The Influence of Emerging Technologies on Distance Education
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Small Accessories—A Big Change in Teaching Quality
3.2. Video-Assisted Learning
3.3. Free Space Optics
3.4. 5G Technology
3.5. Immersive Education, i.e., Virtual Reality, Augmented Reality, Mixed Reality, and Extended Reality
3.6. Artificial Intelligence in Education (AIeD)
3.7. Cloud-Based Platforms
3.8. Learning Management Systems
3.9. Video Conferencing Tools
3.10. Big Data
3.11. Blockchain
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pregowska, A.; Masztalerz, K.; Garlińska, M.; Osial, M. A Worldwide Journey through Distance Education—From the Post Office to Virtual, Augmented and Mixed Realities, and Education during the COVID-19 Pandemic. Educ. Sci. 2021, 11, 118. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Education: From School Closure to Recovery. 2022. Available online: https://en.unesco.org/covid19/educationresponse (accessed on 14 February 2023).
- Ryan, J.M. Pandemic Pedagogies: Teaching and Learning during the COVID-19 Pandemic, 1st ed.; Routledge: London, UK, 2023. [Google Scholar]
- Gashoot, M.; Eve, B.; Mohamed, T. Implementing Technology for Teaching: The Use of a Mobile/Tablet Approach for Enhancing Students’ Learning (Design Interaction) Technology-Enhanced Learning (TEL). J. Educ. 2023, 203, 230–241. [Google Scholar] [CrossRef]
- Han, J.; Geng, X. University students’ approaches to online learning technologies: The roles of perceived support, affect/emotion and self-efficacy in technology-enhanced learning. Comput. Educ. 2023, 194, 104695. [Google Scholar] [CrossRef]
- Nicoll, P.; MacRury, S.; Van Woerden, H.C.; Smyth, K. Evaluation of technology-enhanced learning programs for health care professionals: Systematic review. J. Med. Internet. Res. 2018, 20, e131. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Pang, F.; Shadiev, R. Understanding college students’ continuous usage intention of asynchronous online courses through extended technology acceptance model. Educ. Inf. Technol. 2023, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.M.; Haenlein, M. Higher education and the digital revolution: About MOOCs, SPOCs, social media, and the Cookie Monst. Bus. Horiz. 2016, 59, 441–450. [Google Scholar] [CrossRef]
- Hwang, C.; Ghalachyan, A.; Song, S. Exploring student experiences with a virtual learning environment in an apparel and textiles curriculum during the COVID-19 pandemic. Int. J. Fash. Des. Technol. Educ. 2023, 16, 1–10. [Google Scholar] [CrossRef]
- Ahlf, M.; McNeil, S.G. An exploratory review of literature on moderation in asynchronous discussions. Distance Educ. 2023, 44, 137–161. [Google Scholar] [CrossRef]
- DiGiacomo, D.K.; Usher, E.L.; Han, J.; Abney, J.M.; Cole, A.E.; Patterson, J.T. The benefits of belonging: Students’ perceptions of their online learning experiences. Distance Educ. 2023, 44, 24–39. [Google Scholar] [CrossRef]
- Setyosari, P.; Wibawati, D.O.A.; Fitriyah, C.Z.; Wardani, R.P. Learning loss: How does technology facilitate learner learning? AIP Conf. Proc. 2023, 2679, 070016. [Google Scholar]
- Crompton, H.; Chigona, A.; Burke, D. Teacher Resilience During COVID-19: Comparing Teachers’ Shift to Online Learning in South Africa and the United States. Tech. Trends 2023, 67, 1–14. [Google Scholar] [CrossRef]
- Carrillo, C.; Flores, M.A. COVID-19 and teacher education: A literature review of online teaching and learning practices. Eur. J. Teach. Educ. 2020, 43, 466–487. [Google Scholar] [CrossRef]
- Blaskovits, F.; Bayoumi, I.; Davison, C.M.; Watson, A.; Purkey, E. Impacts of the COVID-19 pandemic on life and learning experiences of indigenous and non-Indigenous university and college students in Ontario, Canada: A qualitative study. BMC Public Health 2023, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Kisworo, A.Y.; Restuaji, T.A.; Nuriana, R.; Mei Lina, F. Education and ICT Amidst the COVID-19 Pandemic: Teaching Reflections of Indonesian Educators. In Research and Teaching in a Pandemic World; Cahusac de Caux, B., Pretorius, L., Macaulay, L., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Lynch, M.W.; Dominelli, L.; Cuadra, C. Information Communication Technology during Covid-19. Soc. Work. Educ. 2023, 42, 1–13. [Google Scholar] [CrossRef]
- Dalmasso, E.A.; Bakken, J.P.; Estes, T.S.; Wherfel, Q.M. Using Technology to Enhance Special Education: An Introduction. Using Technology to Enhance Special Education (Advances in Special Education); Bakken, J.P., Obiakor, F.E., Eds.; Emerald Publishing Limited: Bingley, UK, 2023; pp. 1–14. [Google Scholar]
- Chatterjee, R.; Bandyopadhyay, A.; Chakraborty, S.; Dutta, S. Digital Education: The Basics with Slant to Digital Pedagogy-An Overview. In Digital Learning based Education. Advanced Technologies and Societal Change; Choudhury, A., Biswas, A., Chakraborti, S., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Chen, J.; Bogachenko, T. Stakeholder perspectives on the use of VoiceThread as a multimodal alternative to conventional discussion board in distance education. Educ. Inf. Technol. 2023, 28, 1–21. [Google Scholar] [CrossRef]
- Lassoued, Z.; Alhendaui, M.; Bashitialshaaer, R. An exploratory study of the obstacle for achieving quality in distance learning during the COVID-19 pandemic. Educ. Sci. 2020, 10, 232. [Google Scholar] [CrossRef]
- Abbasi, S.; Ayoob, T.; Malik, A.; Memon, S.I. Perceptions of students regarding e-learning during Covid-19 at a private medical college: Perceptions of students regarding e-learning. Pak. J. Med. Sci. 2020, 36, S57–S61. [Google Scholar] [CrossRef]
- Zeyab, A.; Alayyar, G.M. Perspective Chapter: Education Technology (EdTech) and the Online Course Revolution. Educ. Hum. Dev. 2023. [Google Scholar] [CrossRef]
- Chick, R.C.; Clifton, G.T.; Peace, K.M.; Propper, B.W.; Hale, D.F.; Alseidi, A.A.; Vreeland, T.J. Using technology to maintain the education of residents during the COVID-19 pandemic. J. Surg. Educ. 2020, 77, 729–732. [Google Scholar] [CrossRef]
- Elford, A.; Gwee, C.; Veal, M.; Jani, R.; Sambell, R.; Kashef, S.; Love, P. Identification and Evaluation of Tools Utilised for Measuring Food Provision in Childcare Centres and Primary Schools: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4096. [Google Scholar] [CrossRef]
- Skalidis, I.; Muller, O.; Fournier, S. CardioVerse: The cardiovascular medicine in the era of Metaverse. Trends Cardiovasc. Med. 2022, 32, S1050–S1738. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, 1000100. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, 7647. [Google Scholar] [CrossRef] [Green Version]
- Hadders-Algra, M. Interactive media use and early childhood development. J. De Pediatr. 2020, 96, 273–275. [Google Scholar] [CrossRef]
- Dore, R.A.; Dynia, J.M. Technology and Media Use in Preschool Classrooms: Prevalence, Purposes, and Contexts. Front. Educ 2020, 5, 600305. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Suman, R. Understanding the role of digital technologies in education: A review. Sustain. Oper. Comput. 2022, 3, 275–285. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Asan, A. The effectiveness of inquiry-based technology enhanced collaborative learning environment. Int. J. Technol. Teach. Learn. 2016, 2, 65–87. [Google Scholar]
- Tyler-Wood, T.L.; Cockerham, D.; Johnson, K.R. Implementing new technologies in a middle school curriculum: A rural perspective. Smart Learn. Environ. 2018, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Labonté, C.; Smith, V.R. Learning through technology in middle school classrooms: Students’ perceptions of their self-directed and collaborative learning with and without technology. Educ. Inf. Technol. 2022, 27, 6317–6332. [Google Scholar] [CrossRef]
- Akour, M.; Alenezi, M. Higher Education Future in the Era of Digital Transformation. Educ. Sci. 2022, 12, 784. [Google Scholar] [CrossRef]
- Anthony, W.; Levine-Brown, P.; Fynn, N.; Gadzekpo, P.; Spinks, M. Technology considerations and opportunities in higher education. J. Coll. Acad. Support Programs 2020, 3, 31–42. [Google Scholar]
- Pyun, K.R.; Rogers, J.A.; Ko, S.H. Materials and devices for immersive virtual reality. Nat. Rev. Mater. 2022, 7, 841–843. [Google Scholar] [CrossRef]
- Oculus Quest 2 Website. Available online: https://www.meta.com/pl/en/quest/products/quest-2/ (accessed on 13 February 2023).
- Pico 4 Website. Available online: https://www.picoxr.com/global/products/pico4 (accessed on 13 February 2023).
- HTC Vive Website. Available online: https://www.vive.com/us/product/vive-pro/ (accessed on 13 February 2023).
- Meta Quest Pro Website. Available online: https://www.meta.com/pl/quest/quest-pro/ (accessed on 13 February 2023).
- Pimax Reality Website. Available online: https://pimax.com/pimax-12k/ (accessed on 13 February 2023).
- Snapdragon XR2 Website. Available online: https://developer.qualcomm.com/hardware/snapdragon-xr2-hmd-reference-design (accessed on 13 February 2023).
- Lenovo ThinkReality VRX Website. Available online: https://www.lenovo.com/us/en/thinkrealityvrx (accessed on 13 February 2023).
- AjnaLens AjnaXR Website. Available online: https://www.ajnalens.com/ (accessed on 13 February 2023).
- Microsoft HoloLens 2 Website. Available online: https://www.microsoft.com/pl-pl/hololens/buy (accessed on 13 February 2023).
- Lynx-R1 Website. Available online: https://www.lynx-r.com/ (accessed on 13 February 2023).
- Martínez-Soto, T.; Prendes-Espinosa, P. A Systematic Review on the Role of ICT and CLIL in Compulsory Education. Educ. Sci. 2023, 13, 73. [Google Scholar] [CrossRef]
- Liu, Y.-L.E.; Lee, T.-P.; Huang, Y.-M. Exploring Students’ Continuance Intention Toward Digital Visual Collaborative Learning Technology in Design Thinking. Int. J. Hum. Comput. Interact. 2023, 175, 1–14. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, S.; Cheng, M.; Liu, H. Configuring the Professional Touch in Physical Examinations in Chinese Outpatient Clinical Interaction: Talk, Touch, Professional Vision, and Intersubjectivity. Health Commun. 2023, 38, 1–16. [Google Scholar] [CrossRef]
- YouTube Website. Available online: https://www.youtube.com/ (accessed on 13 February 2023).
- ViewSonic Website. Available online: https://www.viewsonic.com/library/education/video-assisted-learning-using-educational-videos-to-teach/ (accessed on 13 February 2023).
- myViewBoard Website. Available online: https://myviewboard.com/blog/education/video-assisted-learning/ (accessed on 13 February 2023).
- Kniha, K.; Bock, A.; Peters, F.; Heitzer, M.; Hölzle, F.; Raith, S.; Modabber, A.; Möhlhenrich, S.C. Guided discovery learning: A follow-up study of try-it-yourself surgery and subsequent video-assisted teaching for oral surgical skills training. Eur. J. Dent. Educ. 2023, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Devi, B.; Khandelwal, B.; Das, M. Comparison of the Effectiveness of Video-assisted Teaching Program and Traditional Demonstration on Nursing Students Learning Skills of Performing Obstetrical Palpation. Iran J. Nurs. Midwifery Res. 2019, 24, 118–123. [Google Scholar] [CrossRef]
- Chucherd, O.; Vallibhakara, S.A.O.; Paiwattananupant, K.; Puranitee, P.; Wattanayingcharoenchai, R.O. The effect of online video-assisted teaching program on medical students learning procedure of fractional curettage. BMC Med. Educ. 2023, 23, 82. [Google Scholar]
- Zhu, Z.; Janasik, M.; Fyffe, A.; Hay, D.; Zhou, Y.; Kantor, B.; Winder, T.; Boyd, R.W.; Leuchs, G.; Shi, Z. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun. 2021, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Garlinska, M.; Pregowska, A.; Gutowska, I.; Osial, M.; Szczepanski, J. Experimental Study of the Free Space Optics Communication System Operating in the 8–12 µm Spectral Range. Electronics 2021, 10, 875. [Google Scholar] [CrossRef]
- Satrusalya, S.; Goswami, L. Review on free space optical communication. Mater. Today Proc. 2021, 77, 2214–7853. [Google Scholar] [CrossRef]
- Zafar, S.; Khalid, H. Free Space Optical Networks: Applications, Challenges and Research Directions. Wirel. Pers. Commun. 2021, 121, 429–457. [Google Scholar] [CrossRef]
- Spitz, O.; Didier, P.; Durupt, L.; Diaz-Thomas, D.A.; Baranov, A.N.; Cerutti, L.; Grillot, F. Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–9. [Google Scholar] [CrossRef]
- Spitz, O.; Herdt, A.; Wu, J. Private communication with quantum cascade laser photonic chaos. Nat. Commun. 2021, 12, 3327. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Ozolins, O.; Zhang, L.; Schatz, R.; Udalcovs, A.; Yu, X.; Jacobsen, G.; Popov, S.; Chen, J.; Lourdudoss, S. Free-Space Communications Enabled by Quantum Cascade Lasers. Phys. Status Solidi A 2021, 218, 2000407. [Google Scholar] [CrossRef]
- Garlinska, M.; Pregowska, A.; Masztalerz, K.; Osial, M. From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet 2020, 12, 179. [Google Scholar] [CrossRef]
- Alkholidi, A.G.; Altowij, K.S. Free Space Optical Communications—Theory and Practices. In Contemporary Issues in Wireless Communications; InTech: London, UK, 2014. [Google Scholar]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics 2020, 9, 1109. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Z.; Su, Y.; Fu, L.; Wei, Y. Educational 5G Edge Computing: Framework and Experimental Study. Electronics 2022, 11, 2727. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Zhang, G. How the 5G Enabled the COVID-19 Pandemic Prevention and Control: Materiality, Affordance, and (De-)Spatialization. Int. J. Envon. Res. Public Health 2022, 19, 8965. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Huang, X.; Mo, S.; Wang, L.; Su, G.; Cheng, Y. The Prospect of 5G Technology Applied to Distance Medical Education and Clinical Practice. Creat. Educ. 2020, 11, 2837–2845. [Google Scholar] [CrossRef]
- Fisk University Website. Available online: https://www.fisk.edu/university-news-and-publications/fisk-university-htc-vive-t-mobile-and-victoryxr-launch-5g-powered-vr-human-cadaver-lab/ (accessed on 15 February 2023).
- Xie, S. University Piano Education Visualization System under the Background of Distance Education Based on 5G Network. Math. Probl. Eng. 2022, 2022, 6825591. [Google Scholar]
- Zhang, Y. Application Analysis of 5G Intelligent Communication Technologies in the Field of Sports Distance Education. Comput. Intell. Neurosci. 2022, 2022, 2115041. [Google Scholar]
- Checa, D.; Bustillo, A. Virtual Reality for Learning. In Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Tang, Y.M.; Chau, K.Y.; Kwok, A.P.K.; Zhu, T.; Ma, X. A systematic review of immersive technology applications for medical practice and education—Trends, application areas, recipients, teaching contents, evaluation methods, and performance. Educ. Res. Rev. 2022, 35, 100429. [Google Scholar] [CrossRef]
- Lion-Bailey, C.; Lubinsky, J.; Shippee, M. The XR ABC Framework: Fostering Immersive Learning Through Augmented and Virtual Realities. In Immersive Education; MacDowell, P., Lock, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Mosher, M.; Carreon, A.; Graig, S.; Ruhter, L. Immersive Technology to teach social skills to students with Autism Spectrum Disorder: A literature review. Rev. J. Autism Spectr. Disord. 2021, 9, 334–350. [Google Scholar] [CrossRef]
- Wu, T.C.; Ho, C.B. A scoping review of metaverse in emergency medicine. Australas. Emerg. Care 2022, 26, 75–83. [Google Scholar] [CrossRef]
- Lee, Y.S.; Rashidi, A.; Talei, A.; Beh, H.J.; Rashidi, S. A Comparison Study on the Learning Effectiveness of Construction Training Scenarios in a Virtual Reality Environment. Virtual Worlds 2023, 2, 36–52. [Google Scholar] [CrossRef]
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Otani, K.; Sugimoto, M.; Tsukamoto, M.; Yoshihara, T.; Ueno, M.; Mawatari, M. XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J. Clin. Med. 2022, 11, 470. [Google Scholar] [CrossRef]
- Kumar, A.; Srinivasan, B.; Saudagar, A.K.J.; AlTameem, A.; Alkhathami, M.; Alsamani, B.; Khan, M.B.; Ahmed, Z.H.; Kumar, A.; Singh, K.U. Next-Gen Mulsemedia: Virtual Reality Haptic Simulator’s Impact on Medical Practitioner for Higher Education Institutions. Electronics 2023, 12, 356. [Google Scholar] [CrossRef]
- Cao, Y.; Ng, G.-W.; Ye, S.-S. Design and Evaluation for Immersive Virtual Reality Learning Environment: A Systematic Literature Review. Sustainability 2023, 15, 1964. [Google Scholar] [CrossRef]
- Cho, Y.; Park, K.S. Designing Immersive Virtual Reality Simulation for Environmental Science Education. Electronics 2023, 12, 315. [Google Scholar] [CrossRef]
- Li, F.; Jiang, J.; Qin, Q.; Wang, X.; Zeng, G.; Gu, Y.; Guo, W. Application of Sustainable Development of Teaching in Engineering Education: A Case Study of Undergraduate Course Design of Raman Spectroscopy Based on Virtual Reality (VR) Technology. Sustainability 2023, 15, 1782. [Google Scholar] [CrossRef]
- De Luca, V.; Gatto, C.; Liaci, S.; Corchia, L.; Chiarello, S.; Faggiano, F.; Sumerano, G.; De Paolis, L.T. Virtual Reality and Spatial Augmented Reality for Social Inclusion: The “Includiamoci” Project. Information 2023, 14, 38. [Google Scholar]
- Banfi, F.; Pontisso, M.; Paolillo, F.R.; Roascio, S.; Spallino, C.; Stanga, C. Interactive and Immersive Digital Representation for Virtual Museum: VR and AR for Semantic Enrichment of Museo Nazionale Romano, Antiquarium di Lucrezia Romana and Antiquarium di Villa Dei Quintili. ISPRS Int. J. Geo-Inf. 2023, 12, 28. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Transforming computed tomography scans into a full-immersive virtual museum for the Antikythera Mechanism. Digit. Appl. Archaeol. Cult. Herit. 2023, 28, e00259. [Google Scholar] [CrossRef]
- Di Paolo, A.; Beatini, V.; Di Tore, S.; Todino, M. How serious can promote inclusion, history and cultural heritage through the Virtual Reality. J. Incl. Methodol. Technol. Learn. Teach. 2023, 3, 1–8. [Google Scholar]
- Liesatyadharma, S.; Fernandez, S.E.; Jeffina, M.; Udjaj, Y. Holoreact: Chemistry experiment game with hologram based to enhance learning on senior high school level. Procedia Comput. Sci. 2023, 216, 453–461. [Google Scholar] [CrossRef]
- Dede, C.J.; Jacobson, J.; Richards, J. Introduction: Virtual, augmented, and mixed realities in education. In Virtual, Augmented, and Mixed Realities in Education; Liu, D., Dede, C., Huang R. and Richards, J., Eds.; Springer: Singapore, 2017; pp. 1–16. [Google Scholar]
- Laricheva, E.N.; Ilikchyan, A. Exploring the Effect of Virtual Reality on Learning in General Chemistry Students with Low Visual-Spatial Skills. J. Chem. Educ. 2023, 100, 589–596. [Google Scholar] [CrossRef]
- Chiquet, S.; Martarelli, C.S.; Weibel, D.; Mast, F.W. Learning by teaching in immersive virtual reality—Absorption tendency increases learning outcomes. Learn. Instr. 2023, 84, 101716. [Google Scholar] [CrossRef]
- Mak, G.; Zhao, L. A systematic review: The application of virtual reality on the skill-specific performance in people with ASD. Interact. Learn. Environ. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Bradley, R.; Newbutt, N. Autism and virtual reality head-mounted displays: A state-of-the-art systematic review. J. Enabling Technol. 2018, 12, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, A.; Milosavljević, A. VoRtex Metaverse Platform for Gamified Collaborative Learning. Electronics 2022, 11, 317. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Boonbrahm, S.; Boonbrahm, P.; Kaewrat, C. The Use of Marker-Based Augmented Reality in Space Measurement. Procedia Manuf. 2020, 42, 337–343. [Google Scholar] [CrossRef]
- Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M.; García, S.; Barcia, J. ARBOOK: Development and assessment of a tool based on augmented reality for anatomy. J. Sci. Educ. Technol. 2015, 24, 119–124. [Google Scholar] [CrossRef]
- Ihsan, M.; Sa’adah, S.; Maspupah, M. The validity of markerless augmented reality-based learning media on the concept of cell organelle. AIP Conf. Proc. 2023, 2540, 020020. [Google Scholar]
- Iqbal, M.Z.; Campbell, A.G. AGILEST approach: Using machine learning agents to facilitate kinesthetic learning in STEM education through real-time touchless hand interaction. Telemat. Inform. Rep. 2023, 9, 100034. [Google Scholar] [CrossRef]
- Donnelly, D.; Fischetti, J.; Ledger, S.; Boadu, G. Using a Mixed-Reality Micro-teaching Program to Support “at Risk” Pre-service Teachers. In Work-Integrated Learning Case Studies in Teacher Education; Winslade, M., Loughland, T., Eady, M.J., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Richards, S. Student Engagement Using HoloLens Mixed-Reality Technology in Human Anatomy Laboratories for Osteopathic Medical Students: An Instructional Model. Med. Sci. Educ. 2023, 33, 1–19. [Google Scholar] [CrossRef]
- Pregowska, A.; Osial, M.; Dolega-Dolegowski, D.; Kolecki, R.; Proniewska, K. Information and Communication Technologies Combined with Mixed Reality as Supporting Tools in Medical Education. Electronics 2022, 11, 3778. [Google Scholar] [CrossRef]
- Gerup, J.; Soerensen, C.B.; Dieckmann, P. Augmented reality and mixed reality for healthcare education beyond surgery: An integrative review. Int. J. Med. Educ. 2020, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Augmented and Mixed Reality for Shipbuilding. In Springer Handbook of Augmented Reality. Springer Handbooks; Nee, A.Y.C., Ong, S.K., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Acampora, G.; Trinchese, P.; Trinchese, R.; Vitiello, A. A Serious Mixed-Reality Game for Training Police Officers in Tagging Crime Scenes. Appl. Sci. 2023, 13, 1177. [Google Scholar] [CrossRef]
- Loachamín-Valencia, M.; Mejía-Guerrero, J.; Villavicencio Álvarez, V.E.; Cárdenas-Delgado, S.; Paredes Calderón, D.M. A Virtual Shooting Range, Experimental Study for Military Training. In Applied Technologies. ICAT 2022. Communications in Computer and Information Science; Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B., Eds.; Springer: Cham, Switzerland, 2023; Volume 1755. [Google Scholar]
- Wu, Y.; You, S.; Guo, Z.; Li, X.; Zhou, G.; Gong, J.M.R. Brick: Designing A Remote Mixed-reality Educational Game System for Promoting Children’s Social & Collaborative Skills. arXiv 2023, arXiv:2301.07310. [Google Scholar]
- Mixed Reality Supporting Advanced Medical Education Project Website. Available online: https://mrame.cm-uj.krakow.pl/?fbclid=IwAR1Rh2EazAwUHnLOhAwnXXzIEw57_Edw9VGHxvqGN-L-QwMENSY0Gctd3eU (accessed on 15 February 2023).
- Aekanth, S.G. Transforming E-Learning Through the Use of Virtual and Augmented Reality: A Systematic Review. In Human-Automation Interaction. Automation, Collaboration, & E-Services; Duffy, V.G., Ziefle, M., Rau, P.L.P., Tseng, M.M., Eds.; Springer: Cham, Switzerland, 2023; Volume 12. [Google Scholar]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Mukasheva, M.; Kornilov, I.; Beisembayev, G.; Soroko, N.; Sarsimbayeva, S.; Omirzakova, A. Contextual structure as an approach to the study of virtual reality learning environment. Cogent Educ. 2023, 10, 2165788. [Google Scholar] [CrossRef]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Perriguey, G. Student Emotions in Virtual Reality: The Concept of Psychopedagogy by Design. In Immersive Education; MacDowell, P., Lock, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Gomez-Rios, M.; Paredes-Velasco, M.; Hernández-Beleño, R.D.; Fuentes-Pinargote, J.A. Analysis of emotions in the use of augmented reality technologies in education: A systematic review. Comput. Appl. Eng. Educ. 2023, 31, 216–234. [Google Scholar] [CrossRef]
- Balıkcıoğlu Akkuş, G.; Altay, İ. Instructor’s Written Feedback in Emergency Remote Teaching: EFL Learners’ Perspectives. Bartın Univ. J. Fac. Educ. 2023, 12, 47–56. [Google Scholar] [CrossRef]
- Fewella, L.N. Impact of COVID-19 on distance learning practical design courses. Int. J. Technol. Des. Educ. 2023, 33, 1–24. [Google Scholar] [CrossRef]
- Kounenou, K.; Giannoulas, A.; Stampoltzis, A.; Kalamatianos, A.; Kourmousi, N.; Pezirkianidis, C. Perspectives on Emergency Remote Teaching during COVID-19 Pandemic in a Sample of Greek Undergraduate Students: The Role of Self-Image. Int. J. Environ. Res. Public Health 2023, 20, 172. [Google Scholar] [CrossRef]
- Lv, Z.; Han, Y.; Singh, A.K.; Manogaran, G.; Lv, H. Trustworthiness in Industrial IoT Systems Based on Artificial Intelligence. IEEE Trans. Ind. Inform. 2021, 17, 1496–1504. [Google Scholar] [CrossRef]
- Shiohira, K. Understanding the Impact of Artificial Intelligence on Skills Development.UNESCO-UNEVOC, Paris. 2021. Available online: https://unevoc.unesco.org/home/UNEVOC+Publications/lang=en/akt=detail/qs=6448 (accessed on 15 February 2023).
- UNESCO and Sustainable Development Goals Website. Available online: https://en.unesco.org/sustainabledevelopmentgoals (accessed on 15 February 2023).
- Roll, I.; Wylie, R. Evolution and Revolution in Artificial Intelligence in Education. Int. J. Artif. Intell. Educ. 2016, 26, 582–599. [Google Scholar] [CrossRef] [Green Version]
- Sevara, U. Enhancing Distance Education through Artificial Intelligence in Teaching English. Cent. Asian J. Lit. Philos. Cult. 2023, 4, 46–51. [Google Scholar]
- Ndhlovu, N.J.; Goosen, L. To What Extent Can Multidisciplinary Artificial Intelligence Applications Enhance Higher Education?: Open and Distance E-Learning in South Africa. In Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence, 2nd ed.; Chowdhary, C.L., Ed.; IGI Global: Hershey, PA, USA, 2023; pp. 166–185. [Google Scholar]
- Arel, I.; Rose, D.C.; Karnowski, T.P. Deep Machine Learning—A New Frontier in Artificial Intelligence Research. IEEE Comput. Intell. Mag. 2010, 5, 13–18. [Google Scholar] [CrossRef]
- Curious Learning Website. Available online: https://www.curiouslearning.org/learn-from-home (accessed on 15 February 2023).
- Article by Afshar, V. AI-Powered Virtual Assistants and the Future of Work. Available online: https://www.zdnet.com/article/ai-poweredvirtual-assistants-and-future-of-work (accessed on 15 February 2023).
- Chakroun, B.; Miao, F.; Mendes, V.; Domiter, A.; Fan, H.; Kharkova, I.; Rodriguez, S. Artificial Intelligence for Sustainable Development: Synthesis Report, Mobile Learning Week; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2019. [Google Scholar]
- Mekni, M. An artificial intelligence based virtual assistant using conversational agents. J. Softw. Eng. Appl. 2021, 14, 455–473. [Google Scholar] [CrossRef]
- Olguín-Gil, L.E.; Vázquez-Guzmán, F.; Vázquez-Zayas, E.; Mejía, J.; Blanco-Cruz, I. Virtual Assistant as Support for People Visually Impaired. In International Conference on Software Process Improvement; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Susanti, M.N.I.; Ramadhan, A.; Warnars, H.L.H.S. Automatic essay exam scoring system: A systematic literature review. Procedia Comput. Sci. 2023, 216, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Schlippe, T.; Stierstorfer, Q.; Koppel, M.t.; Libbrecht, P. Explainability in Automatic Short Answer Grading. In Artificial Intelligence in Education Technologies: New Development and Innovative Practices. AIET 2022; Lecture Notes on Data Engineering and Communications Technologies; Cheng, E.C.K., Wang, T., Schlippe, T., Beligiannis, G.N., Eds.; Springer: Singapore, 2022; Volume 154. [Google Scholar]
- Pavlik, J.V. Collaborating With ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education. J. Mass Commun. Educ. 2023, 78, 84–93. [Google Scholar] [CrossRef]
- Baidoo-Anu, D.; Owusu, A.L. Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337484 (accessed on 24 March 2023).
- Hu, Y.-H.; Fu, S.J.; Yeh, H.-C. Developing an early-warning system through robotic process automation: Are intelligent tutoring robots as effective as human teachers? Interact. Learn. Environ. 2023, 31, 1–14. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Yang, L.-H.; Wang, S.-Y. A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Comput. Educ. 2013, 69, 121–130. [Google Scholar] [CrossRef]
- Hu, M.; Wang, J. Artificial intelligence in dance education: Dance for students with special educational needs. Technol. Soc. 2021, 67, 101784. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Xie, H.; Cheng, G.; Liu, C. Two decades of artificial intelligence in education: Contributors, collaborations, research topics, challenges, and future directions. Educ. Technol. Soc. 2022, 25, 28–47. [Google Scholar]
- Atif, A.; Jha, M.; Richards, D.; Bilgin, A.A. Artificial Intelligence (AI)-enabled remote learning and teaching using Pedagogical Conversational Agents and Learning Analytics. In Intelligent Data-Centric Systems, Intelligent Systems and Learning Data Analytics in Online Education; Caballé, S., Demetriadis, S.N., Gómez-Sánchez, E., Papadopoulos, P.M., Weinberger, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–29. [Google Scholar]
- Ahmad, S.F.; Rahmat, M.K.; Mubarik, M.S.; Alam, M.M.; Hyder, S.I. Artificial Intelligence and Its Role in Education. Sustainability 2021, 13, 12902. [Google Scholar] [CrossRef]
- Embarak, O.H. Internet of Behaviour (IoB)-based AI models for personalized smart education systems. Procedia Comput. Sci. 2022, 203, 103–110. [Google Scholar]
- Wako, T.N. Education Management Information Systems (EMIS): An Overview; NESIS/UNESCO, Frontline Electronic Publishing: Harare, Zimbabwe, 2003. [Google Scholar]
- Williamson, B.; Macgilchrist, F.; Potter, J. Re-examining AI, automation and datafication in education. Learn. Media Technol. 2023, 48, 1–5. [Google Scholar] [CrossRef]
- Ahmad, N.; Hoda, N.; Alahmari, F. Developing a Cloud-Based Mobile Learning Adoption Model to Promote Sustainable Education. Sustainability 2020, 12, 3126. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Lera, F.J.; Fernández González, D.; Martín Rico, F.; Guerrero-Higueras, Á.M.; Conde, M.Á. Measuring Students Acceptance and Usability of a Cloud Virtual Desktop Solution for a Programming Course. Appl. Sci. 2021, 11, 7157. [Google Scholar] [CrossRef]
- Wang, Z. Online language education recommendation based on personalized learning and edge computing. Internet Technol. Lett. 2023, 2, e408. [Google Scholar] [CrossRef]
- Naidu, V.R.; Najah, S.; Saqib, M.; Swathi, R.; Pandey, N. Transforming E-Learning through Cloud-Based Interactive Multimedia Authoring Solutions. SHS Web Conf. 2023, 156, 09001. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y. A Scalable Cloud-Based UAV Fleet Management System. In Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus; Lecture Notes in Mechanical, Engineering; Kim, K.Y., Monplaisir, L., Rickli, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Matenga, A.E.; Mpofu, K.; Adenuga, O.T. Cloud Manufacturing Services Adoption in Higher Education Institutions: Challenges and Framework for Developing Countries. In Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus; Lecture Notes in Mechanical, Engineering; Kim, K.Y., Monplaisir, L., Rickli, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Naveed, Q.N.; Qahmash, A.I.; Qureshi, M.R.N.; Ahmad, N.; Abdul Rasheed, M.A.; Akhtaruzzaman, M. Analyzing Critical Success Factors for Sustainable Cloud-Based Mobile Learning (CBML) in Crisp and Fuzzy Environment. Sustainability 2023, 15, 1017. [Google Scholar] [CrossRef]
- Jurayev, T.N. The use of mobile learning applications in higher education institutes. Adv. Mob. Learn. Educ. Res. 2023, 3, 610–620. [Google Scholar] [CrossRef]
- Radaideh, M.A.; Mohammad, N.I.; Mukbil, M.M. A proposed cloud-based platform for facilitating donation services in support to needy-students. J. Supercomput. 2023, 79, 1–30. [Google Scholar] [CrossRef]
- Turnbull, D.; Chugh, R.; Luck, J. Learning Management Systems, An Overview. In Encyclopedia of Education and Information Technologies; Tatnall, A., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Aldiab, A.; Chowdhury, H.; Kootsookos, A.; Alam, F.; Allhibi, H. Utilization of Learning Management Systems (LMSs) in higher education system: A case review for Saudi Arabia. Energy Procedia 2019, 160, 731–737. [Google Scholar] [CrossRef]
- Alfalah, A.A. Factors influencing students’ adoption and use of mobile learning management systems (m-LMSs): A quantitative study of Saudi Arabia. Int. J. Inf. Manag. Data Insights 2023, 3, 100143. [Google Scholar] [CrossRef]
- Blackboard Website. Available online: https://www.anthology.com/products/teaching-and-learning/learning-effectiveness/blackboard-learn (accessed on 15 February 2023).
- Canvas Website. Available online: https://www.canva.com/pl_pl/ (accessed on 15 February 2023).
- Moodle Website. Available online: https://moodle.org/?lang=pl (accessed on 15 February 2023).
- Cavus, N. Distance Learning and Learning Management Systems. Procedia Soc. Behav. Sci. 2015, 191, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Zoom Website. Available online: https://zoom.us/ (accessed on 15 February 2023).
- Amazon Chime Website. Available online: https://aws.amazon.com/chime/ (accessed on 15 February 2023).
- BlueJeans Meetings Website. Available online: https://www.bluejeans.com/products/meetings (accessed on 15 February 2023).
- Google Hangouts Meet Website. Available online: https://support.google.com/meet/?hl=pl#topic=7306097 (accessed on 15 February 2023).
- Microsoft Teams Website. Available online: https://www.microsoft.com/pl-pl/microsoft-teams/log-in (accessed on 15 February 2023).
- Webex Website. Available online: https://www.webex.com/meetings.html (accessed on 15 February 2023).
- Skype Website. Available online: https://www.skype.com/pl/ (accessed on 15 February 2023).
- Grammens, M.; Voet, M.; Vanderlinde, R.; Declercq, L.; De Wever, B. A systematic review of teacher roles and competences for teaching synchronously online through videoconferencing technology. Educ. Res. Rev. 2022, 37, 100461. [Google Scholar] [CrossRef]
- Ames, K.; Harris, L.R.; Dargusch, J.; Bloomfield, C. ‘So you can make it fast or make it up’: K–12 teachers’ perspectives on technology’s affordances and constraints when supporting distance education learning. Aust. Educ. Res. 2021, 48, 359–376. [Google Scholar] [CrossRef]
- Shah, S.; Arinze, B. Comparing Student Learning in Face-to-Face Versus Online Sections of an Information Technology Course. IEEE Trans. Prof. Commun. 2023, 66, 48–58. [Google Scholar] [CrossRef]
- Thomas, M.A.; Sandhu, R.K.; Oliveira, A.; Oliveira, T. Investigating the effect of media synchronicity in professional use of video conferencing applications. Internet Res. 2023, 33, 1–47. [Google Scholar] [CrossRef]
- Maulana, M.I. Leveraging Zoom Video-Conferencing Features in Interview Data Generation During the COVID-19 Pandemic. In Research and Teaching in a Pandemic World; Cahusac de Caux, B., Pretorius, L., Macaulay, L., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Ahmad, F.H. Using video-conferencing for observations and interviews: Gathering data from ‘home’ while studying in New Zealand. Waikato J. Educ. 2020, 25, 109–116. [Google Scholar] [CrossRef]
- Archibald, M.M.; Ambagtsheer, R.C.; Casey, M.G.; Lawless, M. Using Zoom videoconferencing for qualitative data collection: Perceptions and experiences of researchers and participants. Int. J. Qual. Methods 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kopplin, C.S. Software Support in Coworking Spaces: Instruments, Applications, and Challenges. In Awakening the Management of Coworking Spaces; Bouncken, R.B., Ed.; Emerald Publishing Limited: Bingley, UK, 2023; pp. 97–110. [Google Scholar]
- Manna, M.S.; Balusamy, B.; Sood, K.; Chilamkurti, N.; Rajathi, G.I. Edutech Enabled Teaching: Challenges and Opportunities, 1st ed.; Chapman and Hall/CRC: London, UK, 2022. [Google Scholar]
- Andronie, M.; Lăzăroiu, G.; Karabolevski, O.L.; Ștefănescu, R.; Hurloiu, I.; Dijmărescu, A.; Dijmărescu, I. Remote Big Data Management Tools, Sensing and Computing Technologies, and Visual Perception and Environment Mapping Algorithms in the Internet of Robotic Things. Electronics 2023, 12, 22. [Google Scholar] [CrossRef]
- Haw, M.A.; MacDonald, M.E.; Colom, S.V. Big-data Efficient and Automated Science Transfer (BEAST): An open-source software architecture for arc jet data management, modeling, and automation. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23-27 January 2023. AIAA 2023–2712. [Google Scholar]
- Wang, W. Summary of Research on Learning Analysis Based on Educational Big Data. In Application of Big Data, Blockchain, and Internet of Things for Education Informatization; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Jan, M.A., Khan, F., Eds.; Springer: Cham, Switzerland, 2023; Volume 466. [Google Scholar]
- Ma, F.; Qiu, J. Research on Influential Factors of Online Learning Behavior Based on Big Data. In Machine Learning for Cyber Security. ML4CS 2022; Lecture Notes in Computer Science; Xu, Y., Yan, H., Teng, H., Cai, J., Li, J., Eds.; Springer: Cham, Switzerland, 2023; Volume 13656. [Google Scholar]
- Zhang, J. Research on System Design of Educational Curriculum Construction Based on Big Data Platform. In Application of Big Data, Blockchain, and Internet of Things for Education Informatization. BigIoT-EDU 2022; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Jan, M.A., Khan, F., Eds.; Springer: Cham, Switzerland, 2023; Volume 467. [Google Scholar]
- Naidu, G.T.; Ganesh, K.V.; Chellam, V.V.; Praveenkumar, S.; Dhabliya, D.; Pramanik, S.; Gupta, A. Technological Innovation Driven by Big Data. In Advanced Bioinspiration Methods for Healthcare Standards, Policies, and Reform; Bouarara, H., Ed.; IGI Global: Hershey, PA, USA, 2023; pp. 240–259. [Google Scholar]
- Mortati, M.; Magistretti, S.; Cautela, C.; Dell’Era, C. Data in design: How big data and thick data inform design thinking projects. Technovation 2023, 124, 102688. [Google Scholar] [CrossRef]
- Ragazou, K.; Passas, I.; Garefalakis, A.; Galariotis, E.; Zopounidis, C. Big Data Analytics Applications in Information Management Driving Operational Efficiencies and Decision-Making: Mapping the Field of Knowledge with Bibliometric Analysis Using R. Big Data Cogn. Comput. 2023, 7, 13. [Google Scholar] [CrossRef]
- Ølnes, S.; Ubacht, J.; Janssen, M. Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Gov. Inf. Q. 2017, 34, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Liu, W.; Saif, A.N.M.; Wang, B.; Rupa, R.A.; Islam, K.M.A.; Rahman, S.M.M.; Hafiz, N.; Mostafa, R.; Rahman, M.A. Blockchain in Online Learning: A Systematic Review and Bibliographic Visualization. Sustainability 2023, 15, 1470. [Google Scholar] [CrossRef]
- Turkanović, M.; Hölbl, M.; Košič, K.; Heričko, M.; Kamišalić, A. EduCTX: A blockchain-based higher education credit platform. IEEE Access 2018, 6, 5112–5127. [Google Scholar] [CrossRef]
- Chowdhary, A.; Agrawal, S.; Rudra, B. Blockchain based Framework for Student Identity and Educational Certificate Verification. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 916–921. [Google Scholar]
- Mikroyannidis, A.; Third, A.; Domingue, J. A case study on the decentralisation of lifelong learning using blockchain technology. J. Interact. Media in Educ. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- de Haro-Olmo, F.J.; Varela-Vaca, Á.J.; Álvarez-Bermejo, J.A. Blockchain from the Perspective of Privacy and Anonymisation: A Systematic Literature Review. Sensors 2020, 20, 7171. [Google Scholar] [CrossRef]
- Terzi, S.; Ioannis, S.; Votis, K.; Tsiatsos, T. A life-long learning education passport powered by blockchain technology and verifiable digital credentials: The BlockAdemiC project. In International Conference on Software Engineering and Formal Methods; Springer: Berlin/Heidelberg, Germany, 2022; pp. 249–263. [Google Scholar]
- Rosli, A.; Shahrin, S.; Awang, H. A Secure Learning Environment Framework of Virtual Reality Application for TVET Education Using Blockchain Technology. Multidiscip. Appl. Res. Innov. 2023, 4, 10–13. [Google Scholar]
- Mainetti, L.; Paiano, R.; Pedone, M.; Quarta, M.; Dervishi, E. Digital Brick: Enhancing the Student Experience Using Blockchain, Open Badges and Recommendations. Educ. Sci. 2022, 12, 567. [Google Scholar] [CrossRef]
- Alsobhi, H.A.; Alakhtar, R.A.; Ubaid, A.; Hussain, O.K.; Hussain, F.K. Blockchain-based micro-credentialing system in higher education institutions: Systematic literature review. Knowl. Based Syst. 2023, 256, 110238. [Google Scholar] [CrossRef]
- Statista Website—Number of Internet and Social Media Users Worldwide as of January 2023. Available online: https://www.statista.com/statistics/617136/digital-population-worldwide/ (accessed on 15 February 2023).
- Wikipedia Website—List of Countries by Number of Internet Users. Available online: https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users (accessed on 15 February 2023).
- International Telecommunication Union (ITU) Website. Available online: https://www.itu.int/hub/2021/11/facts-and-figures-2021-2-9-billion-people-still-offline (accessed on 15 February 2023).
- Pangkey, I.; Langkey, J. Analysis of the Online Learning Process During the COVID-19 Pandemic in Elementary School Teachers. In Proceedings of the Unima International Conference on Social Sciences and Humanities (UNICSSH 2022), Manado, Indonesia, 11–113 October 2022. [Google Scholar]
- Seasia Website—Rank of Countries with Fastest (and Slowest) Internet in The World 2019. Available online: https://seasia.co/2019/07/12/rank-of-countries-with-fastest-and-slowest-internet-in-the-world-2019 (accessed on 13 February 2023).
- Olum, R.; Chekwech, G.; Wekha, G.; Nassozi, D.; Bongomin, F. Coronavirus disease-2019: Knowledge, attitude, and practices of health care workers at Makerere University Teaching Hospitals, Uganda. Front. Public Health 2020, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Doz, D.; Stemberger, T. Minority Education During The Pandemic: The Case of The Slovene Minority in Italy. Turk. Online J. Distance Educ. 2023, 24, 109–128. [Google Scholar] [CrossRef]
- Heng, K.; Sol, K. Online Learning during COVID-19: Key Challenges and Suggestions to Enhance Effectiveness. Cambodian Education Forum 2020. Available online: https://l24.im/nR5e (accessed on 14 February 2023).
- Yuen, J.; Xie, F. Medical education during the COVID-19 pandemic: Perspectives from UK trainees. Postgrad. Med. J. 2020, 96, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.A.; Bervell, B.; Osman, S. Google classroom: Insights from Malaysian higher education students’ and instructors’ experiences. Educ. Inf. Technol. 2020, 25, 4175–4195. [Google Scholar] [CrossRef]
- Mystakidis, S. Sustainable Engagement in Open and Distance Learning With Play and Games in Virtual Reality: Playful and Gameful Distance Education in VR. In Research Anthology on Virtual Environments and Building the Metaverse; Information Resources Management Association, Ed.; IGI Global: Hershy, PA, USA, 2023; pp. 297–312. [Google Scholar]
- Fang, J. Security Evaluation Method of Distance Education Network Nodes Based on Machine Learning. In Machine Learning for Cyber Security. ML4CS 2022; Lecture Notes in Computer, Science; Xu, Y., Yan, H., Teng, H., Cai, J., Li, J., Eds.; Springer: Cham, Switzerland, 2023; Volume 13655. [Google Scholar]
- Goncalves, S.P.; Sousa, M.J.; Pereira, F.S. Distance Learning Perceptions from Higher Education Students—The Case of Portugal. Educ. Sci. 2020, 10, 374. [Google Scholar] [CrossRef]
- Haas, B.; Lavicza, Z.; Kreis, Y. Parent’s experience in remote learning during COVID-19 with digital and physical mathematical modelling. Res. Pract. Technol. Enhanc. Learn. 2022, 18, 1–21. [Google Scholar] [CrossRef]
- Krishna, V.K.; Kishore, M.B.; Pradeep, B.; Sowmithri, M.L. Assessment of parents’ perception regarding electronic device use among children following COVID-19 lockdown in the field practice area of Urban Health Center of a Medical College in Anantapuramu. MRIMS J. Health Sci. 2023. Available online: http://www.mrimsjournal.com/preprintarticle.asp?id=362525 (accessed on 24 March 2023).
- Sadigov, R.; Yıldırım, E.; Kocaçınar, B. Deep learning-based user experience evaluation in distance learning. Clust. Comput. 2023, 26, 1–13. [Google Scholar] [CrossRef]
- Turska, E.; Stępień-Lampa, N. Well-being of Polish university students after the first year of the coronavirus pandemic: The role of core self-evaluations, social support and fear of COVID-19. PLoS ONE 2021, 16, e0259296. [Google Scholar] [CrossRef]
- Mlodawski, J.; Swiercz, A.; Mlodawska, M.; Piąta, A.; Swiercz, G.; Gawdzik, B. Remote learning during the COVID-19 pandemic in the opinion of academic teachers. Survey research. J. Educ. Health Sport 2022, 13, 60–65. [Google Scholar] [CrossRef]
- Cobb, C.; Xie, J.; Gallo, K.; Boyd, M.; Wilkins, M.; Wadsworth, M.; Brake, L. Protective Factors Contributing to Academic Resilience in College Students During COVID-19. Am. J. Distance Educ. 2023, 37, 1–12. [Google Scholar] [CrossRef]
- Bailenson, J.N. Nonverbal Overload: A Theoretical Argument for the Causes of Zoom Fatigue. Technol. Mind Behav. 2021, 2. [Google Scholar] [CrossRef]
- Bawaneh, A.K.; Malkawi, E. Stem faculty members’ perspectives and challenges towards distance learning and virtual classes during COVID-19 outbreak. Turk. Online J. Distance Educ. TOJDE 2023, 24, 15. [Google Scholar] [CrossRef]
- Mukhtar, K.; Javed, K.; Arooj, M.; Sethi, A. Advantages, Limitations and Recommendations for online learning during COVID-19 pandemic era. Pak. J. Med. Sci. 2022, 36, S27–S31. [Google Scholar] [CrossRef] [PubMed]
- El Jamiy, F.; Marsh, R. Survey on depth perception in head mounted displays: Distance estimation in virtual reality, augmented reality, and mixed reality. IET Image Process. 2019, 13, 707–712. [Google Scholar] [CrossRef]
- Keil, J.; Edler, D.; O’Meara, D.; Korte, A.; Dickmann, F. Effects of Virtual Reality Locomotion Techniques on Distance Estimations. ISPRS Int. J. Geo-Inf. 2021, 10, 150. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Jin, Z.; Li, L. Distance Estimation in Virtual Reality Is Affected by Both the Virtual and the Real-World Environments. I-Percept. 2021, 12, 1–16. [Google Scholar] [CrossRef]
Feature | VR (Virtual Reality) | AR (Augmented Reality) | MR (Mixed Reality) |
---|---|---|---|
Definition | A completely computer-generated environment that a user can interact with | A blend of real and virtual environments, where virtual objects are superimposed over the real world | A hybrid environment that combines the physical and virtual world, where virtual objects can interact with the real world |
Technology | Head-mounted displays (HMDs) or standalone VR devices | Smart glasses or smartphone apps | Smart glasses, HMDs, or handheld devices |
Examples | Oculus Quest, PlayStation VR, HTC Vive | Google Glass, Microsoft Hololens, Snapchat filters | Microsoft Hololens 2, Magic Leap 1, Nreal Light |
Immersion | High immersion | Limited immersion | High immersion |
Interaction | Interaction with virtual objects and environments through controllers or hand tracking | Interaction with virtual objects through gestures or gaze control | Interaction with virtual objects and physical objects through gestures, voice, or hand tracking |
Display | High-resolution display, wide field of view | Limited field of view, small displays | Wide field of view, high-resolution displays |
VCTs | Participants | Price | Advantages | Disadvantages |
---|---|---|---|---|
Amazon Chime [161] | Up to 100 | $3.00 per day pro 1 user $15.00 per month pro 1 user | Compatible with SIP/H.323 equipment High-quality video Wideband audio | Share screen on mobile devices is unavailable |
BlueJeans Meetings [162] | 100 150 Up to 200 | $9.99 per mount (5 h of recording) $12.49 per mount (25 h of recording) $16.65 per mount (unlimited recording) | High-quality audio Compatible with SIP/H.323 equipment Facebook Live integration | No file sharing |
Google Hangouts Meet [163] | 25 100 | $6.00 basic per mouth $12.00 business per mouth | Compatible with SIP/H.323 equipment Live stream up to 100,000 participants Google Drive | Share screen on mobile devices is unavailable |
Microsoft Teams [164] | 100 300 300 300 | Free $3.40 per mouth $5.10 per month (basic Office packed included) $10.50 per month (Office packed included), Webinar hosting | Live stream up to 10,000 participants Compatible with SIP/H.323 equipment | Meeting scheduling and recording are limited due to fees |
WebEx Meetings [165] | 100 150 200 1000 | Free (meeting length up to 40 min) $13.50 per month (meeting length up to 24 h) $19.00 per month (meeting length up to 24 h) to negotiate (meeting length up to 24 h) | High-quality video Wideband audio Automatic MP4 recording of the meeting Facebook Live integration Webinar hosting up to 100,000 participants Compatible with SIP/H.323 equipment | Free version limited to 40 min |
Zoom [166] | 100 100 300 1000 | Free (meeting length up to 40 min) $149.90 (meeting length up to 30 h) $199.90 (meeting length up to 30 h) to negotiate (meeting length up to 30 h) | Webinar hosting up to 100,000 participants Compatible with SIP/H.323 equipment | Free version limited to 40 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garlinska, M.; Osial, M.; Proniewska, K.; Pregowska, A. The Influence of Emerging Technologies on Distance Education. Electronics 2023, 12, 1550. https://doi.org/10.3390/electronics12071550
Garlinska M, Osial M, Proniewska K, Pregowska A. The Influence of Emerging Technologies on Distance Education. Electronics. 2023; 12(7):1550. https://doi.org/10.3390/electronics12071550
Chicago/Turabian StyleGarlinska, Magdalena, Magdalena Osial, Klaudia Proniewska, and Agnieszka Pregowska. 2023. "The Influence of Emerging Technologies on Distance Education" Electronics 12, no. 7: 1550. https://doi.org/10.3390/electronics12071550