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Abstract: The massive multiple-input multiple-output systems (M-MIMO) and orthogonal frequency-
division multiplexing (OFDM) are considered to be some of the most promising key techniques
in the emerging 5G and advanced wireless communication systems nowadays. Not only are the
benefits of applying M-MIMO and OFDM for broadband communication well known, but using them
for the application of the Internet of Things (IoT) requires a large amount of wireless transmission,
which is a developing topic. However, its high complexity becomes a problem when there are
numerous antennas. In this paper, we provide an effective two-stage multiuser detector (MUD)
with the assistance of the accelerated over-relaxation (AOR) iterative algorithm and Chebyshev
acceleration for the uplink of M-MIMO OFDM systems to achieve a better balance between bit error
rate (BER) performance and computational complexity. The first stage of the receiver consists of an
accelerated over-relaxation (AOR)-based estimator and is intended to yield a rough initial estimate of
the relaxation factor ω, the acceleration parameter γ, and transmitted symbols. In the second stage, the
Chebyshev acceleration method is used for detection, and a more precise signal is produced through
efficient iterative estimation. Additionally, we call this proposed scheme Chebyshev-accelerated
over-relaxation (CAOR) detection. Conducted simulations show that the developed receiver, with
a modest computational load, can provide superior performance compared with previous works,
especially in the MU M-MIMO uplink environments.

Keywords: multiuser massive MIMO (MU M-MIMO); Internet of Things (IoT); 5G (fifth generation);
orthogonal frequency-division multiplexing (OFDM); accelerated over-relaxation; Chebyshev acceler-
ation; Chebyshev-accelerated over-relaxation (CAOR) detection

1. Introduction

Nowadays, the Internet of Things (IoT) of 5G [1–3] is one of the crucial applications
of wireless communication systems [4–6]. Namely, wireless transmission services have
become an extremely important method of Internet of Things (IoT) information delivery.
The applications of the Internet of Things (IoT) include smart homes, healthcare, traffic
auxiliary management, industrial automation, and crisis response for natural and artificial
disaster prevention. To meet various types of applications of the Internet of Things (IoT),
wireless transmission of large amounts of results to data collection centers is an essential
need, i.e., 5G technology will be forced to bear massive amounts of data while being more
time saving than 4G. Furthermore, the multiple-input multiple-output (MIMO) and the
orthogonal frequency-division multiplexing (OFDM) are indispensable technologies of
wireless communication systems currently [7,8]. The former, with multiple antennas at
the transmitters and receivers, which can significantly increase the data throughput of the
system and transmission distance without increasing the total transmit power expenditure
or bandwidth demand, also can efficiently obtain diversity gain, array gain, capacity
gain, and beamforming gain [9–11]; the latter is a favored modulation and transmission
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scheme that cuts a high-data-rate stream into some lower-rate streams simultaneously
transmitted over some narrow-band channels parallelly, which has a lot of advantages, such
as robustness against narrow-band co-channel interference, inter-symbol interference (ISI)
caused by multipath propagation, and low sensitivity to time synchronization errors [12,13].
To further promote the merits of the MIMO systems and meet higher spectrum efficiency,
the pioneer researchers proposed the massive MIMO (M-MIMO) structure [14–17], which
utilizes spatial diversity to support more users by mounting a large number of antennas in
the base station (BS) [18–20].

It is a pity that, although the M-MIMO systems have brought many benefits, com-
plexity is also appreciably increased. Especially as far as the receiver is concerned, con-
ventional linear detection methods such as zero-forcing (ZF) and minimum mean-square
error (MMSE) are adopted [21,22], even if they show good bit error rate (BER) performance;
however, as mentioned by Yin et al. [23], since they involve matrix inversion operations of
O(N3) complexity, the detection complexity is too high to implement when N is increasing,
where N is the antenna number.

Therefore, many iterative methods aim to eschew matrix inversion and not calcu-
late it. In addition, a comparative study of low-complexity linear detectors of M-MIMO
is addressed in [24] to discuss the pros and cons of iterative matrix inversion methods.
To maintain good performance and low complexity, low-complexity signal detection for the
uplink of massive MIMO systems is proposed, such as the Jacobi method [25], Gauss–Seidel
method [26], and successive over-relaxation (SOR) method [27] proposed by Kong et al.,
Wu et al., and Gao et al., respectively, which have lower complexity as O(N2) through the
iterative procedure to avoid the notorious inverse matrix operation. However, the perfor-
mance is not sufficient to satisfy us. In light of this, Yu et al. [28] considered a modified SOR
method to reduce the complexity, but it is strongly confined to lower modulation orders;
namely, its performance degrades substantially when the high modulation order becomes
more required. In [29], Ning et al. proposed the symmetric successive over-relaxation
(SSOR) method, which combines two SOR sweeps in such a way that the resulting iteration
matrix is similar to a symmetric matrix and its performance is better than the previous
SOR-based method; nevertheless, its complexity will increase drastically compared to the
SOR-based method. Compared to the SOR-based method [27], Zhang et al. proposed the
AOR method in [30], which is an extension of the SOR by using two parameters to speed
up convergence, though the complexity of AOR is slightly higher than SOR; however, its
performance can be significantly improved. To obtain a reasonable computational load,
the Chebyshev acceleration uses the extension of the extrapolation acceleration method to
accelerate convergence and reduce complexity [31].

In light of the above, to achieve a good trade-off between BER performance and
complexity load, we propose a two-stage receiver for the MU M-MIMO systems, called
Chebyshev-accelerated over-relaxation (CAOR) detection. The first stage of the receiver
consists of setting each parameter of the AOR method [30] and using its algorithm to
produce the rough initial estimate outputs, and then submitting those initial estimates of
symbol detection and the AOR parameters to the second stage. In the second stage, the
Chebyshev acceleration is conducted successively using the recursive relationship of the
Chebyshev polynomials. It is noteworthy that, to render the estimated parameters more
thoroughly, unlike the conventional iterative algorithm, this method provides Chebyshev
algorithm calculation through AOR’s initial estimated output and parameters to produce
more precise and fast signal detection. Conducted simulations show that the proposed
two-stage detection scheme, with a modest computational load, can provide superior
performance compared with most iterative detection methods, especially in uplink MU
M-MIMO scenarios.

The rest of this paper is organized as follows. Section 2 introduces the system model
employed in this paper. A review of some conventional iterative schemes and a new
two-stage receiver based on the AOR iterative algorithm and Chebyshev acceleration are
addressed in Section 3. Simulation results and computational complexity analysis are
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provided in Section 4 to verify the proposed approach. Section 5 provides the concluding
remarks to summarize the paper.

2. System Model
2.1. Uplink Multiuser MIMO OFDMA Systems

We consider the uplink multiuser MIMO orthogonal frequency-division multiple
access (OFDMA) systems [32,33] with KNt user antennas, and NR antennas at the BS, where
K is the user number, each user is equipped with Nt transmit antennas, and NR � KNt.
Then, we use NT to represent the total number of user antennas. The transmitted signal and
the received signal can be expressed as s = [s1, s2, · · · , sNT ]

T and y = [y1, y2, · · · , yNR ]
T ,

respectively. In addition, we use bold and capitals to denote vector and matrix, respectively.
Hence, the system model can be represented by the following Equation (1):

y = Hs + n, (1)

where H is the NR×NT complex channel matrix and n is the NR× 1 noise vector. Moreover,
it can be expressed as y1

...
yNR

 =

 h11 · · · h1NT
...

. . .
...

hNR1 · · · hNR NT


 s1

...
sNT

+

 n1
...

nNR

. (2)

2.2. Channel Model

We assume that H ∈ CNR×NT denotes the flat Rayleigh fading channel matrix with
two-channel taps that are independent and identically distributed (i.i.d.) and obey Gaussian
distribution with unit variance and zero mean, and the elements in noise vector n are i.i.d.
and have complex Gaussian distribution CN

(
0, σ2).

At the BS, the task of the detector is to estimate the transmitted signal vector s from
the received signal vector y. According to [20], the conventional linear MMSE detection
algorithm has been proven, which is near-optimal for uplink MIMO systems. In addition,
the estimate of the transmitted signal vector s can be expressed as

s = (HH H + σ2 INT )
−1

HHy = W−1yMF, (3)

where σ2 denotes the variance of the noise vector, W is the filtering matrix of conventional
MMSE, and yMF is the output of the matched filter. Within Equation (3), we can observe
that the matrix inversion operation is contained in the conventional MMSE detection.
Therefore, the computational complexity of conventional MMSE is too high to realize in
the MU-MIMO systems, not to mention the massive antennas.

To estimate the flat Rayleigh fading matrix at the BS, we used a comb-type pilot
structure [34], with pilot tones at periodically located subcarriers. Then, we used the least
square (LS) channel estimation method [35] to find the channel estimate ĤLS by pilot tones.
The result of LS channel estimation is given by [7]

ĤLS = (XHX)
−1

XHY = X−1Y, (4)

where X and Y denote the transmitted signal’s pilot tones and the received signal’s pilot
tones at the subcarriers, respectively.

3. Proposed Scheme

To explain our proposed method more clearly, first, we will briefly describe the
conventional SOR method [27], AOR method [30], and Chebyshev acceleration method [31],
sequentially, and then propose a two-stage CAOR scheme to balance the performance and
complexity trade-off by performing fewer iterations to further accelerate convergence.
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3.1. Iteration Method Review
3.1.1. Conventional SOR Method

We consider a linear system [36] whose mathematical equation can be expressed as

Ax = b, (5)

where the matrix A is symmetric positive-definite, x is the unknown vector and we can
decompose A as follows:

A = D− L−U, (6)

in which D, −L, and −U are the diagonal, strict lower part, and strict upper part of A. As
for the iterative equation, the Jacobi iteration [25] is given by

x(k+1) = D−1(L + U)x(k) + D-1b, (7)

Likewise, the Gauss–Seidel iteration [26] also can be expressed as

x(k+1) = (D− L)−1Ux(k) + (D− L)-1b. (8)

Here, we can define a matrix G as
G = M−1N. (9)

Therefore, for the Jacobi iteration, M = D and N = (L + U). Moreover, for the Gauss–
Seidel iteration, M = (D− L) and N = U. Then, Equations (7) and (8) can be rewritten
as

x(k+1) = Gx(k) + d, (10)

where G is called the iteration matrix and d is M−1b. Based on this result, we multiply the
relaxation factor ω in Equation (10), and we have

ωx(k+1) = ω(Gx(k) + d), (11)

which gives the SOR iteration [27]. Take the Gauss–Seidel iteration as an example, which is
defined as

x(k+1) = (D−ωL)−1
{
[(1−ω)D + ωU]x(k) + ωb

}
. (12)

According to [27], we can determine that the SOR iterative algorithm is convergent.

3.1.2. AOR Method

The accelerated over-relaxation (AOR) iterative algorithm [37] can be regarded as
an extension of the successive over-relaxation (SOR) iterative algorithm, and its iterative
equation is as follows:

x(k+1) = (D− γL)−1[(1−ω)D + ωU + (ω− γ)L]x(k)

+ ω(D− γL)−1b, (13)

where ω and γ are the relaxation parameter and the acceleration parameter, respectively.
Furthermore, for specific values of ω and γ, when ω = γ or ω = γ = 1, the AOR iterative
algorithm can reduce to the SOR or the Gauss–Seidel iterative algorithm, respectively.

According to Lemma 1 in [27], in uplink large-scale MIMO, the conventional MMSE
filtering matrix W is a symmetric positive definite matrix, and it can be decomposed as

W = D + L + LH . (14)
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where D, L, and LH are the diagonal, strict lower part, and strict upper part of W. Therefore,
we can use the AOR iterative algorithm to rewrite the conventional MMSE algorithm
as follows:

x(k+1) = (D + γL)−1[(1−ω)D−ωLH − (ω− γ)L]x(k)

+ ω(D + γL)−1yMF, (15)

and the relaxation parameter ω and the acceleration parameter γ of the AOR iterative
method are given by [37] as follows:

ω =
1√

1− µ2
, (16)

γ =
2

1 +
√

1− µ2
, (17)

where µ = ρ(Gγ,ω)|γ=0,ω=1; we will also define ρ(Gγ,ω) in later sections.

AOR Convergence Analysis

We know that in any iterative algorithm in the form of Equation (10), when k reaches
infinity, x(k+1) will be equal to x(k). Noting Equation (15), we can use Equation (10) to define
Gγ,ω = (D + γL)−1[(1−ω)D−ωLH − (ω− γ)L] and d = ω(D + γL)−1yMF; afterward,
Equation (15) can be rewritten as

x(k+1) = Gγ,ωx(k) + d, (18)

and the spectral radius of Gγ,ω is defined as the non-negative number as follows:

ρ(Gγ,ω) , max
λ∈ρ(Gγ,ω)

|λ|, (19)

in which λ is the eigenvalue of Gγ,ω. Moreover, if the spectral radius ρ(Gγ,ω) satisfies

ρ(Gγ,ω) = max
1<n<NT

|λn| < 1, (20)

Therefore, Equation (15) will converge [31]. According to the theorem of eigenvalues, we
can obtain

Gγ,ωx = (D + γL)−1[(1−ω)D−ωLH − (ω− γ)L]x = λnx, (21)

where x is an arbitrary NT × 1 non-zero real-valued vector and Equation (21) also can be
rewritten as

[(1−ω)D−ωLH − (ω− γ)L]x = (D + γL)λnx. (22)

Multiplying both sides of Equation (22) by the conjugate transpose of x, we can obtain

xH [(1−ω)D−ωLH − (ω− γ)L]x = xH(D + γL)λnx. (23)

Next, we take the conjugate transpose on both sides of Equation (23), in which D is a
diagonal matrix, so D = DH , and then we can obtain an updated equation as

xH [(1−ω)D−ωL− (ω− γ)LH ]x = xH(D + γLH)λnx. (24)

Then, adding Equations (23) and (24) will obtain

xH [(2− 2ω)D−ω(L + LH)− (ω− γ)(L + LH)]x

= xHλn[2D + γ(L + LH)]x. (25)
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Substituting Equation (14) into Equation (25), we can obtain

(λn − 1)(γ− 2)xH Dx = [λnγ + (2ω− γ)]xHWx, (26)

Since the filter matrix W of conventional MMSE is positive definite, as demonstrated
in [27], D is also positive definite, i.e., the diagonal matrix of W. Thus, we have xH Dx > 0
and xHWx > 0. Moreover, if both (γ− 2) and (λn − 1) are less than zero, i.e., 0 < γ < 2
and λn < 1, then

(λn − 1)(γ− 2) > 0, (27)

and λnγ + (2ω− γ) > 0. Therefore, we can determine that (λn − 1)[λnγ + (2ω− γ)] < 0,
that means

λn[(λn − 2)γ + 2ω] < 2ω− γ. (28)

We know that when ω = γ, we can obtain

|λn| < 1. (29)

Paying attention to Equation (29), if we give appropriate values of ω and γ, it can be
guaranteed to comply with ρ(Gγ,ω) < 1. Thus, the AOR iterative algorithm is convergent.

3.1.3. Chebyshev Acceleration

Chebyshev acceleration [31] can be regarded as the promotion of extrapolation acceler-
ation. Consider x(0), x(1), ..., x(k), if εk = x(k) − x∗ is defined as the error of the kth iteration
solution, in which x∗ is a target signal and x(k) is kth-time iteration output; then, εk can be
expressed as

εk = Gεk−1 = G2εk−2 = · · · = Gkε0, (30)

where G is the iteration matrix and Gk is kth-time iteration matrix. Assume that x̃(k) is the
linear combination of x(0), x(1), ..., x(k) as follows

x̃(k) = α0x(0) + α1x(1) + · · ·+ αkx(k), (31)

where αk is undetermined coefficients, and it satisfies ∑k
i=0 αi = 1. Therefore, x̃(k) − x∗ can

be defined as
x̃(k) − x∗ = α0ε0 + α1Gε0 + · · ·+ αkGkε0 , pk(G)ε0, (32)

in which pk(G) = ∑k
i=0 αiGi is a k-degree polynomial, and it satisfies pk(I) = I. We look

forward to choosing the appropriate coefficients αi to let x̃(k) − x∗ be as small as possible
and increase the convergence rate. Obviously, this is an optimization problem. According
to the definition in Equation (32), we can obtain∥∥∥x̃(k) − x∗

∥∥∥
2
= ‖pk(G)ε0‖2 ≤ ‖pk(G)‖2 · ‖ε0‖2, (33)

then, we need to solve the minimization problem below

min
pk∈Pk ,pk(I)=I

‖pk(G)‖2, (34)

in which Pk is the set of all polynomials, where the capital P stands for polynomials and
the lowercase k stands for the maximum degree. To solve the above problem, in particular,
we assume that the iteration matrix G is a symmetric matrix, which means that G has the
spectral decomposition as follows:

G = QΛQT , (35)
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where Λ is a diagonal matrix and Q is an orthogonal matrix; therefore,

min
pk∈Pk ,pk(I)=I

‖pk(G)‖2 = min
pk∈Pk ,pk(I)=I

‖pk(Λ)‖2

= min
pk∈Pk ,pk(I)=I

max
1≤i≤n

{|pk(λi)|}

= min
pk∈Pk ,pk(I)=I

max
λ∈[λn ,λ1]

{|pk(λ)|},

(36)

where λn and λ1 are the maximum and the minimum eigenvalue, respectively. Next, we
consider the iteration equation, Equation (10), in which the eigenvalues of the iteration
matrix G are all real numbers, the iterative matrix spectral radius ρ = ρ(G) < 1 and
λ ∈ [−ρ, ρ] ⊂ (−1, 1). Thus, Equation (36) can be converted into

min
pk∈Pk ,pk(I)=I

max
λ∈[−ρ,ρ]

{|pk(λ)|}. (37)

According to the above result, we can follow the Chebyshev polynomials’ properties [31]
to solve Equation (37) as follows:

pk(t) =
Tk(t/ρ)

Tk(1/ρ)
, (38)

where Tk(t) is the k-degree Chebyshev polynomials. In fact, we can use the recurrence
relation of the Chebyshev polynomials as follows:

Tk(t) = 2tTk−1(t)− Tk−2(t), k = 2, 3, ..., (39)

in addition, let µk =
1

Tk(1/ρ)
or (Tk(1/ρ) = 1

µk
), and we can obtain a new recurrence relation

equation as
1
µk

=
2
ρ
· 1

µk−1
− 1

µk−2
. (40)

Substituting Equation (40) into Equation (32), we can obtain

x̃(k) =
2µk

µ(k−1)
· G

ρ
x̃(k−1) − µk

µ(k−2)
x̃(k−2) +

2µk
µ(k−1)ρ

d. (41)

3.2. Proposed CAOR Method

In light of the previous subsections, to improve the BER performance and alleviate
the significant complexity, we joined the AOR iterative algorithm and the recursive char-
acteristics of the Chebyshev polynomials to construct a two-stage receiver, as depicted in
Figure 1, in which the second block has more apparently depicted the Chebyshev recursive
procedure. It can speed up convergence with fewer iterations and produce better estimation
results. Additionally, we call this proposed scheme Chebyshev-accelerated over-relaxation
(CAOR) detection.

The first stage of the receiver is an initial phase, which consists of an accelerated
over-relaxation (AOR)-based estimator and is intended to yield a rough initial estimate
of the relaxation factor ω, the acceleration parameter γ, the spectral radius of Gγ,ω, and
transmitted symbols. The second stage is a refined phase, the Chebyshev acceleration
method is used for detection, and a more precise signal is produced through efficient
iterative estimation. The procedure of the CAOR detection is shown in Algorithm 1.
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Figure 1. The block diagram of the proposed two-stage detection scheme.

Algorithm 1 Chebyshev-Accelerated Over-Relaxation

Receiver signal input :

1. WMMSE = HH H + σ2 INT , A, and A = D + L + LH

2. yMF = HHy , b
The first stage : (Initialize phase)

1. Gγ,ω = (D + γL)−1[(1−ω)D− (ω− γ)L−ωLH ]

2. d = ω(D + γL)−1b
3. set ρ = ρ(G0,1), ρ(Gγ,ω) is the spectral radius of Gγ,ω

4. set µ0 = 1, µ1 = ρ, x̃(0) = x(0) = 1 and k = 1

Compute ω = 1√
1−µ2

1
, γ = 2

1+
√

1−µ2
1

Compute x(1) = Gγ,ωx(0) + d , x̃(1)

The second stage : (Refined phase)
While not converge do
1. k = k + 1

2. µk = ( 2
ρ ·

1
µk−1
− 1

µk−2
)
−1

3. x̃(k) = 2µk
µ(k−1)

· Gγ,ω
ρ x̃(k−1) − µk

µ(k−2)
x̃(k−2) + 2µk

µ(k−1)ρ
d

end
set x̃ = x̃(k)

Receiver signal output : The estimate of the transmitted signal vector x̃

4. Simulation Results and Complexity Analysis
4.1. Simulation Results and Discussion

Some numerical simulations are conducted to evaluate the performance of the pro-
posed two-stage receiver. Consider an NR × NT uplink MU M-MIMO OFDMA systems
as depicted in Section 2, where NR and NT are the numbers of the antennas at the base
station side and total user side, respectively. As in Table 1, simulation scenarios are 1024-
quadrature amplitude modulation (QAM) and the number of subcarriers as 256, 100 OFDM
symbols, cyclic prefix (CP) length is 64, each symbol has pilots as 20. In addition, assume
that the channels are two-ray flat Rayleigh fading with additive white Gaussian noise
(AWGN) and channel state information (CSI) is available at the receiver by LS estimation.
Five receivers, including the SOR [27], the modified SOR [28], the SSOR [29], the AOR [30],
and the proposed two-stage receiver, are conducted for comparison in terms of the bit error
rate (BER) performance. Moreover, to accentuate the novelty of our proposed scheme, we
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briefly describe the characteristics of previously published work and our proposed scheme
in Table 2.

Table 1. Simulation scenarios.

System Parameter

Number of data subcarriers 256
Number of OFDM symbols 100

Modulation scheme 1024-QAM
CP Length 64

Number of pilot data in one OFDM symbol 20
The maximum SNR 60

Channel Rayleigh fading channel
Number of channel taps 2

Noise AWGN
Channel estimation LS
Monte Carlo (times) 10,000

Table 2. A brief comparison of our proposed scheme and previously published work.

Scheme Brief Description

SOR [27] SOR is a method of solving a linear system of equations derived
by extrapolating the Gauss–Seidel method.

modified SOR [28] Modified SOR is a variant of SOR, which changes certain parame-
ters in the SOR algorithm and is nearly unaffected by the relaxation
factor ω in lower modulation order.

SSOR [29] SSOR combines two SOR sweeps in such a way that the resulting
iteration matrix is similar to a symmetric matrix.

AOR [30] The AOR iterative algorithm can be regarded as an extension of the
SOR iterative algorithm, which is a two-parameter generalization
of the SOR method.

CAOR The CAOR method combines the AOR iterative algorithm and the
recursive characteristics of the Chebyshev polynomials.

First, we use Equations (16) and (17) to gain the appropriate relaxation parameter ω
and the acceleration parameter γ, respectively, within the first stage. Apart from this, we
show the BER performance of the proposed CAOR scheme against γ and ω for different
relaxation parameter ω values and acceleration parameter γ values in Figures 2 and 3,
respectively, when the number of iterations i is 4, NR × NT = 64× 16 and the SNR level
is set to 40 dB. We can observe that if ω approaches 1.1 or so, the BER performance will
improve; otherwise, BER performance will decrease. Thus, we believe that the choice of ω
close to 1.1 and γ close to 1.0 will yield the best parameter estimate. Simultaneously, the
inferences from Figures 2 and 3 are consistent with the calculated values of Equations (16)
and (17), respectively.
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Figure 2. BER performance of CAOR method against γ with SNR = 40 dB, NR × NT = 64× 16, and
number of iterations i = 4.

Figure 3. BER performance of CAOR method against ω with SNR = 40 dB, NR × NT = 64× 16, and
number of iterations i = 4.

Figures 4–6 depict the BER performance comparison with five different detection
schemes, and NR is 64, 128, and 256, respectively. In Figure 4, we can roughly observe that
the CAOR method is closest to the performance of conventional MMSE when the iteration
number is equal to five. Moreover, when SNR = 45 dB, the BER performance of CAOR and
AOR is approximately 0.6× 10−3 and 0.8× 10−3, respectively. In other words, compared
to AOR, CAOR can improve BER performance by 25%.

When increasing NR to 128 and the number of iterations i is 3, shown in Figure 5, we
continued to observe that the BER performance of the proposed method almost overlaps
with the conventional MMSE scheme, only requiring three iterations. Moreover, Figure 6
shows that when NR increases to 256 and is iterated twice only, we can note that the
proposed method has the best BER performance in comparison with other detectors.
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Figure 4. BER performance comparison for different detection schemes, NR × NT = 64× 16.

Figure 5. BER performance comparison for different detection schemes, NR × NT = 128× 16.

Figure 6. BER performance comparison for different detection schemes, NR × NT = 256× 16.
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We turn now to the ratio (β) analysis, which is the ratio between the number of base
station antennas (NR) and the total number of user antennas (NT) [24]. As shown in Figure 7,
the BER performance changes in terms of the β of each detection scheme. Alongside this,
when β equals 16 and SNR is 40 dB, the BER performance of SSOR and CAOR is equal
to 1.75× 10−4 and 9.27× 10−5, respectively. Taking it for granted, relative to the higher β
value, the BER performance of all detectors is improved due to the spatial diversity gain
of a large number of antennas without exception. Moreover, we know that, regardless of
the β value, for the BER performance, SSOR is satisfactory, as is AOR, but our proposed
scheme CAOR surpasses them all.

It is worth mentioning that when the number of antennas continues to increase, the
number of iterations required is relatively reduced; simultaneously, the BER performance
of our proposed method improves more definitely. On the whole, this is a good result for a
5G system with massive antennas.

Figure 7. BER vs. β for different detection schemes when i = 2 and SNR is 40 dB.

Moreover, in Table 3, we compare the degree of the BER performance approaching
conventional MMSE among all detectors in terms of dB value (i.e., to obtain a more
demarcated numerical comparison, we have taken 10log(·) for the BER distance between
the individual detector and conventional MMSE) under different β, where the CAOR
method has the smallest distance with conventional MMSE. Apart from this, when β is 16,
the BER distance approach of CAOR to conventional MMSE is a negative dB value, which
means that the BER distance between CAOR and conventional MMSE was drastically
reduced and approached the optimal result. Of course, the smaller the dB value, the better
and the closer to the optimum.

Table 3. Comparison of the degree to which the BER performance approaches that of conventional
MMSE among all detectors in terms of dB value under different β as i = 2 and SNR at 40 dB.

Scheme β = 4 β = 8 β = 16

SOR 9.43 dB 15.19 dB 24.52dB
modified SOR 9.91 dB 15.60 dB 24.82 dB

SSOR 7.34 dB 7.89 dB 3.93 dB
AOR 9.13 dB 14.86 dB 24.30 dB

CAOR 4.58 dB 3.74 dB −0.738 dB
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To understand the convergence of various detectors under different numbers of an-
tennas, Figures 8–10 show the relationship between the number of iterations and the BER
performance. The following samples are taken from them for observation and discussion.

In Figure 8, with five iterations, the BER performance of CAOR has a 95.52% improve-
ment in BER compared with the conventional AOR. Similarly, when increasing NR to 128,
with SNR at 45 dB, and the number of iteration equals 4, which is depicted in Figure 9,
the BER performance of CAOR has a 47.77% improvement in BER compared with the
conventional AOR. Additionally, Figure 10 shows the BER performance of CAOR under
NR × NT = 256× 16, SNR at 40 dB, and with two iterations, which has a 99.3% improve-
ment in BER compared with the conventional AOR. As discussed above, besides the noise
immunity of the massive-MIMO system being commendable, our proposed CAOR scheme
has the fastest decline rate of BER and the additional merit of accelerating convergence.

Figure 8. BER performance vs. number of iterations with NR × NT = 64× 16 and SNR = 50 dB.

Figure 9. BER performance vs. number of iterations with NR × NT = 128× 16 and SNR = 45 dB.
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Figure 10. BER performance vs. number of iterations with NR × NT = 256× 16 and SNR = 40 dB.

Next, in Table 4, we also compare the degree to which the BER performance ap-
proaches conventional MMSE among all detectors in terms of the dB value under different
iteration numbers when NR × NT = 128× 16 and SNR is 45 dB. Similarly to Table 3, to
obtain a more demarcated numerical comparison, we have also taken 10log(·) for the BER
distance between the individual detector and conventional MMSE. Moreover, this table
demonstrates that our proposed CAOR scheme has the smallest dB value, which means that
the CAOR’s BER performance is the closest to the conventional MMSE scheme regardless
of the iteration number. Furthermore, we show the performance improvement of various
receivers with the increase in antennas in Table 5, which refers to Figure 7 at the same time.

Table 4. Comparison of the degree to which the BER performance approaches that of conventional
MMSE among all detectors in terms of dB value under different iteration numbers when NR × NT =

128× 16 and SNR is 45 dB.

Scheme i = 2 i = 3 i = 4

SOR 44.35 dB 28.40 dB 3.31 dB
modified SOR 44.80 dB 30.62 dB 7.14 dB

SSOR 34.63 dB 10.05 dB −7.90 dB
AOR 43.98 dB 25.91 dB −0.21 dB

CAOR 28.94 dB 0.61 dB −16.88 dB

Table 5. BER improvement rate of different detection schemes when i = 2 and SNR = 40 dB for
NR = 128 and NR = 256. (Compared with NR = 64).

Scheme NR = 128 NR = 256

SOR 59.64% 91.08%
modified SOR 59.97% 91.36%

SSOR 87.08% 99.83%
AOR 60.12% 90.98%

CAOR 89.92% 99.85%

4.2. Computational Complexity Analysis

In this subsection, we evaluate the proposed detectors in terms of the computational
complexity based on the number of complex multiplications required compared with other
representative counterparts [27–30]. As in Table 6, we give the computational complexity
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of different detection schemes, in which i and NT denote the number of iterations and
the total number of user antennas, respectively. In addition, the inverse matrix of each
iteration method requires 2N2

T − NT complex multiplications and additions (CMAs) [28].
We consider the CAOR iterative equation as follows:

x̃(k) = M−1 · 2µk
µ(k−1)ρ

· (Nx̃(k−1) + ωb)− µk
µ(k−2)

x̃(k−2), (42)

in which M−1 = (D + γL)−1 and N = (1− ω)D − (ω − γ)L− ωLH require 2N2
T − NT

CMAs and N2
T CMAs, respectively. Additionally, ωb requires NT CMAs; as discussed

above, we can obtain 3N2
T CMAs, which is part of the CAOR’s computational complexity,

as shown in Table 6. For the iteration part of CAOR, M−1 · 2µk
µ(k−1)ρ

· (Nx̃(k−1) + ωb) and

− µk
µ(k−2)

x̃(k−2) require i(3N2
T + NT) CMAs and 2iNT CMAs, respectively. Thus, the iteration

part of the CAOR’s computational complexity requires 3i(N2
T + NT) CMAs altogether.

Further, the numerical comparison of the complexity is shown in Table 7.

Table 6. Computational complexity of different detection schemes.

Detection Scheme Complex Multiplications and Additions (CMAs)

SOR 1
2 (5N2

T + NT) + i(2N2
T + NT)

modified SOR 1
2 (5N2

T − 3NT) + i(2N2
T + NT)

SSOR 5N2
T − NT + 2i(2N2

T + NT)
AOR 3N2

T + 3iN2
T

CAOR 3N2
T + 3i(N2

T + NT)

Table 7. The numerical comparison of the complexity for different detection schemes with NT = 16.

Detection CMAs CMAs CMAs CMAs
Scheme i = 2 i = 3 i = 4 i = 5

SOR 1704 2232 2760 3288
modified SOR 1672 2200 2728 3256

SSOR 3376 4432 5488 6544
AOR 2304 3072 3840 4608

CAOR 2400 3216 4032 4848

Regarding the complexity and performance factors, as shown in Figure 5, even though
the BER performance of SSOR [29] is approximately 2.5× 10−3, which is also close to the
conventional MMSE scheme, its complexity is approximately 37.8% higher than the CAOR
method, which can be verified by the equation within Table 6. Meanwhile, we also know
that the computational complexity of SSOR is the highest among all detectors, which is
shown in Table 7.

For a more detailed discussion, we first consider four iterations in Figure 8; the
CAOR method has improvements of 93% in BER compared with the conventional AOR.
Meanwhile, the complexity only increases by 192 CMAs (increases by 5%). On the other
hand, the CAOR method with i = 4 only requires 4032 CMAs, which can achieve similar
performance to the conventional AOR with i = 5 requiring 4608 CMAs. Alongside this,
when NR × NT = 64× 16 and the iteration number is four, SSOR’s complexity and BER
performance both are worse than AOR, not to mention compared with the CAOR method.
The more complete numerical computational complexity in terms of iteration number for
different detectors is shown in Table 7.

Secondly, to further observe the effect on BER and complexity when the number
of antennas is increased, according to Figures 6 and 10, as NR increases, the number of
iterations required apparently gradually decreases. Furthermore, the BER performance and
the computational complexity of CAOR decrease more than other detection methods.
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Clearly, as shown in Figure 10, the BER performance of the proposed scheme only
requires two iterations due to the sufficient number of antennas, which can achieve better
BER performance than SOR, modified SOR, SSOR, and AOR. Meanwhile, as shown in
Table 7, the complexity of CAOR at i = 2 and AOR at i = 3; they require 2400 CMAs and 3072
CMAs, respectively. The BER performance of CAOR and AOR is equal to 9.26× 10−5 and
8.24× 10−5, respectively; they are very close to each other. In light of the above discussion,
we can conclude that as the number of antennas increases, the number of iterations will
decrease gradually, and thus it is conducive to reducing the CMAs.

Therefore, as a whole, the computational complexity of CAOR is actually lower than
that of conventional AOR. To show the computational complexity of different detection
schemes more clearly, we utilize a bar graph to depict them in Figure 11.

Figure 11. Computational complexity of different detection schemes with NT = 16.

5. Conclusions

In this paper, a novel two-stage receiver combining Chebyshev acceleration and the
AOR algorithm (CAOR) is proposed to improve the convergence rate and achieve remark-
able BER performance in a small number of iterations. Numerical results demonstrate the
performance comparison with the different detection methods, in which the performance
of CAOR is the best among all other detection methods. Although this method raises
the computational load slightly more than AOR, fortunately, this is acceptable since the
hardware’s computation ability is growing nowadays. Moreover, it can achieve a similar
performance as SSOR and AOR with fewer iterations. Hence, the computational complexity
of the proposed method is actually lower than expected. To sum up, regarding the BER
performance and complexity, our proposed scheme is beyond comparison.

In summary, the M-MIMO has the ability to promote BER performance significantly
in the 5G OFDMA systems, and our proposed method can achieve an appropriate accel-
eration parameter γ and relaxation parameter ω and has the best BER under moderate
computational complexity, so it is very suitable to apply to the current and next-generation
wireless systems.
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Abbreviations

The following abbreviations are used in this manuscript:
AOR Accelerated over-relaxation
AWGN Additive white Gaussian noise
BER Bit error rate
BS Base station
CAOR Chebyshev-accelerated over-relaxation
CMAs Complex multiplications and additions
CP Cyclic prefix
CSI Channel state information
i.i.d. Independent and identically distributed
IoT Internet of Things
ISI Inter-symbol interference
LS Least square
M-MIMO Massive multiple-input multiple-output
MIMO Multiple-input multiple-output
MMSE Minimum mean-squared error
MU Multiuser
MUD Multiuser detector
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiple access
QAM Quadrature amplitude modulation
SOR Successive over-relaxation
SSOR Symmetric successive over-relaxation
ZF Zero-forcing
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