Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review
Abstract
1. Introduction
- To summarize the current landscape of anti-aging cosmeceuticals, focusing on mechanisms of action;
- To critically assess the clinical and preclinical evidence supporting their efficacy; and
- To examine the regulatory frameworks and consumer trends that influence their development and market adoption.
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
- Published in English;
- Described the mechanism of action, clinical evaluation, or formulation science of anti-aging cosmeceuticals;
- Provided data on efficacy, safety, or regulatory context.
- Did not address anti-aging or cosmeceutical applications;
- Were not supported by experimental or clinical data;
- Lacked adequate methodological transparency or were duplicated across sources.
2.3. Data Extraction and Synthesis
- Study design and sample size;
- Type of active ingredient(s);
- Biological mechanism and target;
- Measured endpoints (e.g., wrinkle depth, skin hydration, elasticity);
- Formulation type and delivery system;
- Reported efficacy and safety outcomes;
- Regulatory classifications and market claims.
2.4. Compliance and Ethics
3. Results
3.1. Key Concepts and Definitions
- Melatonin, via membrane-bound MT1/MT2 receptors, activates PI3K/AKT/mTOR, MAPK/ERK, and Wnt/β-catenin pathways, leading to dermal fibroblast proliferation, increased collagen and elastin synthesis, stimulation of cutaneous stem cells, and robust antioxidant protection [24].
- Estrogens exert effects both through membrane estrogen receptors (mER) and nuclear receptors (ERα/ERβ). The membrane route promotes fibroblast proliferation and extracellular matrix (ECM)
- Synthesis via PI3K/AKT and MAPK/ERK signaling, while nuclear receptor activation drives TGF-β–mediated gene transcription, enhancing photoprotection and anti-inflammatory responses [25].
- Androgens act through androgen receptors (AR), regulating the hair follicle cycle, increasing sebum production, and modulating TGF-β signaling [26].
Ingredient Class (References) | Example Actives | Primary Mechanisms of Action | Key Clinical Evidence |
---|---|---|---|
Retinoids [4,12,30,31] | Retinol, Retinoic Acid, Retinyl Retinoate, Hydroxypinacolone Retinoate | Stimulate collagen synthesis, normalize keratinocyte differentiation, upregulate extracellular matrix genes via RAR activation | 0.3% retinol improved wrinkle depth/texture in 12 weeks with less erythema than tretinoin; next-gen retinoids (retinyl retinoate, HPR) show improved tolerability but limited long-term data |
Peptides–Signal [29,32,33] | Palmitoyl pentapeptide-4 (Matrixyl) | Stimulate fibroblast activity, enhance collagen & glycosaminoglycan synthesis | RCTs: improved elasticity and reduced fine lines in 4–8 weeks |
Peptides–Neurotransmission-Inhibiting [29,32] | Acetyl hexapeptide-3 (Argireline) | Inhibit SNARE complex, reduce dynamic wrinkles (botulinum-like effect) | Periorbital wrinkle reduction in 8 weeks; less potent than Botox but safer |
Peptides–Carrier [33,34] | Copper tripeptide-1 | Deliver trace elements for enzymatic repair, antioxidant defense, extracellular matrix stabilization | In vivo: improved elasticity, pigmentation, and wound healing; liposomal delivery enhances penetration |
Antioxidants [34,35,36,37,38] | Vitamin C, CoQ10 | Neutralize reactive oxygen species, photoprotection, mitochondrial support, anti-inflammatory | Vitamin C + E + ferulic acid doubled UV photoprotection; topical CoQ10 improved smoothness, mitochondrial function |
α-/β-Hydroxy Acids [34,38] | Glycolic acid, Salicylic acid | Promote exfoliation, epidermal renewal, stimulate collagen via controlled wounding | 10% glycolic acid for 12 weeks improved fine lines and lentigines; encapsulated delivery improves tolerability |
Botanical Extracts/Polyphenols [39,40,41,42] | Bakuchiol, Epigallocatechin gallate, Resveratrol, Curcumin | Antioxidant, anti-inflammatory, inhibit matrix metalloproteinases, stimulate collagen, photoprotection | Bakuchiol comparable to retinol over 12 weeks with less irritation; Epigallocatechin gallate nanoparticles enhanced stability/anti-photoaging; Oral microencapsulated curcumin improved wrinkles & pigmentation in 42 days; Resveratrol improved elasticity/density |
3.2. Recent Advances in Anti-Aging Cosmeceuticals
3.2.1. Retinoids and Retinol Derivatives
3.2.2. Antioxidants: Vitamin C, Coenzyme Q10
3.3. Peptides: Signal Modulators for Skin Repair
3.4. α-Hydroxy Acids and β-Hydroxy Acids: Exfoliation and Renewal
3.5. Botanical Extracts: Multifunctional and Natural Alternatives
4. Regulatory, Safety, and Consumer Trends
4.1. Regulatory Frameworks
4.2. Safety Assessment and Testing
5. Future Perspectives and Challenges
5.1. Personalized and Precision Cosmeceuticals
5.2. Regulatory Harmonization and Global Claims Standards
5.3. Natural Actives and Sustainability
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kligman, D. Cosmeceuticals. Dermatol. Clin. 2000, 18, 609–615. [Google Scholar] [CrossRef]
- Draelos, Z.D. The cosmeceutical realm. Clin. Dermatol. 2008, 26, 627–632. [Google Scholar] [CrossRef]
- Andrade, L.F.; Hernandez, L.E.; Mashoudy, K.D.; Lalama, M.J.; Saaraswat, M.; Scheinkman, R.J.; Hu, S. A Cost-Based Analysis of Anti-aging Products Across Four Major United States Retailers. Cureus 2023, 15, e46596. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Date, A.; Patravale, V.; Korting, H.C.; Roeder, A.; Weindl, G. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety. Clin. Interv. Aging 2006, 1, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L.S. Less-known botanical cosmeceuticals. Dermatol. Ther. 2007, 20, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinol 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- U.S. FDA. Is It a Cosmetic, a Drug, or Both? Available online: https://www.fda.gov (accessed on 8 August 2025).
- Dayan, N.; Kromidas, L. Formulating, Packaging, and Marketing of Natural Cosmetic Products; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Peters, D.; Choi, J. Status of Cosmetics Regulations in Korea. Int. Chem. Regul. Law Rev. 2020, 3, 73–80. [Google Scholar] [CrossRef]
- Ando, H.; Matsui, M.S.; Ichihashi, M. Quasi-Drugs Developed in Japan for the Prevention or Treatment of Hyperpigmentary Disorders. Int. J. Mol. Sci. 2010, 11, 2566–2575. [Google Scholar] [CrossRef]
- Makhakhe, L. The role of vitamin C on the skin. S. Afr. Fam. Pract. 2025, 67, e1–e7. [Google Scholar] [CrossRef]
- Zasada, M.; Budzisz, E. Retinoids: Active molecules influencing skin structure formation in cosmetic and dermatological treatments. Adv. Dermatol. Allergol. 2019, 36, 392–397. [Google Scholar] [CrossRef]
- Correia, G.; Magina, S. Efficacy of topical vitamin C in melasma and photoaging: A systematic review. J. Cosmet. Dermatol. 2023, 22, 1938–1945. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.K.; Bojanowski, K. Bakuchiol: A retinol—like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int. J. Cosmet. Sci. 2014, 36, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M. Skin barrier function. Curr. Allergy Asthma Rep. 2008, 8, 299–305. [Google Scholar] [CrossRef]
- Puglia, C.; Bonina, F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv. 2012, 9, 429–441. [Google Scholar] [CrossRef]
- Klinngam, W.; Chaiwichien, A.; Osotprasit, S.; Ruktanonchai, U.; Kanlayavattanakul, M.; Lourith, N.; Wongrakpanich, A.; Teeranachaideekul, V.; Iempridee, T. Longevity cosmeceuticals as the next frontier in cosmetic innovation: A scientific framework for substantiating product claims. Front. Aging 2025, 6, 1586999. [Google Scholar] [CrossRef] [PubMed]
- Dureja, H.; Kaushik, D.; Gupta, M.; Kumar, V.; Lather, V. Cosmeceuticals: An emerging concept. Indian J. Pharmacol. 2005, 37, 155. [Google Scholar] [CrossRef]
- Lavker, R.M. Structural Alterations in Exposed and Unexposed Aged Skin. J. Investig. Dermatol. 1979, 73, 59–66. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Furman, D.; Auwerx, J.; Bulteau, A.L.; Church, G.; Couturaud, V.; Crabbe, L.; Davies, K.; Decottignies, A.; Gladyshev, V.; Kennedy, B.; et al. Skin health and biological aging. Nat. Aging. 2025, 5, 1195–1206. [Google Scholar] [CrossRef]
- Naharro-Rodriguez, J.; Bacci, S.; Hernandez-Bule, M.L.; Perez-Gonzalez, A.; Fernandez-Guarino, M. Decoding Skin Aging: A Review of Mechanisms, Markers, and Modern Therapies. Cosmetics 2025, 12, 144. [Google Scholar] [CrossRef]
- Feng, C.; Chen, X.; Yin, X.; Jiang, Y.; Zhao, C. Matrix Metalloproteinases on Skin Photoaging. J. Cosmet. Dermatol. 2024, 23, 3847–3862. [Google Scholar] [CrossRef]
- Rusanova, I.; Martínez-Ruiz, L.; Florido, J.; Rodríguez-Santana, C.; Guerra-Librero, A.; Acuña-Castroviejo, D.; Escames, G. Protective Effects of Melatonin on the Skin: Future Perspectives. Int. J. Mol. Sci. 2019, 20, 4948. [Google Scholar] [CrossRef]
- Shah, M.G.; Maibach, H.I. Estrogen and Skin. Am. J. Clin. Dermatol. 2001, 2, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Degitz, K. Androgen action on human skin—From basic research to clinical significance. Exp. Dermatol. 2004, 13 (Suppl. S4), 5–10. [Google Scholar] [CrossRef] [PubMed]
- Thiboutot, D. Acne: Hormonal concepts and therapy. Clin. Dermatol. 2004, 22, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Danby, F.W. Turning acne on/off via mTORC1. Exp. Dermatol. 2013, 22, 505–506. [Google Scholar] [CrossRef] [PubMed]
- Aruan, R.R.; Hutabarat, H.; Widodo, A.A.; Firdiyono, M.T.C.C.; Wirawanty, C.; Fransiska, L. Double-blind, Randomized Trial on the Effectiveness of Acetylhexapeptide-3 Cream and Palmitoyl Pentapeptide-4 Cream for Crow’s Feet. J. Clin. Aesthet. Dermatol. 2023, 16, 37–43. [Google Scholar]
- Farris, P.; Berson, D.; Bhatia, N.; Goldberg, D.; Lain, E.; Mariwalla, K.; Zeichner, J.; Miller, D.; McGuire, T.; Kizoulis, M. Efficacy and Tolerability of Topical 0.1% Stabilized Bioactive Retinol for Photoaging: A Vehicle-Controlled Integrated Analysis. J. Drugs Dermatol. 2024, 23, 209–215. [Google Scholar]
- Fang, W.; Qiao, J.; Zhang, F.; Chen, M.; Bian, Q. A Functional Skincare Formulation Mixed With Retinyl Propionate, Hydroxypinacolone Retinoate, and Vitamin C on Antiaging and Whitening Han Women in Shanghai, China. J. Cosmet. Dermatol. 2025, 24, e16747. [Google Scholar] [CrossRef]
- Mortazavi, S.M.; Mohammadi Vadoud, S.A.; Moghimi, H.R. Topically applied GHK as an anti-wrinkle peptide: Advantages, problems and prospective. BioImpacts 2024, 15, 30071. [Google Scholar] [CrossRef]
- Pintea, A.; Manea, A.; Pintea, C.; Vlad, R.A.; Bîrsan, M.; Antonoaea, P.; Rédai, E.; Ciurba, A. Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review. Biomolecules 2025, 15, 88. [Google Scholar] [CrossRef]
- Dymek, M.; Olechowska, K.; Hąc-Wydro, K.; Sikora, E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023, 15, 2485. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Bergemann, J.; Diembeck, W.; Ennen, J.; Gohla, S.; Harris, I.; Jacob, J.; Kielholz, J.; Mei, W.; Pollet, D.; et al. Coenzyme Q10, a cutaneous antioxidant and energizer. BioFactors 1999, 9, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Jaros-Sajda, A.; Budzisz, E.; Erkiert-Polguj, A. Ascorbic Acid Treatments as Effective and Safe Anti-Aging Therapies for Sensitive Skin. Antioxidants 2024, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Arkan Yousif, H.; Al-Ani, I.; Hajleh, M.N.A.; Matalqah, S.; Dayyih, W.A.; Al-Dujaili, E.A. Preparation and Evaluation of Complexed Ubiquinone (Coenzyme Q10) Antiaging Hyaluronic Acid–Vitamin C Serum for Skin Care. J. Cosmet. Dermatol. 2025, 24, e16706. [Google Scholar] [CrossRef] [PubMed]
- Karwal, K.; Mukovozov, I. Topical AHA in Dermatology: Formulations, Mechanisms of Action, Efficacy, and Future Perspectives. Cosmetics 2023, 10, 131. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Rybak, I.; Ellis, S.R.; Notay, M.; Trivedi, M.; Burney, W.; Vaughn, A.; Nguyen, M.; Reiter, P.; Bosanac, S.; et al. Prospective, randomized, double-blind assessment of topical bakuchiol and retinol for facial photoageing. Br. J. Dermatol. 2019, 180, 289–296. [Google Scholar] [CrossRef]
- Huang, Z.J.; Zhou, X.H.; Wen, W.Q.; Huang, Z.T.; Xuan, J.; Gui, P.; Peng, W.; Wang, G. Enhanced skin benefits of EGCG loaded in nonapeptide-1-conjugated mesoporous silica nanoparticles to reverse skin photoaging. Int. J. Pharm. 2024, 665, 124690. [Google Scholar] [CrossRef]
- Farris, P.; Yatskayer, M.; Chen, N.; Krol, Y.; Oresajo, C. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin e for treatment of mild to moderately photodamaged skin. J. Drugs Dermatol. 2014, 13, 1467–1472. [Google Scholar]
- Okamoto, S.; Kakimaru, S.; Koreishi, M.; Sakamoto, M.; Nakamura, Y.; Ando, H.; Tsujino, Y.; Satoh, A. Resveratrol, a food-derived polyphenol, promotes Melanosomal degradation in skin fibroblasts through coordinated activation of autophagy, lysosomal, and antioxidant pathways. J. Funct. Foods 2025, 125, 106672. [Google Scholar] [CrossRef]
- Mambwe, B.; Mellody, K.T.; Kiss, O.; O’Connor, C.; Bell, M.; Watson, R.E.B.; Langton, A.K. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int. J. Cosmet. Sci. 2025, 47, 45–57. [Google Scholar] [CrossRef]
- Milosheska, D.; Roškar, R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv. Ther. 2022, 39, 5351–5375. [Google Scholar] [CrossRef] [PubMed]
- Charoenputtakhun, P.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier. Pharm. Dev. Technol. 2014, 19, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Zasada, M.; Budzisz, E.; Erkiert-Polguj, A. A Clinical Anti-Ageing Comparative Study of 0.3 and 0.5% Retinol Serums: A Clinically Controlled Trial. Skin Pharmacol. Physiol. 2020, 33, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Hu, F.; Xu, H.; Huang, J.; Wu, C.; Zhang, J.; Ye, R. High Stability and Low Irritation of Retinol Propionate and Hydroxypinacolone Retinoate Supramolecular Nanoparticles with Effective Anti-Wrinkle Efficacy. Pharmaceutics 2023, 15, 731. [Google Scholar] [CrossRef]
- Kruger, L.; Bambino, K.; Schmalenberg, K.; Santhanam, U.; Orentreich, D.; Orentreich, C.; Logerfo, J.; Saliou, C. Efficacy of Topical Hydroxypinacolone Retinoate-Peptide Product Versus Fractional CO2 Laser in Facial Aging. J. Cosmet. Dermatol. 2025, 24, e16621. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, F.; Hu, X.; Xie, Y.; Du, L.; Ye, R. The synergistic effect of retinyl propionate and hydroxypinacolone retinoate on skin aging. J. Cosmet. Dermatol. 2023, 22, 2040–2049. [Google Scholar] [CrossRef]
- Pullar, J.; Carr, A.; Vissers, M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef]
- Lin, F.H.; Lin, J.Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Angelica Selim, M.; Monteiro-Riviere, N.; Grichnik, J.; Zielinski, J.; Pinnell, S. Ferulic Acid Stabilizes a Solution of Vitamins C and E and Doubles its Photoprotection of Skin. J. Investig. Dermatol. 2005, 125, 826–832. [Google Scholar] [CrossRef]
- Addor, F.A.S.; Esposito, A.C.C.; Lima Ede, A.; Portilho, L.; Yamaguchi, E.M.; Ypiranga, S. Consenso multidisciplinar sobre os benefícios da vitamina C tópica. Surg. Cosmet. Dermatol. 2025, 17, 2. [Google Scholar] [CrossRef]
- Lain, E.T.; Agrawal, N.; Ruvolo, E.; Weise, J.M.; Callender, V.D. The Role of Coenzyme Q10 in Skin Aging and Opportunities for Topical Intervention: A Review. J. Clin. Aesthet. Dermatol. 2024, 17, 50–55. [Google Scholar]
- Ayunin, Q.; Miatmoko, A.; Soeratri, W.; Erawati, T.; Susanto, J.; Legowo, D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci. Rep. 2022, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Akombaetwa, N.; Ilangala, A.B.; Thom, L.; Memvanga, P.B.; Witika, B.A.; Buya, A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023, 15, 656. [Google Scholar] [CrossRef] [PubMed]
- De Souza Guedes, L.; Martinez, R.M.; Bou-Chacra, N.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants 2021, 10, 1034. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Löw, M.; Keck, C.M.; Valenta, C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Lee, S.G.; Kang, S.M.; Kang, H. Wrinkle Reduction Using Tetrapeptide-68 Contained in an O/W Formulation: A Randomized Double-Blind Placebo-Controlled Study. Pharmaceutics 2024, 16, 987. [Google Scholar] [CrossRef]
- Ditre, C.M.; Griffin, T.D.; Murphy, G.F.; Sueki, H.; Telegan, B.; Johnson, W.C.; Yu, R.; Van Scott, E. Effects of α-hydroxy acids on photoaged skin: Apilot clinical, histologic, and ultrastructural study. J. Am. Acad. Dermatol. 1996, 34, 187–195. [Google Scholar] [CrossRef]
- Blanes-Mira, C.; Clemente, J.; Jodas, G.; Gil, A.; Fernández-Ballester, G.; Ponsati, B.; Gutierrez, L.; Pérez-Payá, E.; Ferrer-Montiel, A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 2002, 24, 303–310. [Google Scholar] [CrossRef]
- Gorouhi, F.; Maibach, H.I. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Robinson, L.R.; Fitzgerald, N.C.; Doughty, D.G.; Dawes, N.C.; Berge, C.A.; Bissett, D.L. Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin 1. Int. J. Cosmet. Sci. 2005, 27, 155–160. [Google Scholar] [CrossRef]
- Schagen, S. Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef]
- Badilli, U.; Inal, O. Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers. Polymers 2025, 17, 798. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Nie, T.; Zhang, L.; Liu, X.; Deng, H. Peptides in Cosmetics: From Pharmaceutical Breakthroughs to Skincare Innovations. Cosmetics 2025, 12, 107. [Google Scholar] [CrossRef]
- Tang, S.C.; Yang, J.H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef] [PubMed]
- Fartasch, M.; Teal, J.; Menon, G.K. Mode of action of glycolic acid on human stratum corneum: Ultrastructural and functional evaluation of the epidermal barrier. Arch. Dermatol. Res. 1997, 289, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Almeman, A. Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1661–1685. [Google Scholar] [CrossRef] [PubMed]
- Okano, Y.; Abe, Y.; Masaki, H.; Santhanam, U.; Ichihashi, M.; Funasaka, Y. Biological effects of glycolic acid on dermal matrix metabolism mediated by dermal fibroblasts and epidermal keratinocytes. Exp. Dermatol. 2003, 12 (Suppl. S2), 57–63. [Google Scholar] [CrossRef]
- Kornhauser, A.; Wei, R.R.; Yamaguchi, Y.; Coelho, S.G.; Kaidbey, K.; Barton, C.; Takahashi, K.; Beer, J.; Miller, S.; Hearing, V. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin. J. Dermatol. Sci. 2009, 55, 10–17. [Google Scholar] [CrossRef]
- Kaidbey, K.; Sutherland, B.; Bennett, P.; Wamer, W.G.; Barton, C.; Dennis, D.; Kornhauser, A. Topical glycolic acid enhances photodamage by ultraviolet light. Photodermatol. Photoimmunol. Photomed. 2003, 19, 21–27. [Google Scholar] [CrossRef]
- Gallo, R.L.; Raab, S.; Yatskayer, M.; Lynch, S. Evaluation of the Efficacy and Tolerability of a Topical Facial Serum in Improving Signs of Aging. Ski. J. Cutan. Med. 2017, 1, s74. [Google Scholar] [CrossRef]
- Press, K.; Hadar, N.; Sklan, E.; Gubelbank, M.; Znaid, A.A.; Shen, S. SVX-Enhanced Gradual Release System: A Novel Biotechnological Approach for Alpha-Hydroxy Acids and Hyaluronic Acid in Skincare. J. Cosmet. Dermatol. Sci. Appl. 2024, 14, 357–371. [Google Scholar] [CrossRef]
- Harun-Or-Rashid, M.; Aktar, M.N.; Hossain, M.S.; Sarkar, N.; Islam, M.R.; Arafat, M.E.; Bhowmik, S.; Yusa, S. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers 2023, 15, 4563. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.; Günal-Köroğlu, D.; Kamiloglu, S.; Ozdal, T.; Capanoglu, E. The state of the art in anti-aging: Plant-based phytochemicals for skin care. Immun. Ageing 2025, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Bluemke, A.; Ring, A.P.; Immeyer, J.; Hoff, A.; Eisenberg, T.; Gerwat, W.; Meyer, F.; Breitkreutz, S.; Klinger, L.; Brandner, J.; et al. Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing—Experimental evidence for a holistic treatment approach. Int. J. Cosmet. Sci. 2022, 44, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Hadiwidjaja, M.; Romadhona, E.; Yulianto, Y.; Chauwito, N.A.; Sidauruk, M.G.E.; Kardiono, R.; Avanti, C. Comparative efficacy of bakuchiol oil and encapsulated bakuchiol cream on facial skin quality: A 28-day pilot study. J. Pharm. Pharmacogn. Res. 2024, 12, 477–486. [Google Scholar] [CrossRef]
- Ranjan, S.; Khan, S. Natural anti-aging innovations: Bakuchiol role in longevity and stress resilience through DAF-16 pathway activation. Biochem. Biophys. Res. Commun. 2025, 770, 151932. [Google Scholar] [CrossRef]
- Fanning, J.E.; McGee, S.A.; Ibrahim, O.I. Human Clinical Trials Using Topical Bakuchiol Formulations for the Treatment of Skin Disorders: A Systematic Review. J. Drugs Dermatol. 2024, 23, 239–243. [Google Scholar] [CrossRef]
- A Clinical Study to Evaluate the Efficacy and Safety of Bakuchiol in the Treatment of Post-Inflammatory Hyperpigmentation. Identifier: NCT06833996. First Posted 14 May 2024. Updated Status 2025. Available online: https://clinicaltrials.gov/study/NCT06833996 (accessed on 8 August 2025).
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.M.; Park, J.; Cho, J. Skin Protective Effect of Epigallocatechin Gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef]
- Heinrich, U.; Moore, C.E.; De Spirt, S.; Tronnier, H.; Stahl, W. Green Tea Polyphenols Provide Photoprotection, Increase Microcirculation, and Modulate Skin Properties of Women. J. Nutr. 2011, 141, 1202–1208. [Google Scholar] [CrossRef]
- Ciccone, L.; Piragine, E.; Brogi, S.; Camodeca, C.; Fucci, R.; Calderone, V.; Nencetti, S.; Martelli, A.; Orlandini, E. Resveratrol-like Compounds as SIRT1 Activators. Int. J. Mol. Sci. 2022, 23, 15105. [Google Scholar] [CrossRef]
- Mascarenhas-Melo, F.; Ribeiro, M.M.; Kahkesh, K.H.; Parida, S.; Pawar, K.D.; Velsankar, K.; Velsankar, K.; Jha, N.; Damiri, F.; Costa, G.; et al. Comprehensive review of the skin use of bakuchiol: Physicochemical properties, sources, bioactivities, nanotechnology delivery systems, regulatory and toxicological concerns. Phytochem. Rev. 2024, 23, 1377–1413. [Google Scholar] [CrossRef]
- Marko, M.; Pawliczak, R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders—Atopic Dermatitis and Psoriasis: A Review. Antioxidants 2023, 12, 1954. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Investigation of the Efficacies of a Resveratrol Formula on Improvement of Skin Conditions and Inflammatory Related Factors (Resveratrol). Identifier: NCT04456829. First Posted 20 July 2022. Available online: https://www.clinicaltrials.gov/study/NCT04456829 (accessed on 8 August 2025).
- Vollono, L.; Falconi, M.; Gaziano, R.; Iacovelli, F.; Dika, E.; Terracciano, C.; Bianchi, L.; Campione, E. Potential of Curcumin in Skin Disorders. Nutrients 2019, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Waghule, T.; Gorantla, S.; Rapalli, V.K.; Shah, P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Emerging Trends in Topical Delivery of Curcumin Through Lipid Nanocarriers: Effectiveness in Skin Disorders. AAPS PharmSciTech 2020, 21, 284. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Li, Y. Curcumin: A potential anti-photoaging agent. Front. Pharmacol. 2025, 16, 1559032. [Google Scholar] [CrossRef] [PubMed]
- Manful, M.E.; Ahmed, L.; Barry-Ryan, C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics 2024, 11, 72. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. “Cosmeceutical.” Cosmetics Labeling Claims. 2022. Available online: https://www.fda.gov/cosmetics/cosmetics-labeling-claims/cosmeceutical (accessed on 8 August 2025).
- Katz, L.M.; Lewis, K.M.; Spence, S.L.; Sadrieh, N. Regulation of Cosmetics in the United States. Dermatol. Clin. 2022, 40, 307–318. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1223/2009 on Cosmetic Products. Off. J. Eur. Union. 2009, L342, 59–209. Available online: https://health.ec.europa.eu/system/files/2016-11/cosmetic_1223_2009_regulation_en_0.pdf (accessed on 9 August 2025).
- European Commission. Commission Regulation (EU) No 655/2013 laying down common criteria for claims used in relation to cosmetic prod-ucts. Off. J. Eur. Union. 2013, OJ L 190, 31–34. Available online: https://eur-lex.europa.eu/eli/reg/2013/655/oj/eng (accessed on 9 August 2025).
- KFDA. Guidelines on Functional Cosmetics; Ministry of Food and Drug Safety: Cheongju, South Korea, 2021. Available online: https://www.mfds.go.kr/eng/wpge/m_24/de011014l001.do (accessed on 9 August 2025).
- Daniel, A.B.; Strickland, J.; Allen, D.; Casati, S.; Zuang, V.; Barroso, J.; Whelan, M.; Régimbald-Krnel, M.; Kojima, H.; Nishikawa, A.; et al. International regulatory requirements for skin sensitization testing. Regul. Toxicol. Pharmacol. 2018, 95, 52–65. [Google Scholar] [CrossRef]
- Dk, S.S.; Jain, V. Challenges in Formulating herbal Cosmetics. Int. J. Appl. Pharm. 2018, 10, 47. [Google Scholar] [CrossRef][Green Version]
- SCCS. Notes of Guidance for the Testing of Cosmetic Ingredients, 11th ed.; Scientific Committee on Consumer Safety, European Commission: Brussels, Belgium, 2021; Available online: https://health.ec.europa.eu/publications/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-11th-revision_en (accessed on 10 August 2025).[Green Version]
- USP. General Chapter <51> Antimicrobial Effectiveness Testing; United States Pharmacopeia: North Bethesda, MA, USA, 2021; Available online: http://www.uspbpep.com/usp29/v29240/usp29nf24s0_c51.html (accessed on 10 August 2025).[Green Version]
- Filaire, E.; Nachat-Kappes, R.; Laporte, C.; Harmand, M.; Simon, M.; Poinsot, C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int. J. Cosmet. Sci. 2022, 44, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Toklu, H.; Antigua, A.; Lewis, V.; Reynolds, M.; Jones, J. Cosmetovigilance: A review of the current literature. J. Family Med. Prim. Care 2019, 8, 1540. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, Z.H.; Moreno, C.; Secrest, A.M. Influence of Social Media on Cosmetic Procedure Interest. J. Clin. Aesthet. Dermatol. 2020, 13, 28–31. [Google Scholar]
- Testa, R.; Vella, F.; Rizzo, G.; Schifani, G.; Migliore, G. What drives and obstacles the intention to purchase green skincare products? A study of the Italian market of green skincare products. J. Clean. Prod. 2024, 484, 144358. [Google Scholar] [CrossRef]
- Kaur, N.; Chandra, A. The Impact of Influencer Marketing on Consumer Purchasing Decisions in The Cosmetic Industry. Int. J. Res. Publ. Rev. 2025, 6, 9220–9226. [Google Scholar] [CrossRef]
- Omiye, J.A.; Gui, H.; Daneshjou, R.; Cai, Z.R.; Muralidharan, V. Principles, applications, and future of artificial intelligence in dermatology. Front. Med. 2023, 10, 1278232. [Google Scholar] [CrossRef]
- Chauhan, S.B.; Singh, I.; Dwivedi, A.; Dimri, A. AI-Enhanced Personalized Skincare: Implications for Skin Microbiome Diversity and Pharmacogenomics Precision in Dermatology. Curr. Pharmacogenomics Person. Med. 2025, 22, E18756921368686. [Google Scholar] [CrossRef]
- Hash, M.G.; Forsyth, A.; Coleman, B.A.; Li, V.; Vinagolu-Baur, J.; Frasier, K.M. Artificial Intelligence in the Evolution of Customized Skincare Regimens. Cureus 2025, 17, e82510. [Google Scholar] [CrossRef] [PubMed]
- Di Guardo, A.; Trovato, F.; Cantisani, C.; Dattola, A.; Nisticò, S.P.; Pellacani, G.; Paganelli, A. Artificial Intelligence in Cosmetic Formulation: Predictive Modeling for Safety, Tolerability, and Regulatory Perspectives. Cosmetics 2025, 12, 157. [Google Scholar] [CrossRef]
- He, J.; Jia, Y. Application of omics technologies in dermatological research and skin management. J. Cosmet. Dermatol. 2022, 21, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- Monika, R.; Pragi; Kumar, V.; Jyoti; Sarswa, A.; Shrikant; Malik, G.; Kumari, S. The Global Cosmetic Industry: Regulatory Challenges and Innovations for Ensuring Safety and Compliance. Curr. Cosmet. Sci. 2025, 4, e26667797343989. [Google Scholar]
- Sasounian, R.; Martinez, R.M.; Lopes, A.M.; Giarolla, J.; Rosado, C.; Magalhães, W.V.; Velasco, M.; Baby, A. Innovative Approaches to an Eco-Friendly Cosmetic Industry: A Review of Sustainable Ingredients. Clean Technol. 2024, 6, 176–198. [Google Scholar] [CrossRef]
- Bozza, A.; Campi, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Current regulatory and market frameworks in green cosmetics: The role of certification. Sustain. Chem. Pharm. 2022, 30, 100851. [Google Scholar] [CrossRef]
- Rostkowska, E.; Poleszak, E.; Wojciechowska, K.; Dos Santos Szewczyk, K. Dermatological Management of Aged Skin. Cosmetics 2023, 10, 55. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Applications of bioactive peptides in cosmeceuticals: A review. J. Zhejiang Univ. Sci. B 2025, 26, 527–545. [Google Scholar] [CrossRef]
- Alves, P.L.M.; Nieri, V.; Moreli Fde, C.; Constantino, E.; de Souza, J.; Oshima-Franco, Y.; Grotto, D. Unveiling New Horizons: Advancing Technologies in Cosmeceuticals for Anti-Aging Solutions. Molecules 2024, 29, 4890. [Google Scholar] [CrossRef]
- Ita, K. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges. Pharmaceutics 2015, 7, 90–105. [Google Scholar] [CrossRef]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Ng, K.W. Penetration Enhancement of Topical Formulations. Pharmaceutics 2018, 10, 51. [Google Scholar] [CrossRef]
- Crous, C.; Pretorius, J.; Petzer, A. Overview of Popular Cosmeceuticals in Dermatology. Ski. Health Dis. 2024, 4, e340. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, C.W.; Bagatin, E.; Leonardi, G.R. The Science Behind the Label: Evaluating Claims in Dermatologist—Recommended Cosmetics. Dermatol. Rev. 2025, 6, e70045. [Google Scholar] [CrossRef]
- CIRS. South Korea Revises the Enforcement Rules of the Cosmetics Act. CIRS Group, 30 July 2025. Available online: https://www.cirs-group.com/en/cosmetics/south-korea-revises-the-enforcement-rules-of-the-cosmetics-act (accessed on 10 August 2025).
- Kim, K.B.; Kwack, S.J.; Lee, J.Y.; Kacew, S.; Lee, B.M. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health B 2021, 24, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Whiting, C.; Abdel Azim, S.; Friedman, A. The Skin Microbiome and its Significance for Dermatologists. Am. J. Clin. Dermatol. 2024, 25, 169–177. [Google Scholar] [CrossRef]
- Smythe, P.; Wilkinson, H.N. The Skin Microbiome: Current Landscape and Future Opportunities. Int. J. Mol. Sci. 2023, 24, 3950. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Cardenas, S.; Khosla, N.N.; Verghese, M.; Grullon, K.; Halabi, D.K.; Rosenblatt, A.E. Socioeconomic Disparities in Gentle Skin Care Access for Atopic Dermatitis: Affordability and Pharmacy Deserts. J. Drugs Dermatol. 2025, 24, 683–686. [Google Scholar] [CrossRef]
- Chang, A.Y.; Laker-Oketta, M.; Coates, S.J. Prioritizing equity and inclusion in global health dermatology. Int. J. Womens Dermatol. 2021, 7, 154–157. [Google Scholar] [CrossRef]
- Elder, A.; Cappelli, M.O.; Ring, C.; Saedi, N. Artificial intelligence in cosmetic dermatology: An update on current trends. Clin. Dermatol. 2024, 42, 216–220. [Google Scholar] [CrossRef]
- Li, M.; Mao, J.; Diaz, I.; Kopylova, E.; Melnik, A.V.; Aksenov, A.A.; Tipton, C.; Soliman, N.; Morgan, A.; Boyd, T. Multi-omic approach to decipher the impact of skincare products with pre/postbiotics on skin microbiome and metabolome. Front. Med. 2023, 10, 1165980. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, A.E.; Jain, N.; Gronbeck, C.; Feng, H.; Grant-Kels, J.M. Ethics of artificial intelligence in dermatology. Clin. Dermatol. 2024, 42, 313–316. [Google Scholar] [CrossRef]
Hormone (References) | Cutaneous Effects | Key Pathways |
---|---|---|
Estrogens [25] | Increases collagen and elastin synthesis, improves hydration, reduces wrinkles | PI3K/AKT, MAPK/ERK, Wnt/β-catenin |
Androgens [26] | Stimulates sebum production, regulates hair cycle, contributes to acne and alopecia | AR-mediated transcription, TGF-β |
Insulin/IGF-1 [27,28] | Enhances proliferation of keratinocytes and fibroblasts; implicated in acne | PI3K/AKT/mTOR, MAPK/ERK, FoxO1 |
Melatonin [24] | Antioxidant, anti-inflammatory, stimulates skin regeneration, UV protective | PI3K/AKT, MAPK, Wnt/β-catenin, NF-κB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespi, O.; Rosset, F.; Pala, V.; Sarda, C.; Accorinti, M.; Quaglino, P.; Ribero, S. Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review. Cosmetics 2025, 12, 209. https://doi.org/10.3390/cosmetics12050209
Crespi O, Rosset F, Pala V, Sarda C, Accorinti M, Quaglino P, Ribero S. Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review. Cosmetics. 2025; 12(5):209. https://doi.org/10.3390/cosmetics12050209
Chicago/Turabian StyleCrespi, Orsola, François Rosset, Valentina Pala, Cristina Sarda, Martina Accorinti, Pietro Quaglino, and Simone Ribero. 2025. "Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review" Cosmetics 12, no. 5: 209. https://doi.org/10.3390/cosmetics12050209
APA StyleCrespi, O., Rosset, F., Pala, V., Sarda, C., Accorinti, M., Quaglino, P., & Ribero, S. (2025). Cosmeceuticals for Anti-Aging: Mechanisms, Clinical Evidence, and Regulatory Insights—A Comprehensive Review. Cosmetics, 12(5), 209. https://doi.org/10.3390/cosmetics12050209