An Efficient Synthetic Aperture Radar Interference Suppression Method Based on Image Domain Regularization
Abstract
:1. Introduction
2. Signal Model
3. Method
Algorithm 1. SAR interference suppression method based on the image domain |
Input , , |
User parameters , |
Initialize , , |
Repeat |
Update by ; Update by ; Update by ; Until convergence |
Output , |
4. Results
4.1. Evaluation Criteria
4.2. Algorithm Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reigber, A.; Scheiber, R.; Jager, M.; Prats-Iraola, P.; Hajnsek, I.; Jagdhuber, T.; Papathanassiou, K.P.; Nannini, M.; Aguilera, E.; Baumgartner, S.; et al. Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications. Proc. IEEE 2013, 101, 759–783. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, W.; Zhang, H.; Wang, W.; Liu, D.; Wang, R. Forthcoming Spaceborne SAR Development. Radars 2020, 9, 1–33. [Google Scholar]
- Zhou, F.; Tao, M. Research on Methods for Narrow-Band Interference Suppression in Synthetic Aperture Radar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3476–3485. [Google Scholar] [CrossRef]
- Cai, Y.; Li, J.; Yang, Q.; Liang, D.; Liu, K.; Zhang, H.; Lu, P.; Wang, R. First Demonstration of RFI Mitigation in the Phase Synchronization of LT-1 Bistatic SAR. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3310613. [Google Scholar] [CrossRef]
- Tao, M.; Su, J.; Huang, Y.; Wang, L. Mitigation of Radio Frequency Interference in Synthetic Aperture Radar Data: Current Status and Future Trends. Remote Sens. 2019, 11, 2438. [Google Scholar] [CrossRef]
- Li, N.; Lv, Z.; Guo, Z. Observation and Mitigation of Mutual RFI Between SAR Satellites: A Case Study Between Chinese GaoFen-3 and European Sentinel-1A. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3170363. [Google Scholar] [CrossRef]
- Li, N.; Lv, Z.; Guo, Z. Pulse RFI Mitigation in Synthetic Aperture Radar Data via a Three-Step Approach: Location, Notch, and Recovery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3161368. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, H.; Li, N.; Guo, Z. A Two-Step Approach for Pulse RFI Detection in SAR Data. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P. Correction and Characterization of Radio Frequency Interference Signatures in L-Band Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef]
- Njoku, E.G.; Ashcroft, P.; Chan, T.K.; Li, L. Global Survey and Statistics of Radio-Frequency Interference in AMSR-E Land Observations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 938–947. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Johnson, J.T. A Polarimetric Survey of Radio-Frequency Interference in C- and X-Bands in the Continental United States Using WindSat Radiometry. IEEE Trans. Geosci. Remote Sens. 2006, 44, 540–548. [Google Scholar] [CrossRef]
- Draped, D.W.; De Matthaeis, P. Characteristics of 18.7 GHZ Reflected Radio Frequency Interference in Passive Radiometer Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4459–4462. [Google Scholar]
- Li, Y.; Monti Guarnieri, A.; Hu, C.; Rocca, F. Performance and Requirements of GEO SAR Systems in the Presence of Radio Frequency Interferences. Remote Sens. 2018, 10, 82. [Google Scholar] [CrossRef]
- Lv, Z.; Li, N.; Guo, Z.; Zhao, J. Detection and Mitigation of Mutual RFI in C-Band SAR: A Case Study of Chinese GaoFen-3. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Nabil, H.; Chen, J.; Kamel, H.; Kuang, H. Bidirectional Notch Filter for Suppressing Pulse Modulated Radio-Frequency-Interference in SAR Data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1136–1139. [Google Scholar]
- Tao, M.; Zhou, F.; Zhang, Z. Wideband Interference Mitigation in High-Resolution Airborne Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 74–87. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, B.; Tao, M.; Chen, Z.; Hong, W. Review of Synthetic Aperture Radar Interference Suppression. Radars 2020, 9, 86–106. [Google Scholar]
- Cazzaniga, G.; Monti Guarnieri, A. Removing RF Interferences from P-Band Airplane SAR Data. In Proceedings of the IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 27–31 May 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 3, pp. 1845–1847. [Google Scholar]
- Zhou, F.; Wu, R.; Xing, M.; Bao, Z. Eigensubspace-Based Filtering With Application in Narrow-Band Interference Suppression for SAR. IEEE Geosci. Remote Sens. Lett. 2007, 4, 75–79. [Google Scholar] [CrossRef]
- Abend, K.; McCorkle, J.W. Radio and TV Interference Extraction for Ultrawideband Radar; Giglio, D.A., Ed.; SPIE: Orlando, FL, USA, 1995; pp. 119–129. [Google Scholar]
- Vu, V.T.; Sjogren, T.K.; Pettersson, M.I.; Hakansson, L.; Gustavsson, A.; Ulander, L.M.H. RFI Suppression in Ultrawideband SAR Using an Adaptive Line Enhancer. IEEE Geosci. Remote Sens. Lett. 2010, 7, 694–698. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, G.; Yang, Z. Time Variant RFI Suppression for SAR Using Iterative Adaptive Approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1424–1428. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, G.; Li, J.; Chen, X. A Novel Moving Target Detection Method Based on RPCA for SAR Systems. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6677–6690. [Google Scholar] [CrossRef]
- Yang, D.; Yang, X.; Liao, G.; Zhu, S. Strong Clutter Suppression via RPCA in Multichannel SAR/GMTI System. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2237–2241. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, G.; Li, J.; Gu, T. A Clutter Suppression Method Based on NSS-RPCA in Heterogeneous Environments for SAR-GMTI. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5880–5891. [Google Scholar] [CrossRef]
- Oveis, A.H.; Sebt, M.A. Dictionary-Based Principal Component Analysis for Ground Moving Target Indication by Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1594–1598. [Google Scholar] [CrossRef]
- Leibovich, M.; Papanicolaou, G.; Tsogka, C. Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data for Target Imaging. IEEE Trans. Comput. Imaging 2020, 6, 491–502. [Google Scholar] [CrossRef]
- Joy, S.; Nguyen, L.H.; Tran, T.D. Radio Frequency Interference Suppression in Ultra-Wideband Synthetic Aperture Radar Using Range-Azimuth Sparse and Low-Rank Model. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Nguyen, L.H.; Dao, M.D.; Tran, T.D. Radio-Frequency Interference Separation and Suppression from Ultrawideband Radar Data via Low-Rank Modeling. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 116–120. [Google Scholar]
- Nguyen, L.H.; Tran, T.; Do, T. Sparse Models and Sparse Recovery for Ultra-Wideband SAR Applications. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 940–958. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zhou, Y.; Truong, T.-K. Joint Wideband Interference Suppression and SAR Signal Recovery Based on Sparse Representations. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1542–1546. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Li, J.; Xu, J. Narrowband RFI Suppression for SAR System via Fast Implementation of Joint Sparsity and Low-Rank Property. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2748–2761. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Xiang, Y.; Zhang, Z.; Li, J.; Nehorai, A. Reweighted Nuclear Norm and Reweighted Frobenius Norm Minimizations for Narrowband RFI Suppression on SAR System. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5949–5962. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. Fast Narrowband RFI Suppression Algorithms for SAR Systems via Matrix-Factorization Techniques. IEEE Trans. Geosci. Remote Sens. 2019, 57, 250–262. [Google Scholar] [CrossRef]
- Liu, H.; Gan, L.; Li, D.; Truong, T.-K. RFI Suppression Based on Atomic Norm Minimization in SAR Signal Recovery. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2040–2044. [Google Scholar]
- Lu, X.; Su, W.; Yang, J.; Gu, H.; Zhang, H.; Yu, W.; Yeo, T.S. Radio Frequency Interference Suppression for SAR via Block Sparse Bayesian Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4835–4847. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Li, J.; Chen, Z.; Yang, X. Reweighted Tensor Factorization Method for SAR Narrowband and Wideband Interference Mitigation Using Smoothing Multiview Tensor Model. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3298–3313. [Google Scholar] [CrossRef]
- Zhang, H.; Min, L.; Lu, J.; Chang, J.; Guo, Z.; Li, N. An Improved RFI Mitigation Approach for SAR Based on Low-Rank Sparse Decomposition: From the Perspective of Useful Signal Protection. Remote Sens. 2022, 14, 3278. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, H.; Zhao, J.; Li, N.; Zheng, F. A Modified 2-D Notch Filter Based on Image Segmentation for RFI Mitigation in Synthetic Aperture Radar. Remote Sens. 2023, 15, 846. [Google Scholar] [CrossRef]
- Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A. Radio Frequency Interference Mitigation Using Deep Convolutional Neural Networks. Astron. Comput. 2017, 18, 35–39. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, S.; Zhou, Z.; Shi, J.; Zhang, X. Interference Suppression For Sar Image Based On Joint Supervision En-Decoder Network. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3416–3419. [Google Scholar]
- Li, X.; Ran, J.; Zhang, H.; Wei, S. MCSNet: A Radio Frequency Interference Suppression Network for Spaceborne SAR Images via Multi-Dimensional Feature Transform. Remote Sens. 2022, 14, 6337. [Google Scholar] [CrossRef]
- Fang, F.; Tian, Y.; Dai, D.; Xing, S. Synthetic Aperture Radar Radio Frequency Interference Suppression Method Based on Fusing Segmentation and Inpainting Networks. Remote Sens. 2024, 16, 1013. [Google Scholar] [CrossRef]
- Shouye, L.V. Long Teng Study on the Airborne SAR Real-Time Imaging System. In Proceedings of the 7th International Conference on Signal Processing, ICSP ’04. 2004, Beijing, China, 31 August–4 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2163–2166. [Google Scholar]
- Brand, M. Fast Low-Rank Modifications of the Thin Singular Value Decomposition. Linear Algebra Its Appl. 2006, 415, 20–30. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wen, C.; Li, J.; Xia, X.-G.; Hong, W. An Efficient Radio Frequency Interference Mitigation Algorithm in Real Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3155068. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comp. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Glowinski, R.; Marrocco, A. Sur l’approximation Paréléments Finis d’ordre Un et La Résolution Par Pénalisation-Dualité d’une Classe de Problémes de Dirichlet Non Linéaires. Rev. Française Autom. Inf. Rech. Opér. 1975, 9, 41–76. [Google Scholar]
- Boyd, S. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. FNT Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Parikh, N. Proximal Algorithms. FNT Optim. 2014, 1, 127–239. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Carrier frequency | 6.8 GHz |
Pulse bandwidth | 400 MHz |
Sampling frequency | 500 MHz |
Resolution | 0.375 m |
PRF | 200 Hz |
Flight altitude | 168 m |
Slant range | 472.6 m |
Method | FNF | OSP | RPCA | Proposed Method | |
---|---|---|---|---|---|
Metric | |||||
RMSE | SINR = 5 dB | 0.052427 | 0.035314 | 0.014319 | 0.004274 |
SINR = 10 dB | 0.043578 | 0.021454 | 0.010405 | 0.004123 | |
SINR = 15 dB | 0.036219 | 0.017243 | 0.008412 | 0.004083 | |
SINR = 20 dB | 0.029765 | 0.015984 | 0.007403 | 0.004039 | |
IE | SINR = 5 dB | 6.271485 | 6.225621 | 6.162054 | 5.607227 |
SINR = 10 dB | 6.233454 | 6.196366 | 6.162051 | 5.602942 | |
SINR = 15 dB | 6.204639 | 6.186737 | 6.162029 | 5.600926 | |
SINR = 20 dB | 6.189723 | 6.183600 | 6.162008 | 5.599986 | |
Time | - | 2.38 s | 31.56 s | 69.14 s | 9.52 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Liang, X.; Li, H.; Jiang, Z.; Zhang, Y.; Bu, X. An Efficient Synthetic Aperture Radar Interference Suppression Method Based on Image Domain Regularization. Electronics 2025, 14, 1054. https://doi.org/10.3390/electronics14051054
Ge X, Liang X, Li H, Jiang Z, Zhang Y, Bu X. An Efficient Synthetic Aperture Radar Interference Suppression Method Based on Image Domain Regularization. Electronics. 2025; 14(5):1054. https://doi.org/10.3390/electronics14051054
Chicago/Turabian StyleGe, Xuyang, Xingdong Liang, Hang Li, Zhiyu Jiang, Yuan Zhang, and Xiangxi Bu. 2025. "An Efficient Synthetic Aperture Radar Interference Suppression Method Based on Image Domain Regularization" Electronics 14, no. 5: 1054. https://doi.org/10.3390/electronics14051054
APA StyleGe, X., Liang, X., Li, H., Jiang, Z., Zhang, Y., & Bu, X. (2025). An Efficient Synthetic Aperture Radar Interference Suppression Method Based on Image Domain Regularization. Electronics, 14(5), 1054. https://doi.org/10.3390/electronics14051054