Nanoemulsions as a Form of Perfumery Products
Abstract
:1. Introduction
2. Alcohol-Free Fragrance Products
3. Fragrance Products in the Form of Microemulsions
4. Perfumes in the Form of Nanoemulsions
4.1. Characterization of Nanoemulsions
4.2. Nanoemulsions as Fragrance Carriers
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Jabłońska-Trypuć, A.; Fabiszewski, R. Sensoryka i Podstawy Perfumerii; MedPharm: Wrocław, Polska, 2008; pp. 91–95. ISBN 978-83-60466-52-0. [Google Scholar]
- Syariena, A.; Puziah, H. Rapid Determination of Residual Ethanol in Perfumery Products Using Headspace Gas Chromatography-Mass Spectrometry. Middle East J. Sci. Res. 2014, 22, 432–437. [Google Scholar]
- Pendlington, R.U.; Whittle, E.; Robinson, J.A.; Howes, D. Fate of ethanol topically applied to skin. Food Chem. Toxicol. 2001, 39, 169–174. [Google Scholar] [CrossRef]
- Ophaswongse, S.; Maibach, H.I. Alcohol dermatitis: Allergic contact dermatitis and contact urticaria syndrome. A review. Contact Dermat. 1994, 30, 1–6. [Google Scholar] [CrossRef]
- Brud, S.B.; Konopacka-Brud, I. Podstawy Perfumerii; Oficyna Wydawnicza MA: Łódź, Polska, 2009; pp. 231–232. ISBN 978-83-923517-2-6. [Google Scholar]
- Lee, H.; Choi, C.H.; Abbaspourrad, A.; Wesner, C.; Caggioni, M.; Zhu, T.; Weitz, D.A. Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. ACS Appl. Mater. Interfaces 2016, 8, 4007–4013. [Google Scholar] [CrossRef] [PubMed]
- Sadovoy, A.V.; Lomova, M.V.; Antipina, M.N.; Braun, N.A.; Sukhorukov, G.B.; Kiryukhin, M.V. Layer-by-Layer Assembled Multilayer Shells for Encapsulation and Release of Fragrance. ACS Appl. Mater. Interfaces 2013, 5, 8948–8954. [Google Scholar] [CrossRef] [PubMed]
- Herman, S. Fragrance. In Cosmetic Science and Technology—Theoretical Principles and Applications; Sakamoto, K., Lochhead, R., Maibach, H., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–283. ISBN 9780128020050. [Google Scholar]
- van Soest, J. Encapsulation of Fragrances and Flavours: A Way to Control Odour and Aroma in Consumer Products. In Flavours and Fragrances; Berger, R.G., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; pp. 439–455. ISBN 978-3-540-49338-9. [Google Scholar]
- Paredes, A.J.; Asencio, C.M.; Manuel, L.J.; Allemandi, D.A.; Palma, S.D. Nanoencapsulation in the food industry: Manufacture, applications and characterization. J. Food Bioeng. Nanoprocess. 2016, 1, 56–79. [Google Scholar]
- Ghayempour, S.; Montazer, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J. Microencapsul. 2016, 33, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E. Nanoencapsulation of Essential Oils: Potential Application in Food Preservation and in the Perfumes Industry. In Essential Oils and Aromas: Green Extractions and Applications; Chemat, F., Ed.; Dehradun-Har Krishan Bhalla & Sons: Dehradun, India, 2009; pp. 184–193. [Google Scholar]
- Herman, S. Fragrancing emulsions. C & T 1994, 109, 71–75. [Google Scholar]
- Friberg, S.E.; Zhang, Z.; Ganzuo, L.; Aikens, P.A. Stability factors and vapor pressures in a model fragrance emulsion system. J. Cosmet. Sci. 1999, 50, 203–219. [Google Scholar]
- Behan, J.M.; Ness, J.N.; Perring, K.D.; Smith, W.M. Perfumed Structured Emulsion in Personal Products. U.S. Patent US5190915A, 2 March 1993. [Google Scholar]
- Watabe, N.; Tokuoka, Y.; Kawashima, N. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen. J. Chem. 2013, 2013, 971805. Available online: https://www.hindawi.com/journals/jchem/2013/971805/ (accessed on 5 September 2018). [CrossRef]
- Behan, J.M.; Ness, J.N.; Traas, P.C.; Vitsas, J.S.; Willis, B.J. Aqueous Perfume Oil Microemulsions. U.S. Patent US5374614A, 20 December 1994. [Google Scholar]
- Guenin, E.P.; Trotzinka, K.A.; Smith, L.C.; Warren, C.B.; Chung, S.L.; Tan, C.K. Alcohol Free Perfumes. U.S. Patent US5468725A, 21 November 1995. [Google Scholar]
- Shick, R.A.; Piechocki, C.; Tucker, C.J.; Gatz, L.A. Ethanol-Free Aqueous Perfume Composition. U.S. Patent US8343521B2, 1 January 2013. [Google Scholar]
- Kamada, M.; Shimizu, S.; Aramaki, K. Manipulation of the viscosity behavior of wormlike micellar gels by changing the molecular structure of added perfumes. Colloids Surf. A 2014, 458, 110–116. [Google Scholar] [CrossRef]
- Juszynski, M.; Azoury, R.; Raphaeloff, R. Fragrance-Loaded Lyophilized Liposomes. SOFW 1992, 118, 811–815. [Google Scholar]
- Yunfu, H. Alcohol-Free Transparent Perfume Composition. Patent CN103637942(A), 4 March 2015. [Google Scholar]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Nanoemulsions: Characteristics and methods for preparation. Przem. Chem. 2014, 93, 1000–1005. [Google Scholar]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid. Acta Biochim. Pol. 2015, 62, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Rheological properties of nanoemulsions stabilized by Polysorbate 80. Chem. Eng. Technol. 2015, 38, 1469–1476. [Google Scholar] [CrossRef]
- Chime, S.A.; Kenechukwu, F.C.; Attama, A.A. Nanoemulsions—Advances in formulation, characterization and applications in drug delivery. In Application of Nanotechnology in Drug Delivery; Sezer, A.D., Ed.; IntechOpen: London, UK, 2014; pp. 77–126. ISBN 978-953-51-1628-8. [Google Scholar]
- Tirnaksiz, F.; Akkus, S.; Celebi, N. Nanoemulsions as Drug Delivery Systems. In Colloids in Drug Delivery; Fanun, M., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 221–224. ISBN 978-1-4398-1826-8. [Google Scholar]
- Thakur, N.; Garg, G. Nanoemulsions: A review on various pharmaceutical application. Glob. J. Pharmacol. 2012, 6, 222–225. [Google Scholar]
- Gursoy, R.N.; Benita, S. Self-Emulsifying Drug Delivery Systems (SEDDS) for Improved Oral Delivery of Lipophilic Drugs. Biomed. Pharmacother. 2004, 58, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, N.; Dupuis, F.; Arab-Tehrany, E.; Denis, F.M.; Paris, C.; Lartaud, I.; Linder, M. Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions. Eur. J. Pharm. Sci. 2012, 47, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Çınar, K. A review on nanoemulsions: Preparation methods and stability. Trakya Univ. J. Eng. Sci. 2017, 18, 73–83. [Google Scholar]
- Sole, I.; Pey, C.M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010, 344, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Solè, I.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutiérrez, J.M. Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006, 22, 8326–8332. [Google Scholar] [CrossRef] [PubMed]
- Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 2, 626–639. [Google Scholar] [CrossRef]
- Honga, J.Y.; Kim, J.K.; Song, Y.K.; Park, J.S.; Kim, C.K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release 2006, 110, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P.; Lee, B.-J.; Oh, D.H.; Kim, J.O.; Lee, Y.-I.; Kimc, D.-D.; Jeec, J.-P.; Lee, Y.-B.; Woo, J.S.; Yonga, C.S.; et al. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int. J. Pharm. 2009, 374, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chiang, B. Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Li, P.H.; Lu, W.H. Effects of storage conditions on the physical stability of d-limonene nanoemulsions. Food Hydrocoll. 2016, 53, 218–224. [Google Scholar] [CrossRef]
- Jafari, S.; He, Y.; Bhandari, B. Production of sub-micron emulsuions by ultrasound and microfluidization techniques. J. Food Eng. 2007, 82, 478–488. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yuan, Q.; Liang, H.; Vriesekoop, F. Proces optimization and stability of d-limonene nanoemulsions prepared by catastrophic phase inversion method. J. Food. Eng. 2013, 119, 419–424. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. J Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon Oil Nanoemulsion Formulation by Ultrasonic Emulsification: Investigation of Its Bactericidal Activity. J. Nanosci. Nanotechnol. 2013, 13, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 2013, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Mirmajidi Hashtjin, A.; Abbasi, S. Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll. 2015, 44, 40–48. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L. Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food Bioprocess Technol. 2013, 6, 2439–2446. [Google Scholar] [CrossRef]
- Liang, R.; Xu, S.; Shoemaker, C.F.; Li, Y.; Zhong, F.; Huang, Q. Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. J. Agric. Food Chem. 2012, 60, 7548–7555. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, S.; Clarke, S.K.; Nirmala, M.J.; Tyagi, B.K.; Mukherjee, A.; Chandrasekaran, N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014, 104, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.P.; de Almeida, F.B.; Silveira, A.N.; Gonzalez, M.S.; Mello, C.B.; Feder, D.; Apolinário, R.; Santos, M.G.; Carvalho, J.C.; Tietbohl, L.A.; et al. Development of an insecticidal nanoemulsion with Manilkara subsericea extract. J. Nanobiotechnol. 2014, 18, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Saranya, S.; Chandrasekaran, N.; Mukherjee, A. Antibacterial activity of eucalyptus oil nanoemulsion against Proteus mirabilis. Int. J. Pharm. Pharm. Sci. 2012, 4, 668–671. [Google Scholar]
- Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol. 2012, 159, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Donsi, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Mathias, D.; Amaral, F.; Bhargava, K. Essential Oil Nanoemulsions and Food Application. Adv. Food Technol. Nutr. Sci. Open J. 2015, 1, 84–87. [Google Scholar]
- Zhang, Z.; Denler, T.; Friberg, S. Phase diagram and emulsion stability of surfactant-fragrance systems. Int. J. Cosm. Sci. 2000, 22, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Dumanois, M.; Gueyne, N. Alcohol-Free Base for Aqueous Perfume Composition, and Alcohol-Free Aqueous Perfume Composition Comprising Same. U.S. Patent US2003/0186836A1, 2 October 2003. [Google Scholar]
- Bleuez, L.; Porcu, M. Perfume Composition with Reduced Alcohol Content. Eur. Patent EP2127632 A1, 2 December 2009. [Google Scholar]
- Sikora, E.; Miastkowska, M.; Lason, E.; Gut, K. Method of Making Non-Alcoholic Perfumes. Poland Patent Appl. P.426105, 28 June 2018. [Google Scholar]
- Sikora, E.; Miastkowska, M.; Lason, E.; Gut, K. Non-Alcoholic Perfumes and the Method of Making Non-Alcoholic Perfumes. Poland Patent Appl. P.426104, 28 June 2018. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, E.; Małgorzata, M.; Wolinska Kennard, K.; Lason, E. Nanoemulsions as a Form of Perfumery Products. Cosmetics 2018, 5, 63. https://doi.org/10.3390/cosmetics5040063
Sikora E, Małgorzata M, Wolinska Kennard K, Lason E. Nanoemulsions as a Form of Perfumery Products. Cosmetics. 2018; 5(4):63. https://doi.org/10.3390/cosmetics5040063
Chicago/Turabian StyleSikora, Elzbieta, Miastkowska Małgorzata, Katarzyna Wolinska Kennard, and Elwira Lason. 2018. "Nanoemulsions as a Form of Perfumery Products" Cosmetics 5, no. 4: 63. https://doi.org/10.3390/cosmetics5040063
APA StyleSikora, E., Małgorzata, M., Wolinska Kennard, K., & Lason, E. (2018). Nanoemulsions as a Form of Perfumery Products. Cosmetics, 5(4), 63. https://doi.org/10.3390/cosmetics5040063