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Abstract: The Destiny-class CyberCANOE (Destiny) is a Hybrid Reality environment that provides
20/20 visual acuity in a 13-foot-wide, 320-degree cylindrical structure comprised of tiled passive
stereo-capable organic light emitting diode (OLED) displays. Hybrid Reality systems combine sur-
round-screen virtual reality environments with ultra-high-resolution digital project-rooms. They
are intended as collaborative environments that enable multiple users to work minimally encum-
bered for long periods of time in rooms surrounded by data in the form of visualizations that benefit
from being displayed at resolutions matching visual acuity and/or in stereoscopic 3D. Destiny is
unique in that it is the first Hybrid Reality system to use OLED displays and it uses a real-time GPU-
based approach for minimizing stereoscopic crosstalk. This paper chronicles the non-trivial engi-
neering research and attention-to-detail that is required to develop a production quality hybrid-
reality environment by providing details about Destiny’s design and construction process. This de-
tailed account of how a Hybrid Reality system is designed and constructed from the ground up will
help VR researchers and developers understand the engineering complexity of developing such
systems. This paper also discusses a GPU-based crosstalk mitigation technique and evaluation, and
the use of Microsoft’s augmented reality headset, the HoloLens, as a design and training aid during
construction.

Keywords: Hybrid Reality environment; HoloLens aided construction; crosstalk mitigation

1. Introduction

The Polynesian voyaging canoe was the historical vessel of exploration, discovery,
and communication for Pacific Islanders. Inspired by this, the CyberCANOE is the Cyber-
enabled “vessel” of Collaboration, Analysis, Navigation, and Observation for University
of Hawai‘i (UH) researchers and students in the era of data-intensive science. The Cyber-
CANOE project seeks to construct display rich environments to support collaborative sci-
ence, engineering, and education in the Hawaiian Islands. Since 2014, there have been 14
CyberCANOEs deployed in Hawai‘i and are used in numerous disciplines in Science,
Engineering, Medicine, and the Arts. CyberCANOEs come in a variety of configurations
(or “classes”) which vary in total display resolution and capabilities, such as, stereoscopic
3D and six degrees of freedom (DOF) tracking. Table 1 shows the varying configurations
of CyberCANOEs in Hawai‘i.
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Table 1. CyberCANOE Class Identification Table.

Location Year 3D Megapixels 6DOF Tracking
UH West O‘ahu 2014 Y 24 N
UHM iLab 2015 N 24 N
UHM LAVA 2015 Y 16 Y
‘Imiloa Astronomy Center 2016 Y 24 Y
UH Hilo (CS Dept) 2016 Y 24 N
UH Hilo (Art dept) 2016 Y 24 N
UHM LAVA 2016 Y 256 Y
Kamehameha Schools 2016 Y 24 N
Hawaii State Energy Office 2017 N 16 N
UH Hilo (EPSCoR Class) 2017 N 18 N
UHM EPSCoR Laboratory 2017 N 31 N
UH West O*ahu "Ulu’ulu 2017 N 31 N
Chaminade University 2017 N 24 N
Applied Research Lab at UH 2018 N 16 N

This paper describes the Destiny-class CyberCANOE, Figure 1 which is a Hybrid Re-
ality environment consisting of a 320-degree tiling of displays, shown in Figure 2, similar
to CAVE2 [1]. However, Destiny differs from CAVE2 and other similar systems [2], such
as the TourCAVE and WAVE [3] in a number of important ways: Destiny has higher total
resolution, uses off-the-shelf OLED 4K displays, and is constructed at 1/3 the cost of
CAVE2 but with 3.6 x the resolution. The technology improvements of off-the-shelf con-
sumer grade displays enabled Destiny to be constructed at a fraction of the cost since it
did not depend on commercial grade equipment. Destiny is intended as a system that can
provide close to 20/20 acuity that overcomes the resolution limitations of current low-cost
head mounted displays, such as the HTC Vive and Oculus Rift. Most importantly, Destiny
uses a software-based approach to mitigate off-axis stereo crosstalk, which significantly
reduces overall cost of the system when compared to CAVE2's physically based crosstalk
mitigation solution, which uses custom LCD panels.

Figure 1. External view of the Destiny-class CyberCANOE.
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The primary contribution of this paper is to chronicle the non-trivial engineering re-
search and attention-to-detail that is needed to develop a production quality Hybrid Re-
ality environment. We believe this degree of detail will be useful to virtual reality (VR)
practitioners who wish to develop similar environments in the future. This paper will
therefore endeavor to: (1) provide a detailed account of how a Hybrid Reality system is
designed and constructed from the ground up to help VR researchers and developers un-
derstand the engineering complexity of developing such systems, (2) describe the issues
involved in the use of newly emerging organic light-emitting diode displays (OLED) ra-
ther than liquid crystal displays (LCD), (3) explore the use of an augmented reality (AR)
device as part of the design and construction process, (4) the use of a software-based ap-
proach to mitigate off-axis stereoscopic crosstalk.

Figure 2. The Destiny-class CyberCANOE showing a visualization of coral reef data from the Ha-
wai’i Institute of Marine Biology (data courtesy of John Burns).

2. Physical Design and Construction

The goal was to build a system capable of providing nearly 20/20 acuity, so the viewer
would not be able to see the individual pixels as on the HTC Vive [4] or Oculus Rift [5].
Consequently, emphasis on image quality (brightness, contrast, acuity) over other existing
VR systems was paramount.

Current Hybrid Reality Systems such as CAVE2 are constructed with tiled LCDs. All
pixels within an LCD are illuminated by a backlight, while pixels within an OLED display
are self-illuminated. This allows the off state of an OLED display pixel to produce perfect
image blacks resulting in an infinite contrast ratio and an infinite dynamic range [6], which
provides a superior image brightness and contrast compared to LCDs.

Destiny is intended for use in scientific, engineering, medical, and art visualizations
that can benefit from high resolution 2D and 3D environments. The system should pro-
vide an image that can fully envelop a user’s field of view. Lastly, and perhaps most im-
portantly, the system must be comfortable to use for long periods of time which is possible
through minimal encumbrance.
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3. Implementation of the Physical Structure

Destiny’s physical implementation was influenced by available technologies, off-axis
field of view (FOV) limitations, and targeted acuity. OLED active stereo displays are not
commercially available resulting in the decision to use OLED passive stereo displays.
While 65” displays were available, 55” displays provided greater pixel density which al-
lowing us to achieve near 20/20 visual acuity. LG displays were used over others due to
their ease of tiling and their minimal bezel. Consequently, Destiny was built using passive
stereo 55” LG OLED 4K televisions (model number 55EF9500).

The OLED displays (in portrait orientation) have a height and width of 48.25 x 27.625
inches. Passive stereo-enabled LCDs have a vertical 3D FOV of 20 degrees when placed in
the landscape orientation [1,2]. The OLED displays in Destiny were found to have approx-
imately the same FOV. The minimum viewing distance of the entire display can be calcu-
lated at the intersection of the leftmost and rightmost pixel FOV lines, Minimum 3D View-
ing Distance = (Display Width)/(2 (tan(10°)))

Any given display in Destiny has a minimum viewing distance of 78.335-inches, Fig-
ure 3. Stereoscopic acuity can be calculated using the minimum viewing distance and the
display’s technical specifications, Table 2.

78.3”

Figure 3. Top-down view of a portrait-oriented display with 3D 20-degree FOV lines for the left-
most and right-most pixel. Minimum 3D viewing distance occurs at the intersection of the two
dotted lines.

Table 2. Acuity Calculator for an LG Model 55EF9500.

Vertical Horizonal
Screen Dimension 48.2” 27.6”
Stereo Resolution ! 3840 1080
Angular Resolution 2 0.009 0.019
Arc Minutes 3 0.540 1.123
Snellen Notation 4 20/11 20/22

! Resolution seen by a single eye. 2 The angular difference between two neighbor pixels from the
minimum viewing distance. 3 One 1/60 of one angular resolution degree. * A visual acuity meas-
urement relative to 20 feet for every arc minute.
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The number of necessary display columns can be calculated using this equation,
number of columns = (rt/tan™) (display width/(2 (minimum viewing distance))), yielding
18 sides. Two columns are absent to provide a gap for entry and exit, with a width of 55.2-
inches, making Destiny wheelchair accessible.

Destiny was constructed with extruded aluminum from 80/20 Inc. and designed in
AutoCAD using 80/20's plugin (Figure 4). Each column’s base matches the width dimen-
sion of the displays (27.625-inches). The vertical structure was designed as a rectangular
prism which provided stability and easy linkage to adjacent columns. 45-degree angle
extrusions secure the vertical pillars and are used to support the video and power cables.
In addition to providing stability, the extra column space is used as a shelving for the
computer cluster. The 80/20 Inc. build design required no custom parts, therefore reduc-
ing the cost and assembly time required for the system.

Figure 4. Wireframe design of Destiny in AutoCAD.

4. Use of the HoloLens

The PARIS paper inspired us to utilize recently released VR or AR technologies to
aid us in the development of Destiny [7]. The HoloLens [8] was used in the initial design
and construction of Destiny. After the 80/20 Inc. [9] plan was completed in AutoCAD [10],
the model was imported into Unity for use in the HoloLens. Utilizing the HoloLens, it was
possible to superimpose a one-to-one scale model of Destiny within the physical space
designated for its installation, Figure 5. This allowed for the determination of proper
placement, orientation, and whether the design could clear physical constraints such as
ventilation ducts and electrical conduits that existed in the room.
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Figure 5. Hologram of the Destiny model as seen through a HoloLens to evaluate its fit within the
room’s constraints.

Destiny was constructed entirely by students unfamiliar with the build process,
therefore training was required. We took this opportunity to conduct a brief user-study
with six participants to compare two training approaches. In the first approach, three par-
ticipants used the HoloLens, which presented a one-to-one scale AR representation of the
parts and assembly steps that were superimposed on top of the physical parts for the same
column construction process, Figure 6.

Figure 6. A student constructing a column of Destiny utilizing the HoloLens.

The second approach involved three participants given a traditional paper instruc-
tion manual consisting of 2.5D orthographic diagrams, Figure 7.
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Figure 7. Step 6 of the Destiny construction manual depicted in the HoloLens on the left, and as a traditional orthographic

drawing on the right.

HoloLens users reported a variety of issues during the assembly process. The small
FOV requires head movement, as opposed to eye movement, in order to see a full scene.
The HoloLens also had a tendency to enter sleep mode when not interacted with for a
brief period of time. This resulted in the need to frequently relaunch and recalibrate the
Destiny construction application. Users trained with the HoloLens took twice as long to
complete their construction than those using the paper manual. However, by comparison
to those given the paper manual, the HoloLens group reported greater confidence that
they would not require any reference material for further construction tasks. More rigor-
ous studies are needed to determine whether this greater confidence is a result of users
having spent more time with the HoloLens or whether the augmented reality presentation
was the primary contributor. We did not repeat the experiment as construction time con-
straints did not allow us to disassemble and reassemble the structure. However, despite
the challenges in using the HoloLens for the assembly process, it proved very useful dur-
ing the design phase to evaluate the fit of Destiny within the constraints of the physical
space.

5. 3D Printed Parts for Display Support and 6-Degree of Freedom Tracking

As the OLED TVs were so thin, additional support was needed to prevent bowing.
Hence 3D printed spacers were designed and created (using AutoDesk Inventor and
Makergear M2 3D Printers). The spacers are mounted between the corners of the displays
and columns ensuring that each display-maintained rigidity. Figure 8 shows one of the
spacers and its respective CAD design.

In order to capture hand and head movement of the user, a series of four OptiTrack
Prime 13W [11] cameras were mounted around the Destiny frame above the displays.
Unique 3D printed rigid body bases were created, Figure 9, to hold the retroreflective
markers required for motion tracking. The wands are created from half of a dreamGEAR
PS3 Move Equalizer shotgun holster, to which a PlayStation Move controller and the cus-
tom 3D printed motion capture base was attached. Four motion capture markers were
deemed sufficient for tracking each wand, shown in Figure 10. Another motion capture
base of a slightly differing arrangement of tracking markers were designed to support a
second wand to permit two-handed interaction. For tracking the user’s head, we utilized
OptiTrack’s provided rigid body base attached to a head visor using Velcro. The head
visor has four motion capture markers. Figure 11 shows a student wearing the tracked
devices in Destiny.
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Figure 8. The 3D printed spacer for supporting the displays.
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Figure 9. Design of the 3D printed model in AutoDesk Inventor.
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Figure 10. To the left is the dreamGEAR PS3 Move Equalizer shotgun holster. On the right are the
Destiny controllers which have replaced the barrel portion with a 3D printed tracking constella-
tion.
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Figure 11. A student using the wands and head tracker in Destiny. A student wearing the three
tracked devices (2 wands and head).

6. Computing Hardware Implementation

Destiny’s display capabilities require a large amount of graphic rendering power.
The classic approach to driving a high-resolution multi-display system is via a cluster of
computers [12-14]. The ultimate “dream” is to be able to drive the entire system with a
single computer eliminating state synchronization issues between instances running on
individual cluster nodes. As PCI Express bandwidth and graphics power has dramatically
improved since the original CAVE in 1992 [15,16], and most of the CyberCANOEs de-
ployed in the past four years are driven by a single PC, we decided to conduct an experi-
ment to determine the maximum resolution one could drive in a modern high-end PC,
while achieving a reasonable frame rate for a prototypical VR data set that runs at 60Hz
in the CAVE2.

Our PC consisted of an Intel Core i7 5960X 3.0GHz (Intel, Santa Clara, CA, USA),
64GB DDR4 2400MHz RAM, 1TB Samsung 850 Evo SSD (Samsung, Seoul, South Korea),
4 Nvidia GTX 980 (Nvidia, Santa Clara, CA, USA), running under Windows 10 64-bit (Mi-
crosoft, Redmond, WA, USA).

Omegalib [17], a Hybrid Reality visualization framework, was used for the system
validation. A point cloud of the island of O‘ahu in Hawai’i, several asteroids, and a 3D
model of the International Space Station, served as the test scene as it was typical of the
type and complexity of the datasets we worked with. Varied numbers of Omegalib in-
stances at different resolutions were used in order to find the optimal number of compu-
ting nodes to efficiently display screen resolution at the desired acuity and refresh rate.

Initial testing with a 16-display configuration at 61440 x 2160 resolution showed that
the system would not boot into Windows in a timely manner and even the Windows ex-
plorer would not respond correctly. After some troubleshooting Omegalib was able to
start. However, OmegaLib crashed upon initial load of the data sets. We then systemati-
cally continued to scale down the number of displays to eventually four at a resolution of
15360 x 2160 without further success— each time Windows became more responsive but
Omegalib continued to fail. We decided that perhaps it was not possible for Omegalib to
launch windows of such a high resolution, so we configured Omegalib to render multiple
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windows/graphics instances with an aggregate resolution that reached the target resolu-
tion. By doing so we were able to drive as many as eight displays with four graphics in-
stances/windows as well as eight displays and eight instances, however both operating at
no more than 15 frames-per-second. At four displays with one instance per display we
managed to double the frame rate to 30 fps.

7. Comparison to Other Hybrid Reality Systems

Table 3 summarizes Destiny’s capabilities using similar comparison metrics from
Ponto [2], while also comparing to other Hybrid Reality systems [1,15]. In addition to
providing significantly better contrast and color gamut, due to its use of OLED displays,
Destiny also has 3.6 x the resolution of CAVE2, the former best-in-class Hybrid Reality
system. Furthermore, while CAVE2 cost over $900 K to build, Destiny only cost $250 K.

Table 3. The Destiny System Comparison.

System CAVE CAVE2 DSCVR Destiny

Stereo Resolution (MP) ! 22.1 36.2 20.7 132.7
Viewable 3D Resolution (MP) 2 10.8 19.7 20.1 72.6
FOV Horizontal Coverage (%) 3 100 100 100 100
FOV Vertical Coverage (%) * 100 27 62 46.7
Immersive Resolution (MP) 5 10.8 54 12.5 33.9
Refresh Per Eye (Hz) ¢ 35 60 60 30

Immersive Bandwidth (MP/s) 7 378 319 750 1016

! The total number of megapixels of the system that can be viewed while wearing 3D glasses. 2
although the systems have a stereo resolution, it may not be possible to view them all at the same
time due to shape or size. Viewable 3D resolution is the calculated resolution seen by one eye
when standing in the center of a given system. 3 The percentage of the view which the display
surface covers, using the average human'’s estimated horizontal field of view [2].  The percentage
of the view which the display surface covers, using the average human’s estimated vertical field of
view [2]. 5 The product of the viewable 3D resolution and vertical and horizontal coverage values.
This attempts to balance how much the display surrounds the user, while also accounting for dis-
play resolution [2]. ¢ A system specification describing the refresh rate per image seen by a single
eye [2]. 7 The product of the immersive resolution and the refresh per eye values. This number
accounts for frame interleaving by attempting to provide a fixed-viewpoint measure of immersion

2.

8. Display Matrix Communication

A common problem when using consumer TVs as compared to digital signage displays
is that consumer TVs were never intended to be used in a matrix. It is impractical to use the
provided infrared TV remote to attempt to power on control individual displays and config-
ure them without interfering with other displays. In order to simultaneously control multiple
displays, we explored two methods: 1. WebOS Mobile [18] TV ON feature and 2. serial port
communication.

According to LG’s display specifications, the Mobile TV ON function would allow a
Wake-On-LAN packet to power on the display through its network card. However, on actual
testing we found that the LG model (55EF9500) (LG, Seoul, South Korea) does not support this
feature. Our second method was to use the service port on the displays to access the controls.
The difficulty of this method was finding the correct serial communication method needed to
communicate with the displays and the custom wiring to the serial port.

The service port method required the use of a USB to RS-232 and a RS-232 to 3.5 mm
stereo (TRS) converter cable. Our initial testing with this configuration failed to control the
displays. Further research in the LG serial communication manual found that the wiring con-
figuration needed a custom setup. Rewiring the two converter cables resulted in the complete
control of the display settings. Later work was done to add additional converter cables to
safely direct the connections in the correct configuration.
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The communication parameters and the transmission messages between displays and
computer are shown in Table 4:

Table 4. Communication Parameters.

Name Value
Baud Rate 9600 bps (UART)
Stop bit 1 bit
Data length 8 bits
Communication Code ACSII code
Parity None
Transmission [k][a]l[ 1[Set ID][ ][Data][Cr]
Power Off Data 00
Power On Data 01

This was tested and confirmed to work in the command prompt of the connected com-
puter. To make it easier for the end user, a batch (.bat) file was created that sets the communi-
cation parameters and transmits the power ON signal to the displays. A separate but similar
.bat file was created for display shutdown.

9. Supporting Turnkey Control of Destiny

To streamline the process of application installation, launching, closing, powering on and
off the entire system, and adjusting settings for Destiny, a web server-based control system
was developed. Application deployment on Destiny is done through a control computer apart
from the eight compute nodes. A Node.js [19] server application was created to support all the
required tasks. The choice to use Node.js was to avoid complications from Remote Desktop
Protocols, enable easy access through a browser, create interfaces with HTML, and avoid mak-
ing specific versions for each node. Node.js enables access to the file system, ability to run
executables, and establish WebSocket communication from the control computer to the com-
pute nodes. The control computer manages launching of applications, controls power on/off,
and controls the displays.

Using Node js allows any user on the network to control Destiny with a browser; be it on
desktop, laptop, or mobile device. A touch screen display powered by an Android mini-PC
with a web browser directed at the control page is mounted at the entrance of Destiny.
Webpage functionality and layout was designed with consideration to this touch screen. The
touch screen is a 55" 4 K Seiki TV (Seiki Digital, Diamond Bar, CA, USA) with an infrared
overlay sensor from PQ Labs. The sensor is PQ Labs” G5 Multi-Touch Ultimate series [20]. As
of writing, the TV has been replaced with a more responsive Apple iPad Pro 12.9-inch in Fig-
ure 12.

Figure 12. Destiny’s control interface.



Electronics 2021, 10, 513

12 of 23

Initial design of the user interface was one main page that read a JSON configuration
file that populated the buttons being displayed. Those unfamiliar with HTML or JavaS-
cript were able to update the main page by modifying an entry in the configuration file.
Button functionality included powering on Destiny, launching applications, closing the
current application, and powering off Destiny. Currently there are three pages in use:
main page (Figure 13), launched application page (Figure 14), and an admin page (Figure
15). The other two pages were necessary for cases when someone unfamiliar with the sys-
tem interacts with the main page and during times of high application turn over. The main
page still retains the functionality as described before but also shows node connection
status. The Node.js server will start with the operating system and connect to the control
computer. In addition, when a node goes down (normally or abnormally), this breaks the
connection, and the control computer will immediately know.
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Figure 13. The glyphs will light up as nodes check into the control computer.
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Figure 14. From the main page, all blue buttons represent applications that can be launched (A). After pressing the Point
Clouds button, a loading page will display (B). Once Loaded, some information about the application will be presented
and show the button to stop the app (C). To stop the app, first press the Stop App button, to reveal a Confirm button.
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the Confirm button will stop the app and return to the main screen (D).
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Figure 15. On the bottom of the main page is the Admin button (A). The admin page presents additional options for
launching and sending messages (B). Pressing the File List button will show a list of all apps that have been uploaded (C).
Clicking on any of them will swap to the loading screen (D).

When all eight nodes have connected or when an application is closed, the control
computer will issue a command to the cluster nodes to launch a full screen Chrome
browser that randomly moves our laboratory’s logos over a black background. This pre-
vents burn-in on the OLED displays and give a visual notification when the system is
ready. Currently, all applications for Destiny are built in Unity. When an application is
launched, the nodes may show the desktop for a few seconds or wait at the Unity logo
screen due to resources being loaded for the application. The launched application page
was necessary to prevent unnecessary additional launches or cancellation when a user is
impatient. After launching an application, the browser would be redirected to the appli-
cation launched page that has a dynamic loading screen. The page contains a close app
button with two stages located towards the top. First click will reveal a second confirm
button that needs to be pressed within three seconds. This is to prevent accidental appli-
cation closure from other users waiting at the entrance.

The admin page performs a variety of other actions in addition to launching applica-
tions specified in the configuration file. An entry in the configuration file is necessary to
show up on the main page. For quick testing, editing the configuration file is a hindrance
and the developers will usually not want incomplete apps shown on the main page. All
applications must be fully contained in a folder with the same name as the executable. A
designated application folder holds all applications. After a user accesses the admin page,
the control computer generates a list of applications by checking the application folder.
This list is then used to allow launching of any uploaded application through the admin
page.

The control computer has mapped network drives to each of the compute nodes. This
enables the admin page to check what applications are available and easy adding and
removing of applications by hand. The process to add and remove applications was also
automated with a C# program. The interface allows users to select an application folder
on the control computer to upload to Destiny or select an application folder on Destiny
nodes for removal.

Commands issued through the control computer typically activate a .bat file. The
message dispatch system was designed such that the configuration file specifies what
messages are available and a path to a .bat file which the message activates. The .bat files
also accept parameters for generic usage between the nodes. This allows configuration file
edits to easily and quickly alter what buttons are available without needing to alter the
core of the system. Apps launched on the different nodes need to know their physical
positioning in Destiny to correctly show their viewport. Rather than have node specific
changes in the message system or .bat files, instead the message system will have the
nodes pass their hostname or IP address as a parameter.
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This works well for actions needed once the system is online. However, to start the sys-
tem the control computer must take a different approach. As mentioned in the previous sec-
tion, the control computer connects to each of the display’s service port through a direct USB
to RS-232 line. This allows the control computer to dispatch display commands regardless of
the corresponding node being online.

A power on command dispatched to Destiny takes two main actions. Starting with the
first node, the control computer will begin by sending a power on message (one at a time) to
each of its displays’ service port over RS-232. After each of a node’s displays have been issued
a power on, the control computer will wait briefly before sending the node a Wake-On-LAN
packet. This process is repeated for each node. Displays are powered on before the computer
to avoid accidental detection of a different display configuration. If a different display config-
uration is detected, all display settings must be corrected. As part of Window’s startup proce-
dure, each node launches Node.js to check in with the control computer through a WebSocket.
The power on process is shown in Figure 16.

1 Node displays
RS-232 ' o1l D2
Control | Power On Signal
Computer
D3 | D4

Ethernet

Control | Wake-On-LAN
Node
Computer
3 WehbSocket
Check In After
Control |Windows Startup
[ Node
Computer

Figure 16. To power on Destiny, the following process is repeated for each node. (1) First, the con-
trol computer sends a power on signal to each of that node’s displays service port over RS-232. (2)
Second, a Wake-On-LAN is sent for that node over Ethernet. (3) Node.js will launch as part of
Windows startup, when it will check in with the control computer over WebSocket.

Once a node has checked in, the control computer can dispatch commands as shown in
Figure 17. Each node has a fixed IP address and hostname. Hostnames are suffixed with num-
ber 1 to 8 indicating which section of Destiny they correspond to. During check in, the control
computer is able to detect node IP address and hostname to determine when Destiny is fully
connected.

Node 1
Control Node s — Bat fil > Unity App (Host)
Computer ode.js at file nity App (Hos
Receives message Using parameters: Launches and waits
WebSocket — App Launch Self detects node number - Finds app for other nodes to
Passes: Launches bat file passing: executable connect before
- App name - App name - Launches with the starting app
- Tracking Parameters - Tracking parameters given parameters
- Node number
Node 2, 3,4,5,6,7,8
*~ Node.js » Bat file *|  Unity App (Client)
Receives message Using parameters: After launching,
Self detects node number - Finds app connects to host over
Launches bat file passing: executable Ethernet and waits for
- App name - Launches with the start signal
- Tracking parameters given parameters
- Node number

Figure 17. To launch an application, the control computer sends a message over WebSocket to
each node. After receiving the node, they will start the app launching .bat file and pass in the
given parameters along with their own node number.
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Code was constantly in flux throughout the development of the of the controller. Al-
terations required redeployment across all of Destiny’s nodes and restarting the server.
This motivated having each node run the same software through generic command han-
dling. Gitis used for version control. With each node running the same software, updating
can be done through a Git pull from an online repository as shown in Figure 18. Auto-
mated updating is done through two .bat files. Two are necessary because, any process
started with Node.js will be terminated when the Node.js server goes down. The first .bat
file launches a separate Command Prompt window with the start command to run the
second .bat file. Using the start command will launch a separate process that enables it to
continue running even if the originating process terminates. The second .bat file will wait
while Node.js closes, then perform a Git update, and finally restart the Node.js server.

Control Computer [ Node1-8

Node.js Node.js

Command Prompt et
runs update bat file

Sends update message to -+

all nodes WebSocket message
to update sent to all

Then runs a bat file that nodes

starts another, separate

Command Prompt to run

actual update bat file

| Update from Git repo

Restart Server —

‘Shutdawr\ server

—— Node.js
WebSocket check in

1| After receiving update

message from command
computer, runs a bat file
that starts another,
separate Command -
Prompt that runs actual
update bat file

Shutdown server

Node.js <+

After restarting, checks in

Command Prompt
runs update bat file

Update from Git repo

Restart Server

Back online and ready for

node check in with control computer

Figure 18. To update the control system, first the command is initiated through the admin page.
After the control computer receives the command, it notifies all other nodes, activates the update
bat file, then shuts itself down. The activated .bat file spawns a separate Command Prompt win-
dow to run the real update .bat file. That Command Prompt stays active even after Node.js shuts
down. A Git pull is performed from the online repo, and after the pull restarts Nodejs.

10. Unity Virtual Reality Development Package

Unity [21] is used for application development due to its gradual learning curve,
cross platform development support, and highly supportive community. Unity provides
a cluster rendering solution which allows multiple machines to simulate the same scene
in-sync with each other on multiple computers. The master node syncs all worker nodes
through a synchronization method called frame locking. Input, time, and random number
seed are synced between all nodes.

While Unity provides a cluster rendering solution, the solution is not sufficient for
VR application development. Following in the footsteps of our predecessors [22-24], we
recognized the need to provide an easy-to-use application program interface (API) to sup-
port VR application development for use in Destiny. The CyberCANOE API allows de-
velopers to focus on creating their applications rather than configuring Unity to work with
Destiny. The API provides the following:

Multi-camera configuration
GPU shader stereo interleaving
Head and wand tracking within the Unity scene
User controller input
¢ Simulator controls

Each of Destiny’s eight computers output to four displays with a total resolution of
4320 x 8192. Each computer’s four displays span two columns as shown in Figure 19.
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Figure 19. 3D model of Destiny showing four displays (A-D), which are powered by one com-
puter.

Within Unity we use four different cameras per computer to account for the angle be-
tween each column and the bezel between each display. To allow for off-axis projection we
follow Kooima’s example [25]. Each camera has two child cameras that represent the left and
right eye. These cameras are separated by 55 mm to account for interpupillary distance. All
cameras output to an individual RenderTexture which are passed into a fragment shader. The
fragment shader stitches and interlaces all the cameras’ render textures together to form one
final RenderTexture. This final RenderTexture is then rendered to the displays.

The API retrieves head and wand tracking information over Virtual Reality Peripheral
Network (VRPN) [26] and translates the designated game objects to their correct real world
position and orientation. Developers are able to retrieve each tracked object’s position and
rotation through the APL

Destiny uses two Sony PS3 Move controllers for user input. These controllers have no
native support on Windows. To circumvent this problem we use an open source driver,
ScpToolkit [27]. This driver enables Sony Dualshock controllers to connect to Windows over
a Bluetooth connection and their input to be seen as standard XInput. A VRPN server then
hosts these inputs to allow developers to interface with them through our APL

Another key aspect of the API is the ability to simulate controlling the wand controllers
on a computer during development (Figure 20). This gives developers the ability to develop
and test their applications without having to physically use Destiny. Below is the diagram of
the simulator controls. Much of it was inspired by the original CAVEIlib simulator developed
in 1992 [28], including the display of projection planes of Destiny within the simulator to help
developers gauge whether a virtual object is inside or outside Destiny’s physical volume (Fig-
ure 21). In addition to Destiny’s cylindrical configuration, the CyberCANOE API is also able
to support flat wall matrix configurations.

Figure 20. Controls for manipulating the simulation.



Electronics 2021, 10, 513

17 of 23

Figure 21. The API provides highlighting within Unity to show Destiny’s orientation within the
scene.

11. Mitigating Stereoscopic Crosstalk

Stereoscopic crosstalk is defined as the incomplete isolation of the left and right im-
age channels so that one image “leaks” or “bleeds” into the other” [29]. In passive stereo
displays, this occurs when a viewer moves off-axis, potentially looking at a pixel through
a polarizer intended for the opposite eye as shown in Figure 22. As the displays in Destiny
are oriented in portrait mode, they have excellent vertical off-axis performance but infe-
rior horizontal off-axis performance. CAVE2, using displays in landscape format, miti-
gates crosstalk via an expensive custom polarizing filter [30]. The top and bottom rows of
the filter are slightly shifted to accommodate a greater vertical off-axis field of view [1]. It
was possible instead to develop an equivalent solution entirely in software, hence signif-
icantly reducing cost. A Graphics Processing Unit (GPU) shader was developed to use the
location of the viewer’s head in real-time to adjust the pixel color which mitigated the
perception of crosstalk.

Pixels

Polarized | LeftEye Right Eye LeﬂEEye Right Eye LeftEye | Right ‘E‘y’e
Filter | Filter Filter Filter Filter Filter .-}~ Filter

Left Eye

Figure 22. Off-axis crosstalk.

The GPU shader solution is based on the assumption that crosstalk starts at the inter-
section of the 3D horizontal FOV and the display column. At this intersection, the user is
viewing the intended pixel color, but also the unintended color of the neighboring pixel.
Increasing the RGB value of intended pixel color and subtracting the RGB value of the
unintended color can potentially counteract the crosstalk effect. However, limitations ex-
ist due to using color subtraction. For example, given these pixels:

Intended Pixel Color in RGB = (255, 0, 0)
e Unintended Pixel Color in RGB = (0, 255, 0)

This technique would not be able to counteract crosstalk as it cannot subtract green
from the intended pixel color due to its green channel value being 0.
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The following describes the procedure for one display column within Destiny. There

are sixteen display columns and each column is calculated separately.

Perpendicular distance (PD) is calculated between the display column and the user’s
head. The off-center distance (OCD) is calculated from the display column’s center and

the user’s head as shown in Figure 23.

Display Column

E<— Perpendicular Distance (PD)

Off Center Distance
(OCD)

Figure 23. Perpendicular and Off-Center Distance.

Given the 3D horizontal FOV is 20 degrees for each display column, it is necessary to
calculate which column of pixels the 3D horizontal FOV intersects on the display column
and label these left crosstalk starting pixels (LCS) and right crosstalk starting pixels (RCS)

(Figure 24). These two values are passed into a GPU fragment shader.

Column Width (CW)
s ———————————————— Display Column
Left Crosstalk View Width ight Crosstalk
Starting Pixel (LCS) W) Starting Pixel (RCS)

Head .

Figure 24. Left and right starting pixel determination.

Within the fragment shader the LCS and RCS are used to calculate where the cross-

talk starts (CMin) and where the crosstalk stops (CMax). At CMax the user will

view a

clear picture with no crosstalk but the stereo has been reversed. Pixels closer to CMin will
have a smaller percent change (PC) than those closer to CMax. Traversing from CMin to

CMax, PC is linearly increased as shown in Figure 25.

Crosstalk Maximum  Crosstalk Minimum Crosstalk Minimum Crosstalk Maximum
(CMax) (CMin) (CMin) (CMax)
Display
Column
I Left Area I(LGS) (RGSI Right Area I
_ . 7 PercentChange o . _ _ ¥ Percent Change . . _
PC=1.0 + (PC) PC=0.0 PC=0.0 (PC) + PC=1.0

Figure 25. Crosstalk minimum and maximum within fragment shader.
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The GPU shader samples intended pixel color (IPC) and the neighbor pixel, which is
contributing to the crosstalk pixel color (CPC). The GPU shader then changes the pixel
color using one of the following experimental formulas:

Formula 1 (F1)
PixelColor.RGB = ((1 + PC)-IPC) - (PC-CPC)

Formula 2 (F2)
PixelColor.R = ((1 + (PC-0.2126))-IPC) - ((PC-0.2126)-CPC)
PixelColor.G = ((1 + (PC-0.7152))-IPC) - ((PC-0.7152)-CPC)
PixelColor.B = ((1 + (PC-0.0722))-IPC) - ((PC-0.0722)-CPC)

Formula 1 applies the percent change uniformly over the RGB channels while For-
mula 2 accounts for relative luminance; green light contributing the most to color per-
ceived by humans and blue light the least [31]. The entire technique is described here, step
by step and the two approaches are compared in a subsequent experiment:

1. Obtain three corner vectors and the center vector of the front of the column.
C1, Co, G5, Cc

2. Calculate the column’s normal with respect to the front.
Cn =Normal( (C2—C1) ¢ (C:—C1))

3. Obtain the user’s head vector within Destiny.
Ho

4. Calculate the perpendicular distance (PD) from the user’s head to the column.
PD = |(HL- Cc) ¢ Cnl
5. Obtain the column’s rotation and rotate it ~90 degrees on the column’s vertical axis.
Cr
6. Obtain the vectors of the three corners of the column after rotation.
Cri, Cre, Crs
Calculate the column’s normal after rotation.
CRN= Normal ((Crz— Cr1) ® (Crs— Cr1) )
Calculate the off center distance (OCD) from the user’s head to the column’s center.
OCD = (Hr-Cc) ® Crn
Calculate the view width.
VW =2 e (PD) e tan (view angle/2)
Obtain the column’s width.
CW
Calculate the Left Crosstalk Starting Pixel (LCS).
LCS = ((CW/2) - (VW/2) + OCD)/CW
Calculate the Right Crosstalk Starting Pixel (RCS).
RCS = ((CW/2) - (VW/2) + OCD)/CW
Within the fragment shader determine if pixel is within left or right crosstalk area.
Left area
CMin =LCS - (RCS - LCS)
CMax =LCS
PercentChange = (Pixel. x - CMin)/(CMax — Cmin)
PercentChange = min (MaxPercentChange, 1 — PercentChange)
IPC: Intended Pixel Color
CPC: Crosstalk Pixel Color
Apply formula 1 or formula 2 discussed above
Right area
CMin =RCS
CMax = RCS + (RCS - LCS)
PercentChange = (Pixel.x - CMin)/(CMax — CMin)
PercentChange = min (MaxPercentChange, PercentChange)
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IPC: Intended Pixel Color
CPC: Crosstalk Pixel Color
Apply formula 1 or formula 2 discussed above

12. Evaluation of Anti-Crosstalk Approaches

The previous section detailed two approaches for mitigating crosstalk. To evaluate
these approaches, we conducted an experiment consisting of seven users (aged between
24 and 30). The participants were students in computer science or engineering. All partic-
ipants reported they had at least 20/20 visual acuity and experience in Hybrid Reality en-
vironments.

Each participant wore 3D stereoscopic glasses, a single motion tracked wand, and the
motion tracked head visor. All ceiling lights were turned off in the room to reduce dis-
traction and potential interference with the participant.

The experiment involved having each participant standing at a series of 13 locations
within Destiny, Figure 26, and viewing the scene with and without the anti-crosstalk so-
lutions enabled. At each location, the participants were allowed to freely switch between
the two options. However, the participants were not informed which of the two options
they were viewing. The participants were asked to choose which of the two options they
preferred or if they could not decide on a preference. The two options are randomly cho-
sen as the initial choice at random when moving from one location to the next.

Figure 26. Top-down view of Destiny and the positions used for each evaluation.

Two different scenes were used. The first scene consisted of simple geometric shapes
as shown in Figure 27 and the second scene consisted of a more naturalistic jungle envi-
ronment as shown in Figure 28. The participants performed the test of the first crosstalk
formula on the first scene at all 13 locations before proceeding to the second scene. After
completing the second scene for the first formula, the participants proceeded to repeat the
experiment with the second crosstalk formula.
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Figure 27. Geometric Shapes Scene.

Figure 28. Jungle Scene.

Figure 29 totals the preferences (votes) for the different locations. The results suggest
the anti-crosstalk options were preferred over no crosstalk solution in all four tests. For-
mula 2 (F2) was favored over Formula 1 (F1) for both scenes.

Our results show that having a software-based approach on reducing crosstalk may
be a viable alternative to a hardware solution. However, due to the small number of par-
ticipants, further evaluation is required.
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F1 Shapes Scene

F1 Jungle Scene

F2 Shapes Scene

F2 Jungle Scene

0 12 24 36 48 [

Taotal Votes for All Locations

Anti-Crosstalk Default Mo Difference

Figure 29. Comparison of the two anti-crosstalk approaches (F1 and F2) under two different
scenes (Shapes Scene and Jungle Scene).

13. Conclusions

This paper’s main contribution is in detailing the design, construction, and evalua-
tion of an OLED-based Hybrid Reality environment with visual acuity approaching 20/20.
The HoloLens was found to be useful in its initial design, although its use for construction
training needs further study.

The GPU shader approach to crosstalk mitigation was found to be beneficial in a sub-
jective experiment, with the approach that took relative luminance into account yielding
better results. Additional experiments similar to the approach by Ponto [2] are underway
to provide a more objective measure of improvement. Plans are also underway to extend
the shader approach to resolve pseudo-stereo that occurs at severe off-axis viewing an-
gles.
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