Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band
Abstract
1. Introduction
2. Design of the Unit Cell
3. Design of the Waveguide and Waveguide Transition Section
4. The 1 × 3-Unit Cell Inside the Waveguide and Its Performance
5. Determination of Sensing Amount from the 1 × 3 Unit Cell Array Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 6, 1201–1221. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, C.; Xu, S. 6G: Connecting everything by 1000 times price reduction. IEEE Open J. Veh. Technol. 2020, 1, 107–115. [Google Scholar] [CrossRef]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Han, C.; Di Renzo, M. Learning-based prediction, rendering and transmission for interactive virtual reality in RIS-assisted terahertz networks. IEEE J. Sel. Areas Commun. 2021, 40, 710–724. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Konstantin, K. Information-centric massive IoT-based ubiquitous connected VR/AR in 6G: A proposed caching consensus approach. IEEE Internet Things J. 2020, 8, 5172–5184. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, S.J.; Kim, M.A.; Lee, M.J.; Lim, S.C.; Cho, K.W. Development of a digital twin pipeline for interactive scientific simulation and mixed reality visualization. IEEE Access 2023, 11, 100907–100918. [Google Scholar] [CrossRef]
- Rana, B.; Shim, J.Y.; Chung, J.Y. An implantable antenna with broadside radiation for a brain–machine interface. IEEE Sens. J. 2019, 19, 9200–9205. [Google Scholar] [CrossRef]
- Fan, S.; Wu, Y.; Han, C.; Wang, X. SIABR: A structured intra-attention bidirectional recurrent deep learning method for ultra-accurate terahertz indoor localization. IEEE J. Sel. Areas Commun. 2021, 39, 2226–2240. [Google Scholar] [CrossRef]
- Shang, B.; Shafin, R.; Liu, L. UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS). IEEE Wirel. Commun. 2021, 28, 156–163. [Google Scholar] [CrossRef]
- Chen, X.; Leng, S.; He, J.; Zhou, L. Deep-learning-based intelligent intervehicle distance control for 6G-enabled cooperative autonomous driving. IEEE Internet Things J. 2021, 8, 15180–15190. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, Y.; Kim, D. Regional smart city development focus: The South Korean national strategic smart city program. IEEE Access 2021, 9, 7193–7210. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Rana, B.; Cho, S.-S.; Hong, I.-P. Review paper on hardware of reconfigurable intelligent surfaces. IEEE Access 2023, 11, 29614–29634. [Google Scholar] [CrossRef]
- Jeong, J.; Oh, J.H.; Lee, S.Y.; Park, Y.; Wi, S.-H. An improved path-loss model for reconfigurable-intelligent-surface-aided wireless communications and experimental validation. IEEE Access 2022, 10, 98065–98078. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans. Microw. Theory Technol. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Kuai, L.; Chen, J.; Jiang, Z.H.; Yu, C.; Guo, C.; Yu, Y.; Zhou, H.-X.; Hong, W. A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications. IEEE Access 2020, 8, 47640–47653. [Google Scholar] [CrossRef]
- Wei, Z.; Qu, H.; Wang, Y.; Yuan, X.; Wu, H.; Du, Y.; Han, K.; Zhang, N.; Feng, Z. Integrated sensing and communication signals towards 5G-A and 6G: A survey. IEEE Internet Things 2023, 10, 11068–11092. [Google Scholar] [CrossRef]
- Chepuri, S.P.; Shlezinger, N.; Liu, F.; Alexandropoulos, G.C.; Buzzi, S.; Eldar, Y.C. Integrated sensing and communications with reconfigurable intelligent surfaces: From signal modeling to processing. IEEE Signal Process. Mag. 2023, 40, 41–62. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Phan-Huy, D.-T.; Zappone, A.; Alouini, M.-S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- del Hougne, P.; Imani, M.F.; Fink, M.; Smith, D.R.; Lerosey, G. Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping. Phys. Rev. Lett. 2018, 121, 063901. [Google Scholar] [CrossRef] [PubMed]
- Saigre-Tardif, C.; del Hougne, P. Self-adaptive riss beyond free space: Convergence of localization, sensing, and communication under rich-scattering conditions. IEEE Wirel. Commun. 2023, 30, 24–30. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Hwang, M.; Youn, Y.; Chang, S.; Kim, D.; Lee, C.; An, D.; Hong, W. Sensor-integrated RIS unit element featuring mutual coupling reduction. In Proceedings of the 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Busan, Republic of Korea, 29–31 August 2022; pp. 159–160. [Google Scholar]
- Alamzadeh, I.; Alexandropoulos, G.C.; Shlezinger, N.; Imani, M.F. A reconfigurable intelligent surface with integrated sensing capability. Sci. Rep. 2021, 11, 20737. [Google Scholar] [CrossRef] [PubMed]
- Alamzadeh, I.; Imani, M.F. Sensing and reconfigurable reflection of electromagnetic waves from a metasurface with sparse sensing elements. IEEE Access 2022, 10, 105954–105965. [Google Scholar] [CrossRef]
- Hwang, M.; An, D.; Chang, S.; Youn, Y.; Kim, D.; Lee, C.; Hong, W. Demonstration of millimeter-wave reconfigurable intelligent surface (RIS) with built-in sensors for automatic tracking of direction-of-arrival (DOA). IEEE Sens. Lett. 2023, 7, 7003704. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, R. Enhancing wireless sensing via a target-mounted intelligent reflecting surface. Natl. Sci. Rev. 2023, 10, nwad150. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, M.; Luo, H.; Liu, Q.; Swindlehurst, A.L. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions. IEEE Wirel. Commun. 2023, 30, 50–57. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Renzo, M.D.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Yang, X.; Wen, E.; Bharadia, D.; Sievenpiper, D.F. Multifunctional metasurface: Simultaneous beam steering, polarization conversion and phase offset. IEEE Trans. Antennas Propag. 2024. [Google Scholar] [CrossRef]
Ref. | Tunning Mechanism | Frequency | Comments |
---|---|---|---|
28 | Varactor diode | 28 GHz | SIW structure was realized to transport the sensing signal |
29 | Varactor diode | 19 GHz | SIW was used for guiding the sampled signal |
30 | Varactor diode | 5.8 GHz | SIW was used to guide the coupled signal |
31 | Varactor diode | 28 GHz | Rotman lens and power detector were used, eliminating the need for expensive RF chains |
Our design | PIN diode | 29 GHz | Nearly 2-bit operation, and thus external circuits are simpler as compared to the varactor diode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, B.; Cho, S.-S.; Hong, I.-P. Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics 2024, 13, 1689. https://doi.org/10.3390/electronics13091689
Rana B, Cho S-S, Hong I-P. Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics. 2024; 13(9):1689. https://doi.org/10.3390/electronics13091689
Chicago/Turabian StyleRana, Biswarup, Sung-Sil Cho, and Ic-Pyo Hong. 2024. "Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band" Electronics 13, no. 9: 1689. https://doi.org/10.3390/electronics13091689
APA StyleRana, B., Cho, S.-S., & Hong, I.-P. (2024). Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics, 13(9), 1689. https://doi.org/10.3390/electronics13091689