5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability
Abstract
:1. Introduction
2. Wireless Sensors for Industrial Manufacturing
2.1. Tool Wear Detection
2.2. Communication Requirements of the Smart Sensors for Milling Processes Use Case
3. 5G and TSN Integrated Prototype for Resilience and High Reliability
3.1. 5G Non-Public Network on the Industrial Shopfloor
3.1.1. 5G Mid-Band System Operating in 3.7–3.8 GHz
3.1.2. 5G mmW System Deployment at 26 GHz
3.1.3. 5G URLLC Test System
3.2. Setup of the Time-Sensitive Networking Environment
3.3. 5G-Industry Campus Europe in Aachen
3.4. Overall Architecture and Measurement Setup
3.4.1. Setup 1: Using FRER for Redundant Transmissions on the Same 5G Mid-Band System
3.4.2. Setup 2: Redundant Transmissions Using FRER via Different 5G Mid-Band Systems
3.4.3. Setup 3: Redundant Transmissions via 5G URLLC Test System and 5G Mid-Band System
3.4.4. Setup 4: Redundant Transmission via 5G Mid-Band and 5G mmW Systems Sharing the Same Core Network
3.4.5. Setup 5: Redundant Transmission via 5G Mid-Band and 5G mmW Systems
4. Performance Results and Discussion
4.1. Evaluation of Setup 1: Using FRER for Redundant Transmissions in the Same 5G Mid-Band System
4.2. Evaluation of Setup 2: Redundant Transmissions Using FRER via Different 5G Mid-Band Systems
4.3. Evaluation of Setup 3: 5G URLLC Test System and 5G Mid-Band System
4.4. Evaluation of Setup 4: Redundant Transmission via 5G Mid-Band Deployment and 5G mmW System Deployment
4.5. Evaluation of Setup 4 with Introduced Disturbances: Redundant Transmission via 5G Mid-Band Deployment and 5G mmW System Deployment
4.6. Evaluation of Setup 5: Redundant Transmission via 5G Mid-Band and 5G mmW Systems
4.7. Evaluation of the Results Regarding the Smart Sensor Use Case
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larranaga, A.; Lucas-Estan, M.C.; Martinez, I.; Val, I.; Gozalvez, J. Analysis of 5G-TSN Integration to Support Industry 4.0. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020. [Google Scholar]
- Gundall, M.; Huber, C.; Rost, P.; Halfmann, R.; Schotten, H.D. Integration of 5G with TSN as Prerequisite for a Highly Flexible Future Industrial Automation: Time Synchronization based on IEEE 802.1AS. In Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar]
- Abuibaid, M.; Ghorab, A.; Saruhan, A.A.; St-Hilaire, M.; Parsons, G.; Farkas, J.; Varga, B.; Moldován, I.; Máté, M.; Naqvi, S.H.R. Integration of DetNet/TSN Reliability Functions in 5G Systems: A Case Study and Measurements. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Munich, Germany, 6–8 November 2023. [Google Scholar]
- Ulbricht, M.; Senk, S.; Nazari, H.K.; Liu, H.-H.; Reisslein, M.; Nguyen, G.T.; Fitzek, F.H.P. TSN-FlexTest: Flexible TSN Measurement Testbed. IEEE Trans. Netw. Serv. Manag. 2024, 21, 1387–1402. [Google Scholar] [CrossRef]
- Kehl, P.; Ansari, J.; Jafari, M.H.; Becker, P.; Sachs, J.; König, N.; Göppert, A.; Schmitt, R.H. Prototype of 5G Integrated with TSN for Edge-Controlled Mobile Robotics. Electronics 2022, 11, 1666. [Google Scholar] [CrossRef]
- Ansari, J.; Hsiao, T.-s.; Jafari, M.H.; Varga, B.; Farkas, J.; Moldovan, I.; Goppert, A.; Schmitt, R.H. 5G enabled flexible lineless assembly systems with edge cloud controlled mobile robots. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022. [Google Scholar]
- Baumann, D.; Mager, F.; Wetzker, U.; Thiele, L.; Zimmerling, M.; Trimpe, S. Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges. Proc. IEEE 2021, 109, 441–467. [Google Scholar] [CrossRef]
- Deshpande, Y.; Diederich, P.; Luthfi, M.; Becker, L.; Fontalvo-Hernández, J.; Kellerer, W. Integrating Deterministic Networking with 5G. arXiv 2024, arXiv:2409.13400v1. [Google Scholar]
- Ramamurthy, H.; Prabhu, B.S.; Gadh, R.; Madni, A.M. Smart Sensor Platform for Industrial Monitoring and Control. In Proceedings of the IEEE Sensors, Irvine, CA, USA, 31 October 2005; pp. 1116–1119, ISBN 0-7803-9056-3. [Google Scholar]
- Chuang, S.-M.; Chen, C.-S.; Wu, E.H. Implementation of Non-intrusive Intelligent Sensor System and 5G Edge Computing Gateway for Smart Factory. In Proceedings of the IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 28–30 October 2022. [Google Scholar]
- Ostasevicius, V.; Karpavicius, P.; Jurenas, V.; Cepenas, M.; Cesnavicius, R.; Eidukynas, D. Development of universal wireless sensor node for tool condition monitoring in milling. Int. J. Adv. Manuf. Technol. 2020, 110, 1015–1025. [Google Scholar] [CrossRef]
- Aponte-Luis, J.; Gómez-Galán, J.A.; Gómez-Bravo, F.; Sánchez-Raya, M.; Alcina-Espigado, J.; Teixido-Rovira, P.M. An Efficient Wireless Sensor Network for Industrial Monitoring and Control. Sensors 2018, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yao, X.; Zhang, J.; Jin, H. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations. Sensors 2016, 16, 795. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Hassan, M.; M’Saoubi, R.; Attia, H. Tool Condition Monitoring for High-Performance Machining Systems-A Review. Sensors 2022, 22, 2206. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Li, J.; Lu, Y. An integrated wireless vibration sensing tool holder for milling tool condition monitoring. Int. J. Adv. Manuf. Technol. 2018, 95, 2885–2896. [Google Scholar] [CrossRef]
- Muzaffar, R.; Ahmed, M.; Sisinni, E.; Sauter, T.; Bernhard, H.-P. 5G Deployment Models and Configuration Choices for Industrial Cyber-Physical Systems—A State of Art Overview. Trans. Ind. Cyber-Phys. Syst. 2023, 1, 236–256. [Google Scholar] [CrossRef]
- Wang, D.; Sun, T. Leveraging 5G TSN in V2X Communication for Cloud Vehicle. In Proceedings of the 2020 IEEE International Conference on Edge Computing (EDGE), Beijing, China, 19–23 October 2020. [Google Scholar]
- Abuibaid, M.; Ghorab, A.H.; St-Hilaire, M.; Varga, B.; Farkas, J.; Moldovan, I.; Mate, M. Cloudification of Time-Sensitive Networking Reliability Functions: Challenges and Potential Solution Directions. IEEE Commun. Stand. Mag. 2022, 6, 30–37. [Google Scholar] [CrossRef]
- Pahlevan, M.; Obermaisser, R. Redundancy Management for Safety-Critical Applications with Time Sensitive Networking. In Proceedings of the IEEE International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018. [Google Scholar]
- Ergenc, D.; Fischer, M. On the Reliability of IEEE 802.1CB FRER. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10, ISBN 978-1-6654-0325-2. [Google Scholar]
- Lyczkowski, E.; Wanjek, A.; Sauer, C.; Kiess, W. Wireless Communication in Industrial Applications. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1392–1395, ISBN 978-1-7281-0303-7. [Google Scholar]
- Li, J.; Lu, N.; Li, C.; Xing, Y.; Li, W. Technical Solutions to Resolve Deterministic Requirements in the Industrial Site. In Proceedings of the 2022 International Conference on Information Processing and Network Provisioning (ICIPNP), Beijing, China, 15–16 September 2022; pp. 100–103, ISBN 978-1-6654-6405-5. [Google Scholar]
- Mohanram, P.; Passarella, A.; Zattoni, E.; Padovani, R.; König, N.; Schmitt, R.H. 5G-Based Multi-Sensor Platform for Monitoring of Workpieces and Machines: Prototype Hardware Design and Firmware. Electronics 2022, 11, 1619. [Google Scholar] [CrossRef]
- Soós, G.; Ficzere, D.; Seres, T.; Veress, S.; Németh, I. Business opportunities and evaluation of non-public 5G cellular networks—A survey. Infocommun. J. 2020, 12, 31–38. [Google Scholar] [CrossRef]
- Ansari, J.; Andersson, C.; de Bruin, P.; Farkas, J.; Grosjean, L.; Sachs, J.; Torsner, J.; Varga, B.; Harutyunyan, D.; König, N.; et al. Performance of 5G Trials for Industrial Automation. Electronics 2022, 11, 412. [Google Scholar] [CrossRef]
- 3GPP. TS 23.501. Available online: https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h20.zip (accessed on 19 October 2024).
- 3GPP. TS 23.502. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145 (accessed on 19 October 2024).
- Danger, M.; Arendt, C.; Schippers, H.; Böcker, S.; Muehleisen, M.; Becker, P.; Caro, J.B.; Gjorgjievska, G.; Latif, M.A.; Ansari, J.; et al. Performance Evaluation of IRS-Enhanced mmWave Connectivity for 6G Industrial Networks. In Proceedings of the 2024 IEEE International Symposium on Measurements & Networking (M&N), Rome, Italy, 2–5 July 2024; pp. 1–6, ISBN 979-8-3503-7053-9. [Google Scholar]
- Farkas, J.; Lo Bello, L.; Gunther, C. Time-Sensitive Networking Standards. IEEE Commun. Stand. Mag. 2018, 2, 20–21. [Google Scholar] [CrossRef]
- Finn, N. Introduction to Time-Sensitive Networking. IEEE Commun. Stand. Mag. 2022, 6, 8–13. [Google Scholar] [CrossRef]
- IEEE Std 802.1CB-2017. Available online: https://1.ieee802.org/tsn/802-1cb/ (accessed on 14 November 2024).
- PROFINET. Available online: https://www.profinet.com/ (accessed on 19 October 2024).
- Ferrari, P.; Flammini, A.; Marioli, D.; Taroni, A. Experimental evaluation of PROFINET performance. In Proceedings of the IEEE International Workshop on Factory Communication Systems, Vienna, Austria, 22–24 September 2004. [Google Scholar]
- Wu, X.; Xie, L. On the Wireless Extension of PROFINET Networks. In Proceedings of the IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapore, 28–30 August 2019. [Google Scholar]
Use Case | Latency | Reliability |
---|---|---|
Smart Sensors for Milling Processes | <10 ms | 99.99% |
Setup | Path 1 | Path 2 | Switch 2 | |||
---|---|---|---|---|---|---|
99.99% Latency | Requirements Met | 99.99% Latency | Requirements Met | 99.99% Latency | Result | |
midband NSA + midband NSA | 11.16 ms | Not met | 10.95 ms | Not met | 8.28 ms | Requirements met |
midband NSA + midband SA | 11.46 ms | Not met | 18.78 ms | Not met | 8.43 ms | Requirements met |
midband SA + URLLC | 11.83 ms | Not met | 1.09 ms | Met | 1.09 ms | Requirements met |
midband NSA + mmW NSA | 12.30 ms | Not met | 6.31 ms | Met with spikes | 6.29 ms | Requirements met with one spike |
midband SA + mmW NSA with disturbances | 11.64 ms | Not met | 27.49 ms | Not met | 9.24 ms | Requirements met |
midband SA + mmW NSA | 10.86 ms | Not met | 4.58 ms | Met | 4.57 ms | Requirements met |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kehl, P.E.; Ansari, J.; Lovrin, M.; Mohanram, P.; Liu, C.-C.; Yeh, J.-L.; Schmitt, R.H. 5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability. Electronics 2025, 14, 758. https://doi.org/10.3390/electronics14040758
Kehl PE, Ansari J, Lovrin M, Mohanram P, Liu C-C, Yeh J-L, Schmitt RH. 5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability. Electronics. 2025; 14(4):758. https://doi.org/10.3390/electronics14040758
Chicago/Turabian StyleKehl, Pierre E., Junaid Ansari, Mikael Lovrin, Praveen Mohanram, Chi-Chuan (Eric) Liu, Jun-Lin (Larry) Yeh, and Robert H. Schmitt. 2025. "5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability" Electronics 14, no. 4: 758. https://doi.org/10.3390/electronics14040758
APA StyleKehl, P. E., Ansari, J., Lovrin, M., Mohanram, P., Liu, C.-C., Yeh, J.-L., & Schmitt, R. H. (2025). 5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability. Electronics, 14(4), 758. https://doi.org/10.3390/electronics14040758