Effects of Chewing Training on Orofacial and Cognitive Function in Healthy Individuals: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Study Quality and Risk of Bias Assessment
2.5. Strategy for Data Synthesis
3. Results
3.1. Included Studies
3.2. Participant Characteristics
3.3. Intervention Characteristics
3.3.1. Orofacial Function
3.3.2. Cognitive Function
3.4. Orofacial Function Assessment
3.5. Cognitive Function Assessment
3.6. Main Results
3.6.1. Orofacial Function
3.6.2. Cognitive Function
3.7. Study Quality and Risk of Bias
4. Discussion
4.1. Orofacial Function
4.2. Cognitive Function
4.3. Strength and Limitations of the Included Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lund, J.P.; Kolta, A. Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia 2006, 21, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, I.; Hayasaki, H.; Nakata, S.; Iwase, Y.; Nakata, M. Characteristics of the gum chewing occlusal phase in children with primary dentition. J. Oral Rehabil. 2004, 31, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Prinz, J.F.; Lucas, P.W. “The first bite of the cherry” intra-oral manipulation prior to the first bite in humans. J. Oral Rehabil. 2001, 28, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, M.A.; Hind, J.A.; Roecker, E.B.; Carnes, M.; Doyle, J.; Dengel, G.A.; Robbins, J. Age effects on the temporal evolution of isometric and swallowing pressure. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M634–M640. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.; Arifin, N.; Rahim, Z.H.A. Effect of Orofacial Myofunctional Exercise Using an Oral Rehabilitation Tool on Labial Closure Strength, Tongue Elevation Strength and Skin Elasticity. J. Phys. Ther. Sci. 2013, 25, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Stark, S.M.; Stevenson, R.; Wu, C.; Rutledge, S.; Stark, C.E.L. Stability of age-related deficits in the mnemonic similarity task across task variations. Behav. Neurosci. 2015, 129, 257–268. [Google Scholar] [CrossRef]
- Wilkinson, L.; Scholey, A.; Wesnes, K. Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite 2002, 38, 235–236. [Google Scholar] [CrossRef] [Green Version]
- Miquel, S.; Haddou, M.B.; Day, J.E.L. A systematic review and meta-analysis of the effects of mastication on sustained attention in healthy adults. Physiol. Behav. 2019, 202, 101–115. [Google Scholar] [CrossRef]
- Yoo, I.; Kim, E.-J.; Lee, J.-H. Effects of chewing gum on driving performance as evaluated by the STISIM driving simulator. J. Phys. Ther. Sci. 2015, 27, 1823–1825. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.A.; Tyler, C.; Stansberry, S.A.; Moreno, J.P.; Foreyt, J.P. Brief report: Gum chewing affects standardized math scores in adolescents. J. Adolesc. 2012, 35, 455–459. [Google Scholar] [CrossRef]
- Hirano, Y.; Onozuka, M. Chewing and Attention: A Positive Effect on Sustained Attention. Biomed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Onyper, S.V.; Carr, T.L.; Farrar, J.S.; Floyd, B.R. Cognitive advantages of chewing gum. Now you see them, now you don’t. Appetite 2011, 57, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Tucha, L.; Simpson, W. The role of time on task performance in modifying the effects of gum chewing on attention. Appetite 2011, 56, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Mecklinger, L.; Maier, K.; Hammerl, M.; Lange, K.W. Chewing gum differentially affects aspects of attention in healthy subjects. Appetite 2004, 42, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Onozuka, M.; Fujita, M.; Watanabe, K.; Hirano, Y.; Niwa, M.; Nishiyama, K.; Saito, S. Mapping brain region activity during chewing: A functional magnetic resonance imaging study. J. Dent. Res. 2002, 81, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Li, J.; Lu, G.; Gong, X.; Yew, D.T. A fMRI study of age-related differential cortical patterns during cued motor movement. Brain Topogr. 2005, 17, 127–137. [Google Scholar] [CrossRef]
- Miles, C.; Charig, R.; Eva, H. Chewing gum as context: Effects in long-term memory. J. Behav. Neurosci. Res. 2008, 6, 1–5. [Google Scholar]
- Shiba, Y.; Nitta, E.; Hirono, C.; Sugita, M.; Iwasa, Y. Evaluation of mastication-induced change in sympatho-vagal balance through spectral analysis of heart rate variability. J. Oral Rehabil. 2002, 29, 956–960. [Google Scholar] [CrossRef]
- Farella, M.; Bakke, M.; Michelotti, A.; Marotta, G.; Martina, R. Cardiovascular responses in humans to experimental chewing of gums of different consistencies. Arch. Oral Biol. 1999, 44, 835–842. [Google Scholar] [CrossRef]
- Lexomboon, D.; Trulsson, M.; Wårdh, I.; Parker, M.G. Chewing Ability and Tooth Loss: Association with Cognitive Impairment in an Elderly Population Study. J. Am. Geriatr. Soc. 2012, 60, 1951–1956. [Google Scholar] [CrossRef]
- Tucha, L.; Koerts, J. Gum chewing and cognition: An overview. Neurosci. Med. 2012, 3, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Plesh, O.; Bishop, B.; McCall, W. Effect of gum hardness on chewing pattern. Exp. Neurol. 1986, 92, 502–512. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Foley, N.C.; Teasell, R.W.; Bhogal, S.K.; Speechley, M.R. Stroke rehabilitation evidence-based review: Methodology. Top. Stroke Rehabil. 2003, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.; Group, Cochrane Consumers and Communication Review Group. Cochrane Consumers and Communication Review Group: Data Synthesis and Analysis. June 2013. Available online: http://cccrg.cochrane.org (accessed on 6 April 2020).
- Simons, D.; Kidd, E.A.M.; Brighton, D.; Jones, B. The effect of chlorhexidine/xylitol chewing-gum on cariogenic salivary microf lora: A clinical trial in elderly patients. Caries Res. 1997, 31, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wennerholm, K.; Arends, J.; Birkhed, D.; Ruben, J.; Emilson, C.G.; Dijkman, A.G. Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque ph and mineral loss of enamel. Caries Res. 1987, 28, 48–54. [Google Scholar] [CrossRef]
- Tzakis, M.G.; Carlsson, G.E.; Kiliaridis, S. Effect of chewing training on mandibular postural position. J. Oral Rehabil. 1989, 16, 503–508. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Tzakis, M.G.; Carlsson, G.E. Short-term and long-term effects of chewing training on occlusal perception of thickness. Eur. J. Oral Sci. 1990, 98, 159–166. [Google Scholar] [CrossRef]
- Nakagawa, K.; Matsuo, K.; Takagi, D.; Morita, Y.; Ooka, T.; Hironaka, S.; Mukai, Y. Effects of gum chewing exercises on saliva secretion and occlusal force in community-dwelling elderly individuals: A pilot study. Geriatr. Gerontol. Int. 2017, 17, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzakis, M.G.; Karlsson, S.; Carlsson, G.E. Effects of intense chewing on some parameters of masticatory function. J. Prosthet. Dent. 1992, 67, 405–409. [Google Scholar] [CrossRef]
- Tzakis, M.G.; Kiliaridis, S.; Carlsson, G.E. Effect of chewing training on masticatory efficiency. Acta Odontol. Scand. 1989, 47, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Tzakis, M.G.; Kiliaridis, S.; Carlsson, G.E. Effect of a fatigue test and chewing training on masticatory muscles. J. Oral Rehabil. 1994, 21, 33–45. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Tzakis, M.G.; Carlsson, G.E. Effects of fatigue and chewing training on maximal bite force and endurance. Am. J. Orthod. Dentofac. Orthop. 1995, 107, 372–378. [Google Scholar] [CrossRef]
- Masumoto, N.; Yamaguchi, K.; Fujimoto, S. Daily chewing gum exercise for stabilizing the vertical occlusion. J. Oral Rehabil. 2009, 36, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Satoh, Y. Effects of gum chewing training on oral function in normal adults: Part 1 investigation of perioral muscle pressure. J. Dent. Sci. 2019, 14, 38–46. [Google Scholar] [CrossRef]
- Kim, C.; Miquel, S.; Thuret, S. A 3-month mastication intervention improves recognition memory. Nutr. Health Aging 2019, 5, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Helkimo, M. Studies on function and dysfunction of the masticatory system. II. Index for anamnestic and clinical dysfunction and occlusal state. Sven. Tandlak. Tidskr. 1974, 67, 101–121. [Google Scholar]
- Koc, D.; Dogan, A.; Bek, B. Bite Force and Influential Factors on Bite Force Measurements: A Literature Review. Eur. J. Dent. 2010, 04, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.W.; Altman, D.G.; Baranowski, T.; Bland, J.M.; Dawson, J.A.; Dhurandhar, N.V.; Dowla, S.; Fontaine, K.R.; Gelman, A.; Heymsfield, S.B.; et al. Childhood obesity intervention studies: A narrative review and guide for investigators, authors, editors, reviewers, journalists, and readers to guard against exaggerated effectiveness claims. Obes. Rev. 2019, 20, 1523–1541. [Google Scholar] [CrossRef] [PubMed]
Study (Year) | Study Design | Group | Mean Age & Range (Years) | #Subject (Sex) | Type of Training | Main Outcomes |
---|---|---|---|---|---|---|
Orofacial function studies | ||||||
Tzakis et al. (1989) [34] | Between-group | Training | NR (20 to 31) | 15 (10W, 7M) * | Chewing gum | Masticatory efficiency |
Control | NR (20 to 31) | 8 (4W, 4M) | No exercise | |||
Tzakis et al. (1994) [35] | Between-group | Training | NR (20 to 31) | 15 £ (10W, 7M) * | Chewing gum | Clinical examination and EMG recordings ¥ |
Control | NR (20 to 31) | 8 (4W, 4M) | No exercise | |||
Kiliaridis et al. (1995) [36] | Between-group | Training | NR (20 to 31) | 13 £ (10W, 7M) * | Chewing gum | Maximal bite force and endurance |
Control | NR (20 to 31) | 8 (4W, 4M) | No exercise | |||
Masumoto et al. (2009) [37] | Between-group | Training | NR | 35 (9W, 26M) | Chewing gum | Vertical occlusion |
Control | NR | 5 (NR) | No exercise | |||
Takahashi and Satoh (2019) [38] | Between-group (Experiment 1) | Training | 24.4 ± 1.9 | 12 (12M) | Chewing gum | Maximum tongue pressure and cheek pressure |
Control | 24.3 ± 2.1 | 12 (12M) | No exercise | |||
Cognitive function studies | ||||||
Kim et al. (2019) [39] | RCT | Training | 61 (NR) | 24 (11W, 13M) | Chewing gum | Pattern separation and recognition memory |
Control | 57 (NR) | 29 (14W, 15M) | No exercise |
Study | Type of Gum | Mouth Side | Time of the Day | Period | Weekly Frequency | Time Session (Min) |
---|---|---|---|---|---|---|
Orofacial function studies | ||||||
Tzakis et al. (1989) [34] | Special hard chewing-gum | NR | Preferable after meals | 4 weeks | 7× | 60 |
Tzakis et al. (1994) [35] | Special hard chewing-gum | NR | Preferable after meals | 4 weeks | 7× | 60 |
Kiliaridis et al. (1995) [36] | Special hard chewing gum | NR | Preferable after meals | 4 weeks | 7× | 60 |
Masumoto et al. (2009) [37] | Tooth brushing gum | NR | Before or after the 3 daily meals | 4 weeks | 7× | 30–45 (3 × 10–15 min) |
Takahashi and Satoh (2019) [38] | Hard chewing gum | Alternating between 10× on each side | NR | 3 months | 7× | 15 (3 × 5 min) |
Cognitive function studies | ||||||
Kim et al. (2019) [39] | Sugar free chewing gum | NR | Between 6 am and 12 pm; 13 pm and 6 pm; and 6 pm and 12 pm | 90 days | 7× | 30 (3 × 10 min) |
Study | Variable | Group | n | Pre Mean | Pre SD | Post Mean | Post SD | Mean Change (%Change) | p-Value |
---|---|---|---|---|---|---|---|---|---|
Orofacial function studies | |||||||||
Tzakis et al. (1989) [34] | Masticatory efficiency (%) | Training | 15 | 71.0 † | 6.1 † | 73.0 † | 7.1 † | 2.1 (2.9) £ | NS |
Control | 8 | 71.0 † | 8.3 † | 72.0 † | 8.3 † | 1.0 (1.5) £ | NS | ||
Tzakis et al. (1994) [35] | Mean postural EMG activity of the posterior temporal muscle (µV) | Training | 13 | 10.2 † | 10.5 ‡ | 8.3 † | 7.5 ‡ | −1.9 (−18.6) £ | NS |
Control | 8 | 7.9 † | 4.7 ‡ | 8.8 † | 9.5 ‡ | 0.9 (11.4) £ | NS | ||
Mean postural EMG activity of the anterior temporal muscle (µV) | Training | 13 | 3.6 † | 2.6 ‡ | 3.4 † | 2.5 ‡ | −0.2 (−5.6) £ | NS | |
Control | 8 | 4.2 † | 4.0 ‡ | 3.3 † | 2.8 ‡ | −0.9 (−21.4) £ | NS | ||
Mean postural EMG activity of the masseter muscle (µV) | Training | 13 | 1.8 † | 1.1 ‡ | 1.6 † | 0.7 ‡ | −0.2 (−11.1) £ | NS | |
Control | 8 | 2.2 † | 0.8 ‡ | 2.9 † | 2.2 ‡ | 0.7 (31.8) £ | NS | ||
Mean EMG activity of the posterior temporal muscle during maximal clenching in the intercuspal position (µV) | Training | 13 | 192.9 † | 68.2 ‡ | 251.6 † | 86.4 ‡ | 58.7 (30.4) £ | NS | |
Control | 8 | 158.3 † | 51.7 ‡ | 175.3 † | 76.7 ‡ | 17.0 (10.7) £ | NS | ||
Mean EMG activity of the anterior temporal muscle during maximal clenching in the intercuspal position (µV) | Training | 13 | 282.5 † | 141.4 ‡ | 276.3 † | 148.0 ‡ | −6.2 (−2.2) £ | NS | |
Control | 8 | 349.3 † | 97.1 ‡ | 332.1 † | 123.1 ‡ | −17.2 (−4.9) £ | NS | ||
Mean EMG activity of the masseter muscle during maximal clenching in the intercuspal position (µV) | Training | 13 | 201.3 † | 186.4 ‡ | 160.0 † | 130.1 ‡ | −41.3 (−20.5) £ | NS | |
Control | 8 | 185.5 † | 117.0 ‡ | 144.2 † | 58.5 ‡ | −41.3 (−22.3) £ | NS | ||
The mean relative loading of the posterior temporal muscle ¥ | Training | 13 | 7.8 | 11.8 | 3.9 | 3.8 | −3.9 (−50.0) £ | NS | |
Control | 8 | 5.7 | 3.7 | 5.8 | 6.7 | 0.1 (1.8) £ | NS | ||
The mean relative loading of the ¥ anterior temporal muscle | Training | 13 | 2.1 | 2.7 | 1.6 | 1.1 | 0.5 (−23.8) £ | NS | |
Control | 8 | 1.3 | 1.2 | 1.2 | 1.2 | −0.1 (−7.7) £ | NS | ||
The mean relative loading of the masseter muscle ¥ | Training | 13 | 2.3 | 2.7 | 1.6 | 1.1 | −0.7 (−30.4) £ | NS | |
Control | 8 | 1.9 | 1.5 | 2.0 | 1.0 | 0.1 (5.3) £ | NS | ||
Kiliaridis et al. (1995) [36] | Maximal bite force (N) | Training | 13 | 573 | 173 | 673 | 162 | 100 (17.5) £ | <0.001 |
Control | 8 | 676 | 192 | 710 | 191 | 34 (5.0) £ | NS | ||
Mean bite force for 10 s (N) | Training | 13 | 448 | 158 | 518 | 124 | 70 (15.6) £ | <0.01 | |
Control | 8 | 573 | 201 | 561 | 198 | −12 (−2.1) £ | NR | ||
Endurance time (seconds) | Training | 13 | 40.0 | 19.0 | 38.4 | 15.7 | −1.6 (−4.0) £ | NS | |
Control | 8 | 26.4 | 15.9 | 19.7 | 17.7 | −6.7 (−25.4) £ | NR | ||
Masumoto et al. (2009) [37] | Anterior occlusal contact force (N) | Training | 35 | 218.1 | 29.5 | 266.5 | 39.4 | 48.4 (25.0) | <0.05 |
Control | 5 | NR | NR | NR | NR | NR | NR | ||
Posterior occlusal contact force (N) | Training | 35 | 954.5 | 68.1 | 1101.8 | 64.7 | 147.3 (18.5) | <0.05 | |
Control | 5 | NR | NR | NR | NR | NR | NR | ||
Total occlusal contact force (N) | Training | 35 | 1172.5 | 83.6 | 1367.4 | 79.5 | 194.9 (19.1) | <0.05 | |
Control | 5 | NR | NR | NR | NR | NR | NS | ||
Anterior average occlusal contact pressure (N/mm2) | Training | 35 | 37.9 | 5.7 | 34.9 | 5.4 | −3.0 (−7.9) £ | NS | |
Control | 5 | NR | NR | NR | NR | NR | NR | ||
Posterior average occlusal contact pressure (N/mm2) | Training | 35 | 36.3 | 6.1 | 34.6 | 4.2 | −1.7 (−4.7) £ | NS | |
Control | 5 | NR | NR | NR | NR | NR | NR | ||
Total average occlusal contact pressure (N/mm2) | Training | 35 | 36.4 | 5.8 | 34.6 | 4.1 | −1.8 (−5.0) £ | NS | |
Control | 5 | NR | NR | NR | NR | NR | NR | ||
Takahashi and Satoh (2019) [38] | Maximum tongue pressure (kPa) | Training | 12 | 40.1 † | 16.9 † | 51.0 † | 15.5 † | 10.9 (27.1) £ | <0.01 |
Control | 12 | 40.9 † | 22.5 † | 40.9 † | 23.1 † | 0.0 (0.0) £ | NS | ||
Cheek pressure (kPa) | Training | 12 | 15.4 † | 7.0 † | 19.3 † | 8.3 † | 3.9 (25.2) £ | <0.01 | |
Control | 12 | 15.2 † | 5.2 † | 15.5 † | 6.4 † | 0.3 (2.1) £ | NS | ||
Cognitive function studies | |||||||||
Kim et al. (2019) [39] | Lure discrimination index | Training | 23 | 0.27 | NR | 0.21 | NR | −0.06 (−22.2) £ | NS |
Control | 28 | 0.25 | NR | 0.24 | NR | −0.01 (−4.0) £ | NS | ||
Recognition score | Training | 23 | 0.70 | NR | 0.81 | NR | 0.11 (17.7) £ | <0.05 | |
Control | 28 | 0.82 | NR | 0.79 | NR | −0.03 (−3.7) £ | NS |
Study | Eligibility Criteria | Random Allocation | Concealed Allocation | Baseline Comparability | Blind Subjects | Blind Therapists | Blind Assessors | Adequate Follow-up | Intention-to-Treat Analysis | Between-Group Comparisons | Point Estimates and Variability | PEDro Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Orofacial function studies | ||||||||||||
Tzakis et al. (1994) [34] | Y | N | N | Y | N | N | N | Y | Y | N | Y | 4 |
Tzakis et al. (1994) [35] | Y | N | N | Y | N | N | Y | Y | Y | N | Y | 5 |
Kiliaridis et al. (1995) [36] | Y | N | N | N | N | N | N | Y | Y | N | Y | 3 |
Masumoto et al. (2009) [37] | Y | N | N | N | N | N | N | Y | Y | N | Y | 3 |
Takahashi and Satoh (2019) [38] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Cognitive function studies | ||||||||||||
Kim et al. (2019) [39] | Y | Y | N | N | N | N | N | Y | Y | Y | Y | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, R.B.; da Silva, W.F.; de Lira, C.A.B. Effects of Chewing Training on Orofacial and Cognitive Function in Healthy Individuals: A Systematic Review. Cosmetics 2020, 7, 23. https://doi.org/10.3390/cosmetics7020023
Viana RB, da Silva WF, de Lira CAB. Effects of Chewing Training on Orofacial and Cognitive Function in Healthy Individuals: A Systematic Review. Cosmetics. 2020; 7(2):23. https://doi.org/10.3390/cosmetics7020023
Chicago/Turabian StyleViana, Ricardo B., Wellington F. da Silva, and Claudio A.B. de Lira. 2020. "Effects of Chewing Training on Orofacial and Cognitive Function in Healthy Individuals: A Systematic Review" Cosmetics 7, no. 2: 23. https://doi.org/10.3390/cosmetics7020023
APA StyleViana, R. B., da Silva, W. F., & de Lira, C. A. B. (2020). Effects of Chewing Training on Orofacial and Cognitive Function in Healthy Individuals: A Systematic Review. Cosmetics, 7(2), 23. https://doi.org/10.3390/cosmetics7020023