T.; Kato, M.; Kojima, T.; Miyazato, M.; Takei, M.; Kimura, H.; Harada, S. Body PiN diode inactivation with low on-resistance achieved by a 1.2 kV-class 4H-SiC SWITCH-MOS. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 9.1.1–9.1.4. [Google Scholar] [CrossRef]
- Agarwal, A.; Fatima, H.; Haney, S.; Ryu, S.H. A New Degradation Mechanism in High-Voltage SiC Power MOSFETs. IEEE Electron Device Lett. 2015, 28, 587–589. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, M.; Jiang, H.; Zhou, X.; Li, B.; Chen, K.J. Superjunction MOSFET With Dual Built-In Schottky Diodes for Fast Reverse Recovery: A Numerical Simulation Study. IEEE Electron Device Lett. 2019, 40, 1155–1158. [Google Scholar] [CrossRef]
- Jiang, H.; Wei, J.; Dai, X.; Zheng, C.; Deng, X.; Sharma, Y.; Deviny, I.; Mawby, P. SiC MOSFET with built-in SBD for reduction of reverse recovery charge and switching loss in 10-kV applications. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 49–52. [Google Scholar] [CrossRef]
- Li, X.; Tong, X.; Huang, A.Q.; Tao, H.; Zhou, K.; Jiang, Y.; Jiang, J.; Deng, X.; She, X.; Zhang, B.; et al. SiC Trench MOSFET With Integrated Self-Assembled Three-Level Protection Schottky Barrier Diode. IEEE Trans. Electron Devices 2018, 65, 347–351. [Google Scholar] [CrossRef]
- Dai, T.; Chan, C.W.; Deng, X.; Jiang, H.; Gammon, P.M.; Jennings, M.R.; Mawby, P.A. 4H-SiC trench MOSFET with integrated fast recovery MPS diode. Electron. Lett. 2018, 54, 167–169. [Google Scholar] [CrossRef]
- Zhou, X.; Pang, H.; Jia, Y.; Hu, D.; Wu, Y.; Tang, Y.; Xia, T.; Gong, H.; Zhao, Y. SiC Double-Trench MOSFETs with Embedded MOS-Channel Diode. IEEE Trans. Electron Devices 2020, 67, 582–587. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakano, Y.; Aketa, M.; Nakamura, R.; Mitani, S.; Sakairi, H.; Yokotsuji, Y. High performance SiC trench devices with ultra-low Ron. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 599–601. [Google Scholar] [CrossRef]
- Peters, D.; Siemieniec, R.; Aichinger, T.; Basler, T.; Esteve, R.; Bergner, W.; Kueck, D. Performance and ruggedness of 1200V SiC-Trench-MOSFET. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 239–242. [Google Scholar] [CrossRef]
- Synopsys, Inc. TCAD Sentaurus Device Manual; Synopsys, Inc.: San Jose, CA, USA, 2013. [Google Scholar]
- Hatakeyama, T.; Watanabe, T.; Shinohe, T.; Kojima, K.; Arai, K.; Sano, N. Impact ionization coefficients of 4H silicon carbide. Appl. Phys. Lett. 2004, 85, 1380–1382. [Google Scholar] [CrossRef]
- Ruff, M.; Mitlehner, H.; Helbig, R. SiC devices: Physics and numerical simulation. IEEE Trans. Electron Devices 1994, 41, 1040–1054. [Google Scholar] [CrossRef]
- Galeckas, A.; Linnros, J.; Grivickas, V.; Lindefelt, U.; Hallin, C. Auger recombination in 4H-SiC: Unusual temperature behavior. Appl. Phys. Lett. 1997, 71, 3269–3271. [Google Scholar] [CrossRef]
- Pernot, J.; Contreras, S.; Camassel, J. Electrical transport properties of aluminum-implanted 4H–SiC. J. Appl. Phys. 2005, 98, 023706. [Google Scholar] [CrossRef]
- Kagamihara, S.; Matsuura, H.; Hatakeyama, T.; Watanabe, T.; Kushibe, M.; Shinohe, T.; Arai, K. Parameters required to simulate electric characteristics of SiC devices for n-type 4H–SiC. J. Appl. Phys. 2004, 96, 5601–5606. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, F.; Dimitrijev, S.; Han, J.; Tian, L.; Yan, G.; Wen, Z.; Zhao, W.; Wang, L.; Liu, X.; et al. Prediction of High-Density and High-Mobility Two-Dimensional Electron Gas at AlxGa1-xN/4H-SiC Interface. Mater. Sci. Forum 2017, 897, 719–722. [Google Scholar] [CrossRef]
- Linewih, H.; Dimitrijev, S.; Cheong, K.Y. Channel-carrier mobility parameters for 4H SiC MOSFETs. Microelectron. Reliab. 2003, 43, 405–411. [Google Scholar] [CrossRef]
- Tugulea, A.; Dascalu, D. The image-force effect at a metal-semiconductor contact with an interfacial insulator layer. J. Appl. Phys. 1984, 56, 2823–2831. [Google Scholar] [CrossRef]
- Potbhare, S.; Goldsman, N.; Lelis, A.; McGarrity, J.M.; McLean, F.B.; Habersat, D. A physical model of high temperature 4H-SiC MOSFETs. IEEE Trans. Electron Devices 2008, 55, 2029–2040. [Google Scholar] [CrossRef]
- SDU Manual. Sentaurus Device User Manual; Synopsys: Sunnyvale, CA, USA, 2022. [Google Scholar]
- Wang, D.; Zhang, Y.; Wang, R.; Tang, R.; Wang, K.; Wang, D.; Liu, L.; Yan, F.; Zhang, S.; Shen, A.; et al. Enhanced gate biasing resilience in asymmetric and double trench SiC MOSFETs towards generalized highly reliable power electronics. Microelectron. Reliab. 2024, 154, 115342. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, F.; Yan, G.; Wen, Z.; Zhao, W.; Wang, L.; Liu, X.; Sun, G.; Zeng, Y. High-frequency Switching Properties and Low Oxide Electric Field and Energy Loss in a Reverse-Channel 4H-SiC UMOSFET. IEEE Trans. Electron Devices 2020, 67, 4046–4053. [Google Scholar] [CrossRef]
- Dong, Z.; Bai, Y.; Yang, C.; Li, C.; Tang, Y.; Hao, J.; Tian, X.; Liu, X. Impact of post-trench process treatment on electron scattering mechanisms in 4H-SiC trench MOSFETs. IEEE Trans. Electron Devices 2023, 70, 1782–1788. [Google Scholar] [CrossRef]
- Zhou, X.; Yue, R.; Zhang, J.; Dai, G.; Li, J.; Wang, Y. 4H-SiC trench MOSFET with floating/grounded junction barrier-controlled gate structure. IEEE Trans. Electron Devices 2017, 64, 4568–4574. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Reigosa, P.D.; Iannuzzo, F.; Blaabjerg, F. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis. Microelectron. Reliab. 2017, 76–77, 272–276. [Google Scholar] [CrossRef]
- Duong, T.H.; Ortiz, J.M.; Berning, D.W.; Hefner, A.R.; Ryu, S.-H.; Palmour, J.W. Electro-thermal simulation of 1200 V 4H-SiC MOSFET short-circuit SOA. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 217–220. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G.; Wang, B.; Li, W.; Wang, J. Gate Failure Physics of SiC MOSFETs Under Short-Circuit Stress. IEEE Electron Device Lett. 2020, 41, 103–106. [Google Scholar] [CrossRef]
- Okawa, M.; Aiba, R.; Kanamori, T.; Yano, H.; Iwamuro, N.; Harada, S. Experimental and Numerical Investigations of Short-Circuit Failure Mechanisms for State-of-the-Art 1.2 kV SiC Trench MOSFETs. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019; pp. 167–170. [Google Scholar] [CrossRef]
- Romano, G.; Maresca, L.; Riccio, M.; d’Alessandro, V.; Breglio, G.; Irace, A.; Fayyaz, A.; Castellazzi, A. Short-circuit failure mechanism of SiC power MOSFETs. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 345–348. [Google Scholar] [CrossRef]
- Wang, J.; Williams, B.W. Evaluation of High-Voltage 4H–SiC Switching Devices. IEEE Trans. Electron Dev. 1999, 46, 589–597. [Google Scholar] [CrossRef]
- Kim, T.; Funaki, T. Thermal measurement and analysis of packaged SiC MOSFETs. Thermochim. Acta 2016, 633, 31–36. [Google Scholar] [CrossRef]
- Available online: https://www.wolfspeed.com/power/products/sic-mosfets/1200v-silicon-carbide-mosfets (accessed on 1 September 2024).
- Bertilsson, K.; Harris, C.; Nilsson, H.E. Nilsson Calculation of lattice heating in SiC RF power devices. Solid-State Electron. 2004, 48, 2103–2107. [Google Scholar] [CrossRef]
- Lades, M. Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC. Ph.D. Thesis, Technishen Universitaet, Munich, Germany, 2000. [Google Scholar]
- Raynaud, C.; Isoird, K.; Lazar, M.; Johnson, C.M.; Wright, N. Barrier height determination of SiC Schottky diodes by capacitance and current-voltage measurements. J. Appl. Phys. 2002, 91, 9841–9847. [Google Scholar] [CrossRef]
- Okino, H.; Kameshiro, N.; Konishi, K.; Shima, A.; Yamada, R. Analysis of high reverse currents of 4H-SiC Schottky-barrierdiodes. J. Appl. Phys. 2017, 122, 2357041. [Google Scholar] [CrossRef]
- Zhu, L.; Chow, T.P. Analytical modeling of high-voltage 4H-SiC junction barrier Schottky (JBS) rectifiers. IEEE Trans. Electron Devices 2008, 55, 1857–1863. [Google Scholar] [CrossRef]
- Okawa, M.; Aiba, R.; Kanamori, T.; Kobayashi, Y.; Harada, S.; Yano, H.; Iwamuro, N. First demonstration of short-circuit capability for a 1.2 kV SiC SWITCH-MOS. IEEE J. Electron Devices Soc. 2019, 7, 613–620. [Google Scholar] [CrossRef]
- Aiba, R.; Matsui, K.; Baba, M.; Harada, S.; Yano, H.; Iwamuro, N. Demonstration of superior electrical characteristics for 1.2 kV SiC Schottky barrier diode-wall integrated trench MOSFET with higher Schottky barrier height metal. IEEE Electron Device Lett. 2020, 41, 1810–1813. [Google Scholar] [CrossRef]
- Okawa, M.; Kanamori, T.; Aiba, R.; Yano, H.; Iwamuro, N.; Harada, S. Analysis of 1.2 kV SiC SWITCH-MOS after short-circuit stress. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 74–77. [Google Scholar] [CrossRef]
- Green, R.; Urciuoli, D.; Lelis, A. Short-Circuit Robustness of SiC Trench MOSFETs. Mater. Sci. Forum 2018, 924, 715–718. [Google Scholar] [CrossRef]
- Xing, D.; Hu, B.; Yu, S.; Zhang, Y.; Liu, T.; Salemi, A.; Kang, M.; Wang, J.; Agarwal, A. Current Saturation Characteristics and Single-Pulse Short-Circuit Tests of Commercial SiC MOSFETs. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6179–6183. [Google Scholar] [CrossRef]
- Müting, J.; Natzke, P.; Tsibizov, A.; Grossner, U. Influence of process variations on the electrical performance of SiC power MOSFETs. IEEE Trans. Electron Devices 2020, 68, 230–235. [Google Scholar] [CrossRef]
- Cui, R.; Xin, Z.; Liu, Q.; Kang, J.; Luo, H.; Zhang, L.; Loh, P.C. Review of methodologies for evaluating short-circuit robustness and reliability of SiC power MOSFETs. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 4665–4679. [Google Scholar] [CrossRef]
- Zhong, X.; Xu, C.; Jiang, H.; Liao, R.; Tang, L.; Huang, Y.; Zhang, Q. Recovery Performance of the Dynamic Threshold Voltage Drift of Silicon Carbide MOSFETs. IEEE Trans. Power Electron. 2024, 39, 7620–7631. [Google Scholar] [CrossRef]
- Shi, L.; Qian, J.; Jin, M.; Bhattacharya, M.; Houshmand, S.; Yu, H.; Shimbori, A.; White, M.H.; Agarwal, A.K. Gate Oxide Reliability in Silicon Carbide Planar and Trench Metal-Oxide-Semiconductor Field-Effect Transistors Under Positive and Negative Electric Field Stress. Electronics 2024, 13, 4516. [Google Scholar] [CrossRef]
Parameter | SWITCH-MOS | PSI-MOS | TPL-MOS | DSI-MOS |
---|---|---|---|---|
Cell pitch (μm) | 5 | 8 | 5 | 5.6 |
BV (V) | 1576 | 1636 | 1596 | 1586 |
a Eox-max (MV/cm) | <1.5 | 2.78 | 1.4 | 0.95 |
a ESBD-max (MV/cm) | <1.5 | 0.91 | 0.33 | 0.56 |
b Ron,sp mΩ·cm2) | c 3.3 | 2.97 | 2.39 | 2.75 |
QGD (nC/cm2) | / | 205 | 169 | 46 |
d VFh (V) | >15 | 6.94 | 8.25 | 16.88 |
Etotal (mJ/cm2) | e 24.8 | 23.8 | 22.2 | 9.1 |
SC time (μs) | f 6/g 7.7 | 10 | 5 | 9 |
QGD × Ron,sp (mΩ·MV·cm) | / | 8.3 | 3.3 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, L.; Niu, X.; Shen, Z.; Huang, Y.; Tang, X.; Huang, K.; Xu, J.; He, Y.; He, F.; Li, Z.; et al. Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes. Electronics 2025, 14, 853. https://doi.org/10.3390/electronics14050853
Sang L, Niu X, Shen Z, Huang Y, Tang X, Huang K, Xu J, He Y, He F, Li Z, et al. Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes. Electronics. 2025; 14(5):853. https://doi.org/10.3390/electronics14050853
Chicago/Turabian StyleSang, Ling, Xiping Niu, Zhanwei Shen, Yu Huang, Xuan Tang, Kaige Huang, Jinyi Xu, Yawei He, Feng He, Zheyang Li, and et al. 2025. "Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes" Electronics 14, no. 5: 853. https://doi.org/10.3390/electronics14050853
APA StyleSang, L., Niu, X., Shen, Z., Huang, Y., Tang, X., Huang, K., Xu, J., He, Y., He, F., Li, Z., Jin, R., Yue, S., & Zhang, F. (2025). Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes. Electronics, 14(5), 853. https://doi.org/10.3390/electronics14050853