A Compact Broadband Analog Complex Correlator with High Correlation Efficiency for Passive Millimeter-Wave Imaging System
Abstract
:1. Introduction
2. Principle of the Proposed Analog Correlator
3. Implementation of the Analog Correlator Based on Integrated Six-Port Circuit
3.1. The 0° and 90° Integrated Divider Chip
3.2. The Coupler and Amplifier Integrated Chip
3.3. Detection Circuit
4. Measurements
4.1. Measurement of the Six-Port Circuit
4.2. Sweep-Frequency Test of the Correlator
4.2.1. The Sweep-Frequency Test of the Correlator with Input Power Variation
4.2.2. The Sweep-Frequency Test of the Correlator with Frequency Variation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yujiri, L.; Shoucri, M.; Moffa, P. Passive millimeter wave imaging. IEEE Microw. Mag. 2003, 4, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Appleby, R.; Anderton, R.N. Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 2007, 95, 1683–1690. [Google Scholar] [CrossRef]
- Nanzer, J.A. Introduction. In Microwave and Millimeter-Wave Remote Sensing for Security Applications, 2nd ed.; Artech House: Norwood, MA, USA, 2012; pp. 1–19. [Google Scholar]
- Vidyalakshmi, M.R.; Arunachalam, K. Design of an L-band radiometer front end for medical radiometry. In Proceedings of the International IEEE Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014; pp. 950–952. [Google Scholar]
- Holler, C.M.; Jones, M.E.; Taylor, A.C.; Harris, A.I.; Maas, S.A. A 2–20-GHz analog lag correlator for radio interferometry. IEEE Trans. Instrum. Meas. 2012, 61, 2253–2261. [Google Scholar] [CrossRef] [Green Version]
- Tiuri, M. Radio astronomy receivers. IEEE Trans. Antennas Propag. 1964, 12, 930–938. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, A.; Si, W.; Guo, X.; Miao, J. Calibration of visibility samples for real-time passive millimeter wave imaging. IEEE Access 2021, 9, 106441–106450. [Google Scholar] [CrossRef]
- Ryman, E.; Emrich, A.; Andersson, S.B.; Svensson, L.; Larsson-Edefors, P. 1.6 GHz Low-Power Cross-Correlator System Enabling Geostationary Earth Orbit Aperture Synthesis. IEEE J. Solid State Circuits 2014, 49, 2720–2729. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.; Khag, P.; Sun, S.; Lim, Y.; Chen, T.; Chen, C.-H.; Zhai, C.; Collins, N.; Pernillo, J.A.; Corell, J.M.; et al. A 1.5-GHz 6.144T Correlations/s 64 × 64 Cross-Correlator with 128 Integrated ADCs for Real-Time Synthetic Aperture Imaging. IEEE J. Solid State Circuits 2017, 52, 1450–1457. [Google Scholar] [CrossRef]
- Shenoy, V.; Jung, S.; Yoon, Y.; Park, Y.; Kim, H.; Chung, H.-J. A CMOS Analog Correlator-Based Painless Nonenzymatic Glucose Sensor Readout Circuit. IEEE Sens. J. 2014, 14, 1591–1599. [Google Scholar] [CrossRef]
- Koistinen, O.; Lahtinen, J.; Hallikainen, M.T. Comparison of analog continuum correlators for remote sensing and radio astronomy. IEEE Trans. Instrum. Meas. 2002, 51, 227–234. [Google Scholar] [CrossRef]
- Javed, A.R.; Scheytt, J.C.; Von der Ahe, U. Linear ultra-broadband NPN-only analog correlator at 33 Gbps in 130 nm SiGe BiCMOS technology. In Proceedings of the 2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Maastricht, The Netherlands, 8–10 October 2016; pp. 78–81. [Google Scholar]
- Miguelez, C.G.; Huyart, B.; Bergeault, E.; Jallet, L.P. A new automobile radar based on the six-port phase/frequency discriminator. IEEE Trans. Veh. Technol. 2000, 49, 1416–1423. [Google Scholar] [CrossRef]
- Toonen, R.C.; Haselby, C.C.; Blick, R.H. An Ultrawideband Cross-Correlation Radiometer for Mesoscopic Experiments. IEEE Trans. Instrum. Meas. 2008, 57, 2874–2879. [Google Scholar] [CrossRef]
- Ardakani, M.D.; Tatu, S.O. V-Band Six-Port Interferometer Receiver: High Data-Rate Wireless Applications, BER and EVM Analysis, and CFO Compensation. IEEE Access 2021, 9, 160847–160854. [Google Scholar] [CrossRef]
- Vinci, G.; Koelpin, A. Progress of Six-Port technology for industrial radar applications. In Proceedings of the 2016 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Austin, TX, USA, 24–27 January 2016; pp. 48–51. [Google Scholar]
- Holler, C.M.; Kaneko, T.; Jones, M.E.; Grainge, K.; Scott, P. A 6–12 GHz Analogue Lag-Correlator for Radio Interferometry. Astron. Astrophys. 2007, 14, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Chen, X.; He, W.; Altaf, A.; Hu, A.; Miao, J. A V-band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-wave Imaging. IEEE Access 2022, 10, 59933–59941. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.; Chen, X.; Xin, X.; Liang, B.; Li, Z.; Hu, A.; Miao, J. A 3.5–8 GHz Analog Complex Cross-Correlator for Interferometric Passive Millimeter-Wave Security Imaging Systems. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium, Toyama, Japan, 1–4 August 2018; pp. 692–699. [Google Scholar]
- Chen, C.; Mehdi, G.; Wang, C.; Dilshad, U.; Hu, A.; Miao, J. A GaAs Power Detector Design for C-Band Wideband Complex Cross Correlation Measurement. IEEE Trans. Instrum. Meas. 2020, 69, 5673–5683. [Google Scholar] [CrossRef]
- Wang, C.; Xin, X.; Kashif, M.; Miao, J. A Compact Analog Complex Cross-Correlator for Passive Millimeter-Wave Imager. IEEE Trans. Instrum. Meas. 2017, 66, 2997–3006. [Google Scholar] [CrossRef]
- Price, N.R.; Kronberg, P.P.; Iizuka, K.; Freundorfer, A.P. Linear electro-optic effect applied to a radio astronomy correlator. Radio Sci. 1996, 31, 451–458. [Google Scholar] [CrossRef]
- Carneiro, M.L.; Le Roy, M.; Pérennec, A.; Lababidi, R.; Ferrari, P.; Puyal, V. Compact Analog All-Pass Phase-Shifter in 65-nm CMOS for 24/28 GHz on-Chip- and in-Package Phased-Array Antenna. In Proceedings of the 2019 IEEE 23rd Workshop on Signal and Power Integrity (SPI), Chambéry, France, 18–21 June 2019; pp. 1–4. [Google Scholar]
- Saeed, M.; Hamed, A.; Negra, R. Compact, lumped-element six-port receiver with 25% bandwidth. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 1045–1048. [Google Scholar]
- Padin, S.; Cartwright, J.K.; Shepherd, M.C.; Yamasaki, J.K.; Holzapfel, W.L. A wideband analog correlator for microwave background observations. IEEE Trans. Instrum. Meas. 2001, 50, 1234–1240. [Google Scholar] [CrossRef]
- Alamri, S.M.; AlAmoudi, A. S-C bands broadband envelop detector design. In Proceedings of the 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), Riyadh, Saudi Arabia, 26–28 May 2011; pp. 1–6. [Google Scholar]
- Dvorak, R.; Urbanec, T. Microwave diode detector for the six port vector analyzer. In Proceedings of the 2009 19th International Conference Radioelektronika, Bratislava, Slovakia, 22–23 April 2009; pp. 337–339. [Google Scholar]
- Hoefle, M.; Schneider, K.; Penirschke, A.; Cojocari, O.; Jakoby, R. Characterization and impedance matching of new high sensitive planar Schottky detector diodes. In Proceedings of the 2011 German Microwave Conference, Darmstadt, Germany, 14–16 March 2011; pp. 1–4. [Google Scholar]
- Moyer, H.P.; Schulman, J.N.; Lynch, J.J.; Schaffner, J.H.; Sokolich, M.; Royter, Y.; Bowen, R.L.; McGuire, C.F.; Hu, M.; Schmitz, A. W-Band Sb-Diode Detector MMICs for Passive Millimeter Wave Imaging. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 686–688. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Sun, L. Design of 2–18GHz Zero-Bias Schottky Diode Detector. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China (ACES), Nanjing, China, 8–11 August 2019; pp. 1–2. [Google Scholar]
- Kashif, M.; Hu, A.; Miao, J. Design and implementation of an analog complex correlator for passive millimeter wave imaging system. In Proceedings of the 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 12–16 January 2016; pp. 611–616. [Google Scholar]
- Wang, C.; Xin, X.; Liang, B.; Li, Z.; Miao, J. Quadrature errors and DC offsets calibration of analog complex cross-correlator for interferometric passive millimeter-wave imaging applications. Sensors 2018, 18, 677. [Google Scholar] [CrossRef] [Green Version]
- Li, C.T.; Kubo, D.Y.; Wilson, W.; Lin, K.-Y.; Chen, M.-T.; Ho, P.T.P.; Chen, C.-C.; Han, C.-C.; Oshiro, P.; Martin-Cocher, P.; et al. AMiBA wideband analog correlator. Astrophys. J. 2010, 716, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Seong, J.-T.; Kim, S.-H.; Kim, Y.-H. Error analysis of an analog correlator for polarimetry. IEICE Electron. Express 2018, 15, 20171207. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Liu, K.; Hu, A.; Miao, J. Improved design of a passive millimeter-wave synthetic aperture interferometric imager for indoor applications. Proc. SPIE 2015, 9651, 965105. [Google Scholar]
Type | Type I | Type II |
---|---|---|
Frequency | 4–8 GHz | |
Input Power 1 | −30 dBm | |
Correlation Circle Radius 2 | 26 mV | 21 mV |
Quadrature Amplitude Error | dB | dB |
Max Phase Detection Error | <1.2° | <1.4° |
Correlation Efficiency | >99.6% | >99.3% |
Size | 49 × 36 mm | 39 × 36 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Hu, A.; Chen, X.; Gong, J.; Miao, J. A Compact Broadband Analog Complex Correlator with High Correlation Efficiency for Passive Millimeter-Wave Imaging System. Electronics 2022, 11, 2165. https://doi.org/10.3390/electronics11142165
He W, Hu A, Chen X, Gong J, Miao J. A Compact Broadband Analog Complex Correlator with High Correlation Efficiency for Passive Millimeter-Wave Imaging System. Electronics. 2022; 11(14):2165. https://doi.org/10.3390/electronics11142165
Chicago/Turabian StyleHe, Wangdong, Anyong Hu, Xi Chen, Jianhao Gong, and Jungang Miao. 2022. "A Compact Broadband Analog Complex Correlator with High Correlation Efficiency for Passive Millimeter-Wave Imaging System" Electronics 11, no. 14: 2165. https://doi.org/10.3390/electronics11142165
APA StyleHe, W., Hu, A., Chen, X., Gong, J., & Miao, J. (2022). A Compact Broadband Analog Complex Correlator with High Correlation Efficiency for Passive Millimeter-Wave Imaging System. Electronics, 11(14), 2165. https://doi.org/10.3390/electronics11142165