Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications
Abstract
1. Introduction
2. Related Work
2.1. Millimeter-Wave/Terahertz Network Architectures
2.2. Transmission Control for Millimeter-Wave/Terahertz Communications
3. Applicable Scenarios and Existing Research Solutions
3.1. Channel Characteristics of Millimeter-Wave and Terahertz Communications
3.2. Network Architecture
3.3. Limitations of Traditional TCP Protocols in Millimeter-Wave and Terahertz Networks
4. Optimal Transmission Control for Heterogeneous Network
4.1. Protocol Mechanisms of Tcp Veno and Tcp Hybla
4.2. Optimized Transport Mechanism
5. Simulation and Performance Analysis
5.1. Transmission Rates for Long-Delay Links
5.2. Node Access Layer Latency
6. Conclusions
- The proposed algorithm demonstrates superior data throughput compared to conventional protocols like TCP Reno, Veno, and Hybla in simulated mmWave/THz environments. By strategically increasing data transmission and accurately differentiating between congestion-based and random packet loss, it achieves higher and more stable transmission rates.
- The scheme exhibits exceptional robustness, maintaining high throughput with minimal performance fluctuation even under conditions with frequent link blockages, unlike existing protocols.
- Through theoretical analysis and simulation, this study presents a novel adaptive transport protocol and a simulation model that captures the core challenges of mmWave/THz communications, offering valuable insights for future protocol design.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Jiang, C.; Kuang, L.; Ge, N.; Guo, S.; Lu, J. Cooperative transmission in integrated terrestrial-satellite networks. IEEE Netw. 2019, 33, 204–210. [Google Scholar] [CrossRef]
- Ji, Z.; Wu, S.; Jiang, C.; Wang, W. Popularity-driven content placement and multi-hop delivery for terrestrial-satellite networks. IEEE Commun. Lett. 2020, 24, 2574–2578. [Google Scholar] [CrossRef]
- Wang, H.; Guo, P.Q.; Li, X.W.; Wen, F.Q.; Wang, X.P.; Nallanathan, A. MBPD: A Robust Algorithm for Polar-Domain Channel Estimation in Near-Field Wideband XL-MIMO Systems. IEEE Internet Things J. 2025, 12, 18461–18470. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, R.; Ai, B.; Lian, Z.; Zeng, L.; Niyato, D. Deep Reinforcement Learning for Energy Efficiency Maximization in RSMA-IRS-Assisted ISAC System. arXiv 2025, arXiv:2501.15091. [Google Scholar] [CrossRef]
- Wang, M.; Gu, L. Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity. Chin. Phys. B 2024, 33, 020504. [Google Scholar] [CrossRef]
- Zeng, L.; Liao, X.; Ma, Z.; Liu, W.; Jiang, H.; Chen, Z. Toward More Adaptive UAV-to-UAV GBSMs: Introducing the Extended vMF Distribution. IEEE Wirel. Commun. Lett. 2025, 14, 260–264. [Google Scholar] [CrossRef]
- Wang, M.; Ding, J.; Zhang, X.; Iu, H.H.-C.; Li, Z. A new construction method of N-dimensional discrete sine hyperchaotic map. Nonlinear Dyn. 2025, 113, 1879–1893. [Google Scholar] [CrossRef]
- Zong, L.; Wang, H.; Luo, G. Transmission Control Over Satellite Network for Marine Environmental Monitoring System. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19668–19675. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, C.T.; Le, H.D.; Pham, A.T. TCP performance over satellite-based hybrid FSO/RF vehicular networks: Modeling and analysis. IEEE Access 2021, 9, 108426–108440. [Google Scholar] [CrossRef]
- Zong, L.; Memon, F.H.; Li, X.; Wang, H.; Dev, K. End-to-end transmission control for cross-regional industrial internet of things in industry 5.0. IEEE Trans. Ind. Inf. 2021, 18, 4215–4223. [Google Scholar] [CrossRef]
- Ouyang, M.; Duan, X.; Liu, J.; Zhang, R.; Huang, T.; Lu, H. Multi-path Transmission Scheme Based on Segment Control in Low-Earth-Orbit Satellite Network. In Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Virtual, 14–17 June 2021. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, D.; Wang, Z.; Chen, J.; Quek, T.Q.S. Dynamic Networking for Continuable Transmission Optimization in LEO Satellite Networks. IEEE Trans. Veh. Technol. 2022, 72, 6639–6653. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, C.T.; Le, H.D.; Pham, A.T. TCP over hybrid FSO/RF-based satellite networks in the presence of cloud coverage. IEICE Commun. Express 2022, 11, 649–654. [Google Scholar] [CrossRef]
- Xia, D.; Jiang, C.; Wan, J.; Jin, J.; Leung, V.C.M.; Martínez-García, M. Heterogeneous Network Access and Fusion in Smart Factory: A Survey. ACM Comput. Surv. 2022, 55, 1–31. [Google Scholar] [CrossRef]
- Lubna, T.; Mahmud, I.; Cho, Y.Z. Low Latency and High Data Rate (LLHD) Scheduler: A Multipath TCP Scheduler for Dynamic and Heterogeneous Networks. Sensors 2022, 22, 9869. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Sun, P.; Yi, P.; Wu, J. Polymorphic smart network: An open, flexible and universal architecture for future heterogeneous networks. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2515–2525. [Google Scholar] [CrossRef]
- Gupta, A.; Sundhan, S.; Alsamhi, S.H.; Gupta, S.K. Review for capacity and coverage improvement in aerially controlled heterogeneous network. In Optical and Wireless Technologies Proceedings of OWT 2018; Springer: Singapore, 2019; pp. 365–376. [Google Scholar] [CrossRef]
- Lafta, W.M.; Alkadhmawee, A.A.; Altaha, M.A. Best strategy to control data on internet-of-robotic-things in heterogeneous net-works. Int. J. Electr. Comput. Eng. 2021, 11, 1830–1838. [Google Scholar] [CrossRef]
- Gures, E.; Shayea, I.; Alhammadi, A.; Ergen, M.; Mohamad, H. A comprehensive survey on mobility management in 5G heterogeneous networks: Architectures, challenges and solutions. IEEE Access 2020, 8, 195883–195913. [Google Scholar] [CrossRef]
- Jude, M.J.A.; Diniesh, V.C.; Shivaranjani, M. Throughput stability and flow fairness enhancement of TCP traffic in multi-hop wireless networks. Wirel. Netw. 2020, 26, 4689–4704. [Google Scholar] [CrossRef]
- Jude, M.J.A.; Diniesh, V.C.; Shivaranjani, M.; Madhumitha, S.; Balaji, V.K.; Myvizhi, M. Improving Fairness and Convergence Efficiency of TCP Traffic in Multi-hop Wireless Networks. Wirel. Pers. Commun. 2021, 121, 459–485. [Google Scholar] [CrossRef]
- León, J.P.A.; de la Cruz Llopis, L.J.; Rico-Novella, F.J. A machine learning based Distributed Congestion Control Protocol for multi-hop wireless networks. Comput. Netw. 2023, 231, 109813. [Google Scholar] [CrossRef]
- Padhye, J.; Firoiu, V.; Towsley, D.F.; Kurose, J. Modeling TCP Reno performance: A simple model and its empirical validation. IEEE/ACM Trans. Netw. 2002, 8, 133–145. [Google Scholar] [CrossRef]
- Brakmo, L.S.; O’Malley, S.W.; Peterson, L.L. TCP Vegas: New techniques for congestion detection and avoidance. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ‘94), London, UK, 31 August–2 September 1994. [Google Scholar] [CrossRef]
- Caini, C.; Firrincieli, R. TCP Hybla: A TCP enhancement for heterogeneous networks. Int. J. Satell. Commun. Netw. 2004, 22, 547–566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, L.; Cheng, Y.; Ma, Z.; Wang, H.; Liu, Z.; Tang, Y. Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications. Electronics 2025, 14, 3330. https://doi.org/10.3390/electronics14163330
Zong L, Cheng Y, Ma Z, Wang H, Liu Z, Tang Y. Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications. Electronics. 2025; 14(16):3330. https://doi.org/10.3390/electronics14163330
Chicago/Turabian StyleZong, Liang, Yun Cheng, Zhangfeng Ma, Han Wang, Zhan Liu, and Yinqing Tang. 2025. "Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications" Electronics 14, no. 16: 3330. https://doi.org/10.3390/electronics14163330
APA StyleZong, L., Cheng, Y., Ma, Z., Wang, H., Liu, Z., & Tang, Y. (2025). Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications. Electronics, 14(16), 3330. https://doi.org/10.3390/electronics14163330