An Upgrade of Radio Frequency Reference Generation and Distribution Modules for FLASH2020+
Abstract
:1. Introduction
2. The Former FLASH RF Reference Generation and Distribution System
3. Specification and Requirements for Upgraded RF Generation and Distribution System
4. Upgraded RF Generation and Distribution System for FLASH2020+
5. FLASH Main Oscillator 19″ Module
6. FLASH Signal Distribution Module
7. FLASH Frequency Conversion 19″ Module
8. Test Results
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beye, M.; Klumpp, S.; Faatz, B.; Hartl, I.; Lechner, C.; Ploenjes-Palm, E.; Schneidmiller, E.A.; Schreiber, S.; Tiedtke, K.; Treusch, R.; et al. FLASH2020+ Conceptual Design Report (CDR); Deutsches Elektronen-Synchrotron: Hamburg, Germany, 2020. [Google Scholar] [CrossRef]
- Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; Von Bargen, N.; et al. Simultaneous operation of two soft X-ray free-electron lasers driven by one linear accelerator. New J. Phys. 2016, 18, 062002. [Google Scholar] [CrossRef]
- Branlard, J.; Chase, B.; Cullerton, F. Master Oscillator for Fermilab ILC Test Accelerator. In Proceedings of the LINAC 2006, Knoxville, TN, USA, 21–25 August 2006. [Google Scholar]
- Svensson, A.; Johansson, A. Master Oscillator for ESS, Design Description. Version 1.0; Lund University: Lund, Sweden, 2017. [Google Scholar]
- Zeng, R.; Persson, O.; Hassanzadegan, H.; Jurns, J.; Jensen, M.R.F.; Sunesson, A.; Strniša, K. Design of the Phase Reference Distribution System at ESS. In Proceedings of the 27th International Linear Accelerator Conference, Geneva, Switzerland, 31 August–5 September 2014. [Google Scholar]
- Lin, Z.; Du, Y.; Yang, J.; Huang, G.; Xu, Y.; Huang, W.; Tang, C. An active coaxial line phase reference distribution system. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 977, 164288. [Google Scholar] [CrossRef]
- Panofski, E.; Assmann, R.; Burkart, F.; Dorda, U.; Genovese, L.; Jafarinia, F.; Jaster-Merz, S.; Kellermeier, M.; Kuropka, W.; Lemery, F.; et al. Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES. Instruments 2021, 5, 28. [Google Scholar] [CrossRef]
- Yamin, S. First Commissioning of the ARES Focusing System and its Possible Upgrade for Accelerator. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2021. [Google Scholar]
- Min, C.-K.; Jung, S.H.; Kim, C.; Park, S.-J.; Kang, H.-S.; Ko, I.S. RF Timing Distribution and Laser Synchronization Commissioning of PAL-XFEL. In Proceedings of the 7th International Particle Accelerator Conference (IPAC’16), Busan, Republic of Korea, 8–13 May 2016. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.J.; Min, C.K.; Hu, J.; Kim, S.H.; Joo, Y.; Heo, H.; Kim, D.E.; Lee, S.; Kang, H.S.; et al. Review of technical achievements in PAL-XFEL. AAPPS Bull. 2022, 32, 15. [Google Scholar] [CrossRef]
- Lin, Z.; Du, Y.; Yang, J.; Xu, Y.; Yan, L.; Huang, W.; Tang, C.; Huang, G.; Du, Q.; Doolittle, L.; et al. Development of sub-100 femtosecond timing and synchronization system. Rev. Sci. Instruments 2018, 89, 014701. [Google Scholar] [CrossRef] [PubMed]
- Cicek, E.; Fang, Z.; Fukui, Y.; Futatsukawa, K.; Hirane, T.; Sato, Y.; Shinozaki, S. A Recent Upgrade on Phase Drift Compensation System for a Stable Beam Injection at J-PARC Linac. In Proceedings of the 12th International Particle Accelerator Conference (IPAC’21), Campinas, SP, Brazil, 24–28 May 2021. [Google Scholar] [CrossRef]
- Liu, N.; Miura, T.; Matsumoto, T.; Kobayashi, T.; Iida, N.; Qiu, F.; Michizono, S.; Arakawa, D.; Katagiri, H.; Yano, Y.; et al. Phase drift compensation between injector linac master oscillator and ring master oscillator for stable beam injection at SuperKEKB. Phys. Rev. Accel. Beams 2019, 22, 072002. [Google Scholar] [CrossRef]
- Sydlo, C.; Felber, M.; Gerth, C.; Kozak, T.; Lamb, T.; Müller, J.; Schlarb, H.; Zummack, F. Femtosecond Optical Synchronization System for the European XFEL. In Proceedings of the 8th International Particle Accelerator Conference, 2017, Copenhagen, Denmark, 14–19 May 2017. [Google Scholar] [CrossRef]
- Young, A. Low Phase-Noise, Low Jitter Master Oscillator for the LCLS Cavity BPM System. In Proceedings of the Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4–8 May 2009. [Google Scholar]
- Urbański, M. Development of Phase Reference Distribution Systems of Linear Particle Accelerators with Femtosecond Stability. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2023. [Google Scholar]
- Gąsowski, B.; Urbański, M.; Czuba, K.; Branlard, J.; Pryschelski, H.; Ludwig, F. Concept of Master Oscillator Upgrade for FLASH. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020; pp. 165–168. [Google Scholar] [CrossRef]
- The Distributed Object-Oriented Control System Framework (DOOCS). Available online: https://doocs-web.desy.de (accessed on 13 November 2024).
- Urbański, M.; Gąsowski, B.; Šerlat, A.; Kola, B.; Jatczak, P.; Owczarek, T.; Czuba, K.M.; Branlard, J.; Pryschelski, H.; Schulz, K.; et al. FLASH2020+ RF Reference Generation System Upgrade Status. Presentation at the Low-Level RF Workshop 2022, Brugg-Windisch, Switzerland, 9–13 October 2022; Available online: https://indico.psi.ch/event/12911/contributions/38390/ (accessed on 13 November 2024).
- Viti, M.; Czwalinna, M.K.; Dinter, H.; Gerth, C.; Przygoda, K.; Rybaniec, R.; Schlarb, H. The Bunch Arrival Time Monitor at FLASH and European XFEL. In Proceedings of the 16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017), Barcelona, Spain, 8–13 October 2017. [Google Scholar] [CrossRef]
- Hati, A.; Craig, N.; Howe, D. Vibration-Induced PM Noise in Oscillators and Its Suppression. In Aerial Vehicles; InTech: London, UK, 2009. [Google Scholar] [CrossRef]
1300 MHz main reference signal | |
Output frequency (H) | 1300 MHz |
Number of outputs (H) | 25 low power, 1 high power |
Power level at high-power (HP) output (H) | +44 dBm approx. |
Power levels at low-power (LP) outputs (H) | +20 to +26 dBm |
Phase stability (jitter) (S) | less than 10 fs RMS, (10 Hz–1 MHz) |
Frequency stability (H) | better than (Allan deviation for measurement time of hours days) |
Amplitude stability (H) | better than 0.1% |
108 MHz reference signal | |
Output frequency (H) | 1300 MHz = 108.(3) MHz |
Number of outputs (H) | 10 |
Output power levels (H) | +10 to +23 dBm |
1517 MHz reference signal | |
Output frequency (H) | 1300 MHz = 1516.(6) MHz |
Number of outputs (H) | 4 |
Output power levels (H) | +17 dBm |
9 MHz reference signal | |
Output frequency (H) | 1300 MHz = 9.02(7) MHz |
Number of outputs (H) | 2 (signal output and monitoring output) |
Output power levels (H) | at 50 Ohm load, approx. +18 dBm |
Integrated jitter from 10 Hz to 1 MHz carrier offset | |||
Old FLASH MO | E-XFEL MO | New FLASH MO | |
108 MHz | 86.1 fs | not synthesized | 27.8 fs |
1300 MHz | 55.9 fs | 19.5 fs | 10.7 fs |
1517 MHz | 1390 fs | not synthesized | 45.8 fs |
Integrated jitter from 1 kHz to 1 MHz carrier offset | |||
Old FLASH MO | E-XFEL MO | New FLASH MO | |
108 MHz | 6.3 fs | not synthesized | 4.4 fs |
1300 MHz | 29.7 fs | 1.6 fs | 0.8 fs |
1517 MHz | 1390 fs | not synthesized | 35.9 fs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbański, M.; Gąsowski, B.; Czuba, K.; Kola, B.; Jatczak, P.; Owczarek, T.; Šerlat, A.; Branlard, J.; Kühn, D.; Ludwig, F.; et al. An Upgrade of Radio Frequency Reference Generation and Distribution Modules for FLASH2020+. Electronics 2025, 14, 173. https://doi.org/10.3390/electronics14010173
Urbański M, Gąsowski B, Czuba K, Kola B, Jatczak P, Owczarek T, Šerlat A, Branlard J, Kühn D, Ludwig F, et al. An Upgrade of Radio Frequency Reference Generation and Distribution Modules for FLASH2020+. Electronics. 2025; 14(1):173. https://doi.org/10.3390/electronics14010173
Chicago/Turabian StyleUrbański, Maciej, Bartosz Gąsowski, Krzysztof Czuba, Bartłomiej Kola, Paweł Jatczak, Tomasz Owczarek, Andžej Šerlat, Julien Branlard, Daniel Kühn, Frank Ludwig, and et al. 2025. "An Upgrade of Radio Frequency Reference Generation and Distribution Modules for FLASH2020+" Electronics 14, no. 1: 173. https://doi.org/10.3390/electronics14010173
APA StyleUrbański, M., Gąsowski, B., Czuba, K., Kola, B., Jatczak, P., Owczarek, T., Šerlat, A., Branlard, J., Kühn, D., Ludwig, F., Pryschelski, H., & Schulz, K. (2025). An Upgrade of Radio Frequency Reference Generation and Distribution Modules for FLASH2020+. Electronics, 14(1), 173. https://doi.org/10.3390/electronics14010173