Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures
Abstract
1. Introduction
2. Principle and Design Analysis of Novel SSPP and SIW with Wide Passband Characteristics
2.1. The SIW
2.2. The Novel SSPP
2.3. The Hybrid SIW-SSPP
3. Design of the Wide Passband SIW-SSPP Filters with Multi-Sub-Bands
3.1. The Wide Passband SIW-SSPP Filter
3.1.1. Single Wide Bandpass SIW-SSPP Filter Structure
3.1.2. The Single Wide Bandpass Filter Loaded with Archimedean Spiral Structure
3.2. The Wide Bandpass Filter with Multi-Sub-Bandpass
3.2.1. Dual-Sub-Bandpass Filter Loaded with CSRRs
3.2.2. Tri- Sub-Bandpass Filter Loaded with Dual CSRR Structures
4. Measurement Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSRRs | Complementary split-ring resonators | SRR | Split-ring resonator |
RF | Radio frequency | SSPP | Spoof surface plasmon polariton |
SIW | Substrate-integrated waveguide | TE10 | Transverse electric 10 mode |
SPP | Surface plasmon polaritons | MSL | Microstrip lines |
References
- Yang, S.J.; Pan, Y.M.; Shi, L.Y.; Zhang, X.Y. Millimeter-Wave Dual-Polarized Filtering Antenna for 5G Application. IEEE Trans. Antennas Propag. 2020, 68, 5114–5121. [Google Scholar] [CrossRef]
- Pourghorban, S.A.; Entesari, K. Ultra-Miniature SIW Cavity Resonators and Filters. IEEE Trans. Microw. Theory Technol. 2015, 63, 4329–4340. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, X.; Li, Y. Dual-Band Filtering Power Divider Based on CSRRs Loaded SIW Cavity. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 394–398. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, E. Multilayer Packaging SIW Three-Way Filtering Power Divider with Adjustable Power Division. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3003–3007. [Google Scholar] [CrossRef]
- Lai, J.; Yang, T.; Chi, P. Novel Evanescent-Mode Cavity Filter with Reconfigurable Rat-Race Coupler, Quadrature Coupler and Multi-Pole Filtering Functions. Access 2020, 8, 32688–32697. [Google Scholar] [CrossRef]
- Li, L.; Fay, P.; Wang, J. A D-Band Frequency-Doubling Traveling-Wave Amplifier Through Monolithic Integration of a SiC SIW and GaN HEMTs. J. Microw. 2024, 4, 158–166. [Google Scholar] [CrossRef]
- Rave, C.; Jacob, A. An SIW-Based GaN Power Amplifier Module in LTCC. IEEE Trans. Microw. Theory Technol. 2020, 68, 5328–5334. [Google Scholar] [CrossRef]
- Louati, S.; Talbi, L.; Boutayeb, H. Reconfigurable SIW Phase Shifter Based on Parallel Stubs Loaded with Surface Mount p-i-n Diodes. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 176–179. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Z.; Xu, K. A Compact Wideband Phase Shifter Using Slotted Substrate Integrated Waveguide. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 767–770. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W. Design of Low Phase Noise Oscillator Based on SIW Multifunctional Filtering Device. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 31–35. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, H.; Li, J. Ferrite-Loaded Magnetically Reconfigurable SIW Magnetic Dipole Antenna with Tunable Frequencies. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2969–2973. [Google Scholar] [CrossRef]
- Wang, D.; Fan, Y.; Cheng, Y. A W-Band, Low-Cost and High-Efficiency Antenna Array Using Multilayer SIW-to-SIW Transition with Leakage-Suppressing Scheme. IEEE Trans. Antennas Propag. 2023, 71, 10014–10019. [Google Scholar] [CrossRef]
- Pendryet, J.B. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Liu, D.; Chang, L.; Zhang, A.; Li, Y.; Wu, B. Quasi-Full-Metal mmW Circularly-Polarized End-Fire Antenna with Small Cross Section Based on SSPP. IEEE Trans. Antennas Propag. 2025, 73, 4182–4187. [Google Scholar] [CrossRef]
- Sonagara, A.M.; Mishra, M.; Kshetrimayum, R.S.; Björnson, E.; Chen, Z.N. Ultra-Thin Flexible Uniplanar Antenna Based on SSPP for B5G Radio Stripe Network. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1947–1951. [Google Scholar] [CrossRef]
- Zhou, T. A High-Balanced Interdigital Hybrid Metallic Waveguide Coupler Based on SSPPs- Coupling for WR-4 Ultra-Full- Band Applications. IEEE Trans. Microw. Theory Technol. 2024, 72, 6518–6529. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zheng, Y. Reconfigurable Multimode Microwave Sensor with Resonance and Transmission Sensing Capabilities for Noninvasive Glucose Monitoring. IEEE Trans. Microw. Theory Technol. 2024, 72, 3102–3117. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Yang, Q.; Zhao, M.; Liu, G.; Zhang, A. Compact Balanced Filtering Power Divider with High Common Mode Suppression Level Using Spoof Surface Plasmon Polaritons. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 15, 535–541. [Google Scholar] [CrossRef]
- Cheng, H.W. Spoof surface plasmonics: Principle, design, and applications. J. Phys. Condens. Matter 2022, 34, 263002. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, L.; Wu, W. Balanced Wideband/Dual-Band BPFs on a Hybrid Multimode Resonator with Intrinsic Common-Mode Rejection. IEEE Trans. Microw. Theory Technol. 2016, 64, 1997–2005. [Google Scholar] [CrossRef]
- Zhou, X.; Huo, J. Design of Tunable Coaxial Bandpass Filter Based on Embedded Stepped Impedance Resonators. Access 2023, 11, 58947–58952. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, H.R. Vertically Stacked Trisection SIW Filter With Controllable Transmission Zeros. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 237–240. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Y. A Novel Compact Wide-Stopband Filter With Hybrid Structure by Combining SIW and Microstrip Technologies. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 841–844. [Google Scholar] [CrossRef]
- Pathak, B.B.; Sangam, R.S.; Kshetrimayum, R.S.; Hong, J.; Morgan, M.A. Uniplanar Conformal Center-Split M-Unit Cell Based SSPP Broadband Bandpass Filter for B5G Radio Stripe Networks. IEEE Microw. Wirel. Compon. Lett. 2025, 35, 392–395. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, Y.; Yin, S.; Hu, X. A CPW-Based Novel SSPP Reflectionless Low-Pass Notch Filter With Loaded Interdigitated Coupling Structure. Access 2024, 12, 117863–117871. [Google Scholar] [CrossRef]
- Pan, B.C.; Yu, P.; Liao, Z.; Zhu, F.; Luo, G.Q. A Compact Filtering Power Divider Based on Spoof Surface Plasmon Polaritons and Substrate Integrated Waveguide. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 101–104. [Google Scholar] [CrossRef]
- Tan, L.; Xu, K.; Liu, Y.; Guo, Y.; Cui, J. Spoof Surface Plasmon Polaritons Developed from SIW Using Ring Slots and Vias. Electronics 2021, 10, 1978. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, G.; Zhu, L. Triple-Mode Bandpass Filters on CSRR-Loaded Substrate Integrated Waveguide Cavities. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1099–1105. [Google Scholar] [CrossRef]
- Cao, X.; Wang, C.; Li, W.; Cai, Q. An On-Chip Bandpass Filter Using Complementary Slit-Ring-Resonator-Loaded Spoof Surface Plasmon Polaritons with a Flexible Notch-Band. Micromachines 2023, 14, 607. [Google Scholar] [CrossRef]
- Ye, L.; Chen, Z.; Zhang, Y.; Li, W.; Zhang, Y.; Wei, K. High Performance Multiple Passband Substrate Integrated Plasmonic Filters. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1445–1449. [Google Scholar] [CrossRef]
- Ren, B.; Qin, C.; Guan, X. Compact Dual- and Triple-Wideband Filters Using Interdigital Spoof Surface Plasmon Polaritons. IEEE Microw. Wirel. Compon. Lett. 2025, 35, 51–54. [Google Scholar] [CrossRef]
- Alam, A.; Alam, M.S.; Almuhanna, K.; Shamim, A. A Critical Review of Interconnect Options for SIW Technologies. Access 2024, 12, 122902–122917. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, B.; Ling, H.; Zhang, Z.; Wang, Y. Active metal-graphene hybrid terahertz surface plasmon polaritons. Nanophotonics 2022, 11, 3331–3338. [Google Scholar] [CrossRef]
- Zhang, B. Narrowband SIW-SSPP Hybrid Bandpass Filter with Compact Profile at Ka-Band. Access 2023, 11, 98305–98314. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, C.; Zhang, B.; Song, R.; Wu, Z.; Zhang, J.; He, D. Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications. Electronics 2020, 9, 205. [Google Scholar] [CrossRef]
- Tang, G.; Xiao, T.; Cao, L.; Cheng, R.; Liu, C.; Huang, L.; Xu, X. A Multi-Frequency Low-Coupling MIMO Antenna Based on Metasurface. Electronics 2024, 13, 2146. [Google Scholar] [CrossRef]
- Baena, J.D. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Technol. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
20.5 | 4.5 | 3.65 | |||
1.63 | 2.4 | 1 | |||
1.2 | 6 | 0.4 | |||
0.38 | 0.5 | 0.4 | |||
0.2 | 1 | 0.8 | |||
0.6 | 2.88 | 0.1 |
Locations | Archimedean Spiral Parameters | CSRRs Parameters | |||
---|---|---|---|---|---|
movex1, movey1 | 8.5, 1.4 | rArc1 | 0.63 | r1, r2 | 0.65, 0.45 |
movex2, movey2 | 16, 1.45 | rArc2 | 0.21 | r3, r4 | 0.6, 0.4 |
movex3, movey3 | 14, 1.38 | gArc | 0.1 | g2, g3 | 0.1, 0.1 |
d1, d2 | 0.1, 0.08 |
Ref. | Type | Passband Range (GHz) | Insertion Loss (dB) | Rejection Loss (dB) | Size () | High Frequency RL (dB) |
---|---|---|---|---|---|---|
[22] | SIW | 8.24–8.76 | 1.7 | 10 | 1.155 | 35 |
[24] | SSPP | 3.85–7.125 | 1.2 | 10 | 2.61 | 30 |
[26] | SIW + SSPP | 8.1–12.1 | 3.5 | 10 | 1.005 | 35 |
[28] | SIW + CSRR | 10.25–11.3 | 1.4 | 15 | 11.9 | 40 |
[29] | SSPP + CSRR | 51.5–58.4 61.7–65.8 | 2.6 | 10 | 0.16 | 65 |
[30] | SIPF | 7.4–8.8 9.01–9.72 10.01–12.5 | 1 | 10 | 1.83 | 53 |
Pro. | Filter 1 | 24–30 | 0.5 | 12 | 1.68 | 70 |
Filter 2 | 24–25.5 26.3–30 | 0.5 0.5 | 12 13.5 | 1.68 | 70 | |
Filter 3 | 24–25.3 26–27.9 28.6–30 | 0.5 0.7 0.8 | 13 13.5 12 | 1.68 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Tang, G.; Xiao, T.; Liu, C.; Huang, L.; Wang, H. Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures. Electronics 2025, 14, 3026. https://doi.org/10.3390/electronics14153026
Liao Q, Tang G, Xiao T, Liu C, Huang L, Wang H. Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures. Electronics. 2025; 14(15):3026. https://doi.org/10.3390/electronics14153026
Chicago/Turabian StyleLiao, Qingqing, Guangpu Tang, Tong Xiao, Chengguo Liu, Lifeng Huang, and Hongguang Wang. 2025. "Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures" Electronics 14, no. 15: 3026. https://doi.org/10.3390/electronics14153026
APA StyleLiao, Q., Tang, G., Xiao, T., Liu, C., Huang, L., & Wang, H. (2025). Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures. Electronics, 14(15), 3026. https://doi.org/10.3390/electronics14153026