Biotechnology Applied to Cosmetics and Aesthetic Medicines
Abstract
:1. Introduction
2. Fermentation Processes
3. Recombinant DNA Technology
4. Active Ingredients Obtained by Biotechnological Processes
4.1. Kojic Acid
4.2. Hyaluronic Acid
4.3. Resveratrol
4.4. Growth Factors
4.5. Enzymes
4.6. Algae
4.7. Stem Cells
- Prolongation of fibroblasts life;
- Increased epidermis flexibility;
- Regulation of cell division;
- Reconstruction of damaged epidermis;
- Activation of cell DNA repair;
- Protection against UV radiation.
4.8. Peptides
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Sahu, S. Biotechnology for Sustainable Utilization of Bioresources, 1st ed.; Daya Publishing House: Delhi, India, 2019; pp. 7–8. [Google Scholar]
- Bhatia, S.; Goli, D. Introduction to Pharmaceutical Biotechnology, 1st ed.; IOP Publishing: Bristol, UK, 2018; pp. 27–40. [Google Scholar]
- Borzani, W.; Schmidell, N.W.; Lima, U.A.; Aquarone, E. Biotecnologia Industrial–Fundamentos, 1st ed.; Blucher: São Paulo, Brazil, 2008; p. 5. [Google Scholar]
- Zand, M.; Lakshmi, N.M. A review article biotechnology applications in medicine. Int. Res. J. Appl. Basic. Sci. 2019, 4, 2557–2563. [Google Scholar]
- Zappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective active ingredients obtained through biotechnology. Cosmetics 2016, 3, 39. [Google Scholar] [CrossRef]
- Górak, A.; Stankiewicz, A. Intensification of Biobased Processes, 1st ed.; The Royal Society of Chemistry: London, UK, 2008; pp. 42–61. [Google Scholar]
- Waites, M.J.; Morgan, N.L.; Rockey, J.S.; Higton, G. Industrial microbiology: An introduction, 1st ed.; Blackwell Science: Oxford, UK, 2001; pp. 1–79. [Google Scholar]
- Tortora, G.J.; Funke, B.R.; Case, A.L. Microbiologia, 12th ed.; Artmed: Porto Alegre, Brazil, 2017; p. 802. [Google Scholar]
- Moon, K.B.; Park, J.S.; Park, Y.I.; Song, I.J.; Lee, H.J.; Cho, H.S.; Jeon, J.H.; Kim, H.S. Development of systems for the production of plant-derived biopharmaceuticals. Plants 2019, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodish, H.; Berk, A.; Zipursky, S.L. Molecular Cell Biology, 5th ed.; Freeman & Co: New York, NY, USA, 2001; pp. 361–365. [Google Scholar]
- Shinde, S.A.; Chavhan, S.A.; Sapkal, S.B.; Shrikhande, V.N. Recombinant DNA technology and its applications: A review. Int. J. Medipharm Res. 2018, 4, 79–88. [Google Scholar]
- Steinberg, F.M.; Raso, J. Biotech pharmaceuticals and biotherapy: An overview. J. Pharm. Sci. 1998, 1, 48–59. [Google Scholar]
- Khan, S.; Ullah, M.W.; Siddique, R.; Nabi, G. Role of recombinant DNA technology to improve life. Int. J. Genom. 2016, 2016, 14. [Google Scholar] [CrossRef]
- Johnson, I.S. Human insulin from recombinant DNA technology. Science 1983, 219, 632–637. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council. Available online: https://eurlex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:32009R1223&from=PT (accessed on 1 May 2020).
- Pandey, A.; Höfer, R.; Larroche, C.; Taherzadeh, M.; Nampoothiri, M. Industrial Biorefineries: Industrial Biorefineries and White Biotechnology, 1st ed.; Elsevier Science: New York, NY, USA, 2015; pp. 608–640. [Google Scholar]
- Rosfarizan, M.; Ariff, A.B.; Hassan, M.A.; Karim, M.I. Kojic acid production by Aspergillus flavus using gelatinized and hydrolyzed sago starch as carbon sources. Folia Microbiol. 1998, 43, 459–464. [Google Scholar] [CrossRef]
- Wan, H.M.; Chen, C.C.; Chang, T.S.; Giridhar, R.N.; Wu, W.T. Combining induced mutation and protoplasting for strain improvement of Aspergillus oryzae for kojic acid production. Biotechnol. Lett. 2004, 26, 1163–1166. [Google Scholar] [CrossRef]
- Kim, J.H.; Chang, P.K.; Chan, K.L.; Faria, N.C.; Mahoney, N.; Kim, Y.K. Enhancement of commercial antifungal agents by Kojic Acid. Int. J. Mol. Sci. 2012, 13, 13867–13880. [Google Scholar] [CrossRef]
- Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2019, 110, 582–593. [Google Scholar] [CrossRef]
- Yamada, R.; Yoshie, T.; Wakai, S.; Asai-Nakashima, N.; Okazaki, F.; Ogino, C. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb. Cell Fact. 2014, 13, 71. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyden, J.J.; Shergill, B.; Micali, G.; Downie, J.; Wallo, W. Natural options for the management of hyperpigmentation. J. Eur. Acad. Dermatol. 2011, 25, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.J.; Ko, S.C.; Kang, S.M. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem. Toxicol. 2010, 48, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Novellino, L.; Napolitano, A.; Prota, G. 5,6-Dihydroxyindoles in the fenton reaction: A model study of the role of melanin precursors in oxidative stress and hyperpigmentary processes. Chem. Res. Toxicol. 1999, 12, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Tian, H.; Holmes, C.; Matsunaga, J.; Roffler-Tarlov, S.; Hearing, V.J. Tyrosinase: A developmentally specific major determinant of peripheral dopamine. FASEB J. 2003, 17, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Niwa, Y.; Akamatsu, H. Kojic acid scavenges free radicals while potentiating leukocyte functions including free radical generation. Inflammation 1991, 15, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, R.; Mohamad, M.S.; Suhaili, N.; Salleh, M.M.; Ariff, A.B. Kojic acid: Applications and development of fermentation process for production. Biotechnol. Mol. Biol. Rev. 2010, 5, 24–37. [Google Scholar]
- Lajis, A.F.B.; Hamid, M.; Ariff, A.B. Depigmenting effect of Kojic acid esters in hyperpigmented B16F1 melanoma cells. J. Biomed. Biotechnol. 2012, 2012, 952452. [Google Scholar] [CrossRef] [Green Version]
- Fraser, J.R.; Laurent, T.C.; Laurent, U.B. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.; Manfredini, S.; Durini, E.; Vertuani, S. Hyaluronic acid fillers in soft tissue regeneration. Facial Plast. Surg. 2017, 33, 244. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.; Jones, S.A.; Forbes, B.; Martin, G.P.; Brown, M.B. Hyaluronan: Pharmaceutical characterization and drug delivery. Drug Deliv. 2005, 12, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Mayol, L.; Quaglia, F.; Borzacchiello, A.; Ambrosio, L.; La Rotonda, M.I. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties. Eur. J. Pharm. Biopharm. 2008, 70, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic acid in the third millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Nobile, V.; Buonocore, D.; Michelotti, A.; Marzatico, F. Anti-aging and filling efficacy of six types hyaluronic acid-based dermo-cosmetic treatment: Double blind, randomized clinical trial of efficacy and safety. J. Cos. Derm. 2014, 13, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 2016, 15, 119. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhu, Y.; Sun, H.; Liang, S.; Leng, F.; Li, H. Highly efficient production of hyaluronic acid by S. Zooepidemicus R42 derived from heterologous expression of bacterial hemoglobin and mutant selection. Lett. Appl. Microbiol. 2016, 62, 316. [Google Scholar] [CrossRef]
- Chien, L.J.; Lee, C.K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 2007, 23, 1017. [Google Scholar] [CrossRef]
- Madrigal-Perez, L.A.; Canizal-Garcia, M.; González-Hernández, J.C.; Reynoso-Camacho, R. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae. Yeast 2016, 33, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 2008, 7, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2019, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Wale, T.; Hsieh, F.; DeLegge, M.H. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, K.V. Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 2011, 90, 417–425. [Google Scholar] [CrossRef]
- Donnez, D.; Jeandet, P.; Clément, C.; Courot, E. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol. 2009, 27, 706–713. [Google Scholar] [CrossRef]
- Sharma, D.; Jaggi, A.S.; Bali, A. Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur. J. Pharmacol. 2018, 837, 156–163. [Google Scholar] [CrossRef]
- Crommelin, D.; Sindelar, R.D.; Meibohn, B. Pharmaceutical Biotechnology: Fundamentals and Applications, 3rd ed.; Informa Healthcare: London, UK, 2008; p. 225. [Google Scholar]
- Husein, E.H.H.; Castillo, R.F. Cosmeceuticals: Peptides, proteins, and growth factors. J. Cosmet. Dermatol. 2016, 15, 514–519. [Google Scholar] [CrossRef]
- Sundaram, H.; Mehta, R.C.; Norine, J.A.; Kircik, L. Topically applied physiologically balanced growth factors: A new paradigm of skin rejuvenation. J. Drugs Dermatol. 2009, 8, 4–13. [Google Scholar]
- Fabi, S.; Sundaram, H. The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plast. Surg. 2014, 30, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Eissazadeh, S.; Moeini, H.; Dezfouli, M.G.; Heidary, S.; Nelofer, R.; Abdullah, M.P. Production of recombinant human epidermal growth factor in Pichia pastoris. Braz. J. Microbiol. 2017, 48, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G. Pharmaceutical Biotechnology: Concepts and Applications, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007; pp. 265–278. [Google Scholar]
- Ptitsyn, L.; Al’tman, I. Extracellular production of recombinant human epidermal growth factor (hEGF) in Escherichia coli cells. Bioorg. Khim. 1999, 25, 923–929. [Google Scholar] [PubMed]
- De, D.; Roy, S.; Bera, G.C. Biotechnology and Nature, 1st ed.; Kabitika: Midnapore, India, 2008; p. 45. [Google Scholar]
- Sim, Y.C.; Nam, Y.S.; Shin, E.; Kim, S.; Chang, I. Proteolitic enzyme conjugated to SC-glucan as transdermal drug penetration enhancer. Pharmazie 2003, 58, 252–256. [Google Scholar] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Levin, E.D. Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: Opportunities for novel drug development in aging. Curr. Alzheimer Res. 2005, 2, 191–196. [Google Scholar] [CrossRef]
- Seki, T.; Yajima, I.; Yabu, T.; Ooguri, M.; Nakanishi, J. Examining an exfoliation-promoting enzyme for cosmetic applications. Cosmet. Toilet. 2005, 120, 87. [Google Scholar]
- McNeil, E.; Melton, D. The good and bad sides of DNA repair: DNA damage in the skin and melanoma. Biochemist 2013, 35, 25–29. [Google Scholar] [CrossRef]
- Navarrete-Dechent, C.; Molgó, M. The use of a sunscreen containing DNA-photolyase in the treatment of patients with field cancerization and multiple actinic keratoses: A case-series. Dermatol. Online J. 2017, 23, 18. [Google Scholar]
- Marizcurrena, J.J.; Martínez-López, W.; Ma, H.; Lamparter, T.; Castro-Sowinski, S. A highly efficient and cost-effective recombinant production of a bacterial photolyase from the Antarctic isolate Hymenobacter sp. UV11. Extremophiles 2019, 23, 49–57. [Google Scholar] [CrossRef]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial potential of carotenoid pigments from microalgae: Current trends and prospects. Crit. Rev. Food Sci. Nutr. 2018, 1, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delsin, S.D.; Mercurio, D.G.; Fossa, M.M.; Campos, M. Clinical efficacy of dermocosmetic formulations containing Spirulina extract on young and mature skin: Effects on the skin hydrolipidic barrier and structural properties. Clin. Pharmacol. Biopharm. 2015, 4, 144. [Google Scholar]
- Campos, M.; Camargo, F.B., Jr.; Corauce, D. Spirulina Containing Cosmetic Composition and Cosmetic Treatment Method. European Patent EP12768486. Available online: https://patents.google.com/patent/US20140023676A1/en (accessed on 28 April 2020).
- Romay, C.H.; Armesto, J.; Remirez, D.; Gonzalez, R.; Ledon, N.; Garcia, I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 1998, 47, 36–41. [Google Scholar] [CrossRef]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu, G.I. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Liu, J.; Jiang, Y.; Chen, F. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol. J. 2016, 11, 1244–1261. [Google Scholar] [CrossRef]
- Xu, Y.; Ibrahim, I.M.; Wosu, C.I.; Ben-Amotz, A.; Harvey, P.J. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2012, 93, 5–11. [Google Scholar] [CrossRef]
- Weissman, I.L. Stem cells: Units of development units of regeneration and units in evolution. Cell 2000, 100, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Dulak, J.; Szade, K.; Szade, A.; Nowak, W.; Józkowicz, A. Adult stem cells: Hopes and hypes of regenerative medicine. Acta Biochim. Pol. 2015, 62, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Shyh-Chang, N.; Ng, H.H. The metabolic programming of stem cells. Genes Dev. 2017, 31, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyes, B.E.; Fuchs, E. Stem cells: Aging and transcriptional fingerprints. J. Cell Biol. 2018, 217, 79–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trehan, S.; Michniak-Kohn, B.; Beri, K. Plant stem cells in cosmetics: Current trends and future directions. Future Sci. OA 2017, 3, FSO226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miastkowska, M.; Elżbieta, S. Anti-aging properties of plant stem cells extracts. Cosmetics 2018, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Barbulova, A.; Apone, F.; Colluci, G. Plant cell cultures as source of cosmetic active ingredients. Cosmetics 2014, 1, 94–104. [Google Scholar] [CrossRef]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 2018, 18, 1–20. [Google Scholar] [CrossRef]
- PhytoCellTecTM Malus Domestica. Available online: https://mibellebiochemistry.com/phytocelltectm-malus-domestica (accessed on 7 March 2019).
- Tito, A.; Carola, A.; Bimonte, M. A tomato stem cell extract, containing antioxidant compounds and metal chelating factors, protects skin cells from heavy metal-induced damages. Int. J. Cosmet. Sci. 2011, 33, 543–552. [Google Scholar] [CrossRef]
- Apone, F.; Tito, A.; Carola, A. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J. Biotechnol. 2010, 154, 367–376. [Google Scholar] [CrossRef]
- CitrustemTM. Available online: https://www.centerchem.com/Products/citrustem/ (accessed on 7 August 2019).
- Refine Ginger Restores Skin Texture. Available online: http://www.naolys.com/product_refine_ginger_en.php (accessed on 7 August 2019).
- Nohynek, L.; Bailey, M.; Tähtiharju, J.; Seppänen-Laakso, T.; Rischer, H.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R. Cloudberry (Rubus chamaemorus) cell culture with bioactive substances: Establishment and mass propagation for industrial use. Eng. Life Sci. 2014, 14, 667–675. [Google Scholar] [CrossRef]
- Verbeke, P.; Siboska, G.E.; Clark, B.F.; Rattan, S.I. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 2000, 276, 1265–1270. [Google Scholar] [CrossRef]
- Olsen, A.; Siboska, E.; Clark, B.F.; Rattan, S.I. N6-furfuryladenine, kinetin, protects against fenton reaction-mediated oxidative damage to DNA. Biochem. Biophys. Res. Commun. 1999, 265, 499–550. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chung, K.Y.; Bang, D.; Lee, K.H. Searching for aging-related proteins in human dermal microvascular endothelial cells treated with anti-aging agents. Proteomics 2006, 6, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Cha, H.J.; Ko, J.M.; Han, H.; Kim, S.Y. Kinetin improves barrier function of the skin by modulating keratinocyte differentiation markers. Ann. Dermatol. 2017, 29, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tournas, J.A.; Lin, F.H.; Burch, J.A.; Selim, M.A.; Monteiro-Riviere, N.A. Ubiquinone, idebenone, and kinetin provide ineffective photoprotection to skin when compared to a topical antioxidant combination of Vitamins C and E with ferulic acid. J. Investig. Derm. 2006, 126, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical peptides as cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, R. Estudo de um Produto Cosmético Antirrugas Utilizando Parâmetros Biométricos da Pele Com Recurso a Técnicas Não-Invasivas. Available online: https://repositorio-aberto.up.pt/bitstream/10216/76971/2/33081.pdf (accessed on 12 June 2019).
- Schagen, S.K. Topical peptide treatments with effective anti-aging results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Gorouhi, F.; Maibach, H. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Mitragotri, S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release 2003, 86, 69–92. [Google Scholar] [CrossRef]
- Partidos, C.D.; Beignon, A.S.; Brown, F.; Kramer, E.; Briand, J.P. Applying peptide antigens onto bare skin: Induction of humoral and cellular immune responses and potential for vaccination. J. Control. Release 2002, 85, 27–34. [Google Scholar] [CrossRef]
- Linder, J. The science behind peptides. Plast. Surg. Nurs. 2012, 32, 71–72. [Google Scholar] [CrossRef]
- Peptides for Skin. Available online: https://thedermreview.com/peptides-for-skin/ (accessed on 28 March 2020).
- Abdulghani, A.; Sherr, A.; Shirin, S.; Solodkina, G.; Tapia, E.; Wolf, B.; Gottlieb, A. Effects of topical creams containing vitamin C, a copper-binding peptide cream and melatonin compared with tretinoin on the ultrastructure of normal skin—A pilot clinical, histologic, and ultrastructural study. Dis. Manag. Clin. Outcomes 1998, 1, 136–141. [Google Scholar] [CrossRef]
Peptide Type | Peptide Name |
---|---|
Signal peptides or matricins | Palmitoyl Tripeptide-1 Palmitoyl Tetrapeptide-7 Palmitoyl Pentapeptide-3 Palmitoyl Oligopeptide |
Carrier peptides | Copper tripeptide |
Peptides mimetics or neurotransmitter-inhibiting peptides | Pentapeptide-3 Acetylhexapeptide-3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, C.; Silva, A.C.; Marques, A.C.; Sousa Lobo, J.; Amaral, M.H. Biotechnology Applied to Cosmetics and Aesthetic Medicines. Cosmetics 2020, 7, 33. https://doi.org/10.3390/cosmetics7020033
Gomes C, Silva AC, Marques AC, Sousa Lobo J, Amaral MH. Biotechnology Applied to Cosmetics and Aesthetic Medicines. Cosmetics. 2020; 7(2):33. https://doi.org/10.3390/cosmetics7020033
Chicago/Turabian StyleGomes, Cátia, Ana Catarina Silva, Ana Camila Marques, José Sousa Lobo, and Maria Helena Amaral. 2020. "Biotechnology Applied to Cosmetics and Aesthetic Medicines" Cosmetics 7, no. 2: 33. https://doi.org/10.3390/cosmetics7020033
APA StyleGomes, C., Silva, A. C., Marques, A. C., Sousa Lobo, J., & Amaral, M. H. (2020). Biotechnology Applied to Cosmetics and Aesthetic Medicines. Cosmetics, 7(2), 33. https://doi.org/10.3390/cosmetics7020033