Multi-Active Cosmeceutical Formulations: Stability, Sensory Performance, and Skin Tolerability
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation of Cosmeceutical Products (EG01, EG02, EG03, EG04)
2.2. Preparation of Cosmeceutical Products
2.2.1. Emulgel Preparation
2.2.2. Emulsion Creams Preparation
2.3. Stability of Cosmeceutical Products Under the Action of Shear Forces
2.4. Organoleptic Characteristics and pH Formulations Evaluation
2.5. Sensory Analysis
- Spreading: good spreading capacity to move/spread the product on the skin, performed by circular movements.
- Absorbency: the number of rotations needed to ensure the product penetration into the skin. It occurs until the subject feels a resistance or a rubbing between the finger and the skin during the application.
- Shininess: amount of light reflected by the skin immediately after application of the product, after absorption.
- Stickiness: force required to lift the index finger from the skin.
- Greasiness: amount of grease (rich feeling, butter) perceived between thumb and index finger taken by lightly pinching the skin after penetration.
- Softness: easy to slide the fingers over the skin 1 min after penetration, a dry, slippery feel is characteristic of softness.
2.6. Screening Test for Checking the Skin Acceptability and Tolerance of Cosmeceutical Products
2.6.1. Skin Reactions Evaluation/Recording
- Visually, by the same investigator or technician, supervised by the investigator, under a standard “daylight” source,
- Before the 1st application of the investigational product (D1/T0) then after 28 consecutive days of product use (D29),
2.6.2. Expression and Interpretation of the Results
- The visible clinical signs: Erythema, Edema, Dryness/Desquamation.
- The sensations of discomfort declared by the test subjects: Heating, Burning, Stinging, Itching, Pulling, Redness, Watering, or foreign body sensation (in case of accidental contact with the eye mucous membrane) (Table 4).
2.6.3. Statistical Processing of Sensory Data
3. Results and Discussion
3.1. Preparation of Cosmeceutical Creams
3.2. Stability of the Cosmeceutical Products Under the Action of Shear Forces and the Selection of the Formulas According to Their Stability
3.3. Organoleptic Characteristics and pH of the Formulations
3.4. Sensory Analysis of the Anti-Wrinkle Cosmeceutical and Impact of the Composition
3.5. Comparative Screening Test for Checking the Skin Acceptability and Tolerance of Cosmeceutical Products
4. Limitations of the Study and Future Testing
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P.; Celińska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel Gel Formulations as Topical Carriers for the Essential Oil of Bidens tripartita for the Treatment of Candidiasis. Molecules 2018, 23, 2517. [Google Scholar] [CrossRef] [PubMed]
- Förster, A.H.; Herrington, T.M. Rheology of two commercially available cosmetic oil in water emulsions. Int. J. Cosmet. Sci. 1998, 20, 317–326. [Google Scholar] [CrossRef]
- Vitale, M.; Truchuelo, M.T.; Nobile, V.; Gómez-Sánchez, M.J. Clinical Tolerability and Efficacy Establishment of a New Cosmetic Treatment Regimen Intended for Sensitive Skin. Appl. Sci. 2024, 14, 6252. [Google Scholar] [CrossRef]
- Parasassi, T.; Costa, G.; Krasnowska, E.; Pittaluga, E. Combination Comprising N-Acetyl-L-Cysteine and Its Use. U.S. Patent 10,300,038, 28 October 2017. [Google Scholar]
- Luo, A.; Liu, X.; Hu, Q.; Yang, M.; Jiang, H.; Liu, W. Efficacy of N-acetylcysteine on idiopathic or postinfective non-cystic fibrosis bronchiectasis: A systematic review and meta-analysis protocol. BMJ Open 2022, 12, e053625. [Google Scholar] [CrossRef]
- Yener, G.; İncegülke, T. Development of a w/o/w-Emulsion Containing N-Acetylcysteine for Cosmetic Use. Sci. Pharm. 2009, 77, 639–650. [Google Scholar] [CrossRef]
- Zafarullah, M.; Li, W.; Qureshi, M.; Mukhtar, H. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003, 60, 6–20. [Google Scholar] [CrossRef]
- Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1994, 269, 9397–9400. [Google Scholar] [CrossRef] [PubMed]
- Weschawalit, S.; Thongthip, S.; Phutrakool, P.; Asawanonda, P. Glutathione and its antiaging and antimelanogenic effects. Clin. Cosmet. Investig. Dermatol. 2017, 10, 147–153. [Google Scholar] [CrossRef]
- Sunitha, K.; Hemshekhar, M.; Thushara, R.M.; Santhosh, M.S.; Yariswamy, M.; Kemparaju, K.; Girish, K.S. N-Acetylcysteine amide: A derivative to fulfill the promises of N-Acetylcysteine. Free. Radic. Res. 2013, 47, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, R.V.; Patel, S.G.; Guthikonda, A.P.; Reid, M.; Balasubramanyam, A.; Taffet, G.E.; Jahoor, F. Deficient Synthesis of Glutathione Underlies Oxidative Stress in Aging and Can Be Corrected by Dietary Cysteine and Glycine Supplementation. Am. J. Clin. Nutr. 2011, 94, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Harbin, R.; Stephens, L. Extended Storage of Reduced Glutathione Solutions. U.S. Patent US 6,835,811 B1, 28 December 2004. [Google Scholar]
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine—A safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 2007, 7, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. [Google Scholar] [CrossRef]
- de Andrade, K.Q.; Moura, F.A.; dos Santos, J.M.; de Araújo, O.R.; de Farias Santos, J.C.; Goulart, M.O. Oxidative stress and inflammation in hepatic diseases: Therapeutic possibilities of N-acetylcysteine. Int. J. Mol. Sci. 2016, 16, 30269–30308. [Google Scholar] [CrossRef]
- MarketsandMarkets Research Pvt. Ltd. Cosmetic Antioxidants Market. Available online: https://www.marketsandmarkets.com/Market-Reports/cosmetic-antioxidant-market-144119844.html (accessed on 1 September 2025).
- ECHA. European Chemicals Agency. Substance Information: Glutathione. Available online: https://echa.europa.eu (accessed on 25 July 2025).
- FDA CIR (Cosmetic Ingredient Review). Safety Assessment of Glutathione as Used in Cosmetics. 2020. Available online: https://www.cir-safety.org/ (accessed on 25 July 2025).
- Alzahrani, T.F.; Alotaibi, S.M.; Alzahrani, A.A.; Alzahrani, A.F.; Alturki, L.E.; Alshammari, M.M.; Alharbi, R.A.; Alanazi, S.I.; Alshammari, W.Z.; Algarni, A.S. Exploring the Safety and Efficacy of Glutathione Supplementation for Skin Lightening: A Narrative Review. Cureus 2025, 17, e78045. [Google Scholar] [CrossRef]
- Lu, S.C. Regulation of Glutathione Synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The Chemistry and Biological Activities of N-Acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-L.; Huang, H.-P.; Hsu, J.-D.; Lai, Y.-R.; Hsiao, Y.-P.; Lu, F.-J.; Chang, H.-R. Topical N-Acetylcysteine Accelerates Wound Healing in Vitro and in Vivo via the PKC/Stat3 Pathway. Int. J. Mol. Sci. 2014, 15, 7563–7578. [Google Scholar] [CrossRef]
- Nakai, K.; Yoneda, K.; Murakami, Y.; Koura, A.; Maeda, R.; Tamai, A.; Ishikawa, E.; Yokoi, I.; Moriue, J.; Moriue, T.; et al. Effects of topical N-acetylcysteine on skin hydration/transepidermal water loss in healthy volunteers and atopic dermatitis patients. Ann. Dermatol. 2015, 27, 450–451. [Google Scholar] [CrossRef]
- Stachura, A.; Sobczak, M.; Kędra, K.; Kopka, M.; Kopka, K.; Włodarski, P.K. The Influence of N-Acetylcysteine-Enriched Hydrogels on Wound Healing in a Murine Model of Type II Diabetes Mellitus. Int J Mol Sci. 2024, 25, 9986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadowska, A.M.; Manuel-Y-Keenoy, B.; De Backer, W.A. Antioxidant and Anti-inflammatory Efficacy of NAC in Chronic Wounds: A Literature Review. Pulm. Pharmacol. Ther. 2007, 20, 9–22. [Google Scholar] [CrossRef]
- Rarinca, V.; Gurzu, I.-L.; Nicoara, M.N.; Ciobica, A.; Visternicu, M.; Ionescu, C.; Balmus, I.M.; Plavan, G.-I.; Todirascu-Ciornea, E.; Gurzu, B. Neurobehavioral and Oxidative Stress Effects of SiO2 Nanoparticles in Zebrafish and the Protective Role of N-Acetylcysteine. Biomedicines 2025, 13, 1762. [Google Scholar] [CrossRef]
- Kang, S.; Chung, J.H.; Lee, J.H.; Fisher, G.J.; Wan, Y.S.; Duell, E.A.; Voorhees, J.J. Topical N-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo. J. Investig. Dermatol. 2003, 120, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Cotter, M.A.; Thomas, J.; Cassidy, P.; Robinette, K.; Jenkins, N.; Florell, S.R.; Leachman, S.; Samlowski, W.E.; Grossman, D. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of ultraviolet-induced melanoma in mice. Clin. Cancer Res. 2007, 13, 5952–5958. [Google Scholar] [CrossRef] [PubMed]
- Marie Claire UK. N-Acetylcysteine: The Dermatologist-Approved Ingredient Revolutionizing Skincare. Marie Claire. March Edition. 2025. Available online: https://www.marieclaire.co.uk/beauty/nac-skincare-ingredient (accessed on 24 July 2025).
- Oguz, A.; Uslukaya, O.; Alabalık, U.; Turkoglu, A.; Kapan, M.; Bozdag, Z. Topical N-acetylcysteine improves wound healing comparable to dexpanthenol: An experimental study. Int. Surg. 2015, 100, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Sánchez, G.; Godínez-Méndez, L.A.; Fafutis-Morris, M.; Delgado-Rizo, V. Effect of Antioxidant Supplementation on NET Formation Induced by LPS In Vitro; the Roles of Vitamins E and C, Glutathione, and N-acetyl Cysteine. Int. J. Mol. Sci. 2023, 24, 13162. [Google Scholar] [CrossRef]
- Zakowska-Biemans, S.; Kostyra, E. Sensory profile, consumers’ perception and liking of wheat–Rye bread fortified with dietary fibre. Appl. Sci. 2023, 13, 694. [Google Scholar] [CrossRef]
- Kemp, D.S.E.; Hollowood, D.T.; Hort, D.J. Introduction. In Sensory Evaluation; Kemp, D.S.E., Hollowood, D.T., Hort, D.J., Eds.; Wiley: Oxford, UK, 2009; pp. 173–194. [Google Scholar]
- Krochmal-Marczak, B.; Tobiasz-Salach, R.; Kaszuba, J. The effect of adding oat flour on the nutritional and sensory quality of wheat bread. Br. Food J. 2020, 122, 2329–2339. [Google Scholar] [CrossRef]
- Marque, C.; Pensé-Lhéritier, A.M.; Bacle, I. 9—Sensory methods for cosmetics evaluation. In Nonfood Sensory Practices; Woodhead publishing series in food science, technology and nutrition; Bacle, I., Delarue, J., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2022; pp. 169–196. [Google Scholar] [CrossRef]
- AFNOR Editions. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-iso-11035/sensory-analysis-identification-and-selection-of-descriptors-for-establishi (accessed on 2 July 2024).
- Tafuro, G.; Costantini, A.; Baratto, G.; Francescato, S.; Busata, L.; Semenzato, A. Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. Cosmetics 2021, 8, 62. [Google Scholar] [CrossRef]
- ISO Standard No. 11035:1994; Sensory Analysis—Identification and Selection of Descriptors for Establishing a Sensory Profile Multidimensional Approach. International Organization of Standardization: Geneva, Switzerland, 2024.
- ISO Standard No. 8586-1:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization of Standardization: Geneva, Switzerland, 2012.
- ISO Standard No. 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. International Organization of Standardization: Geneva, Switzerland, 2016.
- Gómez-Farto, A.; Jiménez-Escobar, A.L.; Pérez-González, N.; Castán, H.; Clares, B.; Arias-Santiago, S.; Montero-Vílchez, T. Development of an Emulgel for the Effective Treatment of Atopic Dermatitis: Biocompatibility and Clinical Investigation. Gels 2024, 10, 370. [Google Scholar] [CrossRef]
- Bîrsan, M.; Bibire, N.; Panainte, A.D.; Silași, O.; Antonoaea, P.; Ciurba, A.; Cristofor, A.C.; Wroblewska, M.; Sosnowska, K. The influence of the preparation method on the characteristics of a new cosmetic gel based on hyaluronic acid and matrix-forming polymers. Mater. Plast. 2020, 57, 123–130. [Google Scholar] [CrossRef]
- Juncan, A.M.; Rus, L.-L.; Morgovan, C.; Loghin, F. Evaluation of the Safety of Cosmetic Ingredients and Their Skin Compatibility through In Silico and In Vivo Assessments of a Newly Developed Eye Serum. Toxics 2024, 12, 451. [Google Scholar] [CrossRef]
- Goebel, C.; Kosemund-Meynen, K.; Gargano, E.M.; Politano, V.; von Bölcshazy, G.; Zupko, K.; Jaiswal, N.; Zhang, J.; Martin, S.; Neumann, D.; et al. Non-Animal Skin Sensitization Safety Assessments for Cosmetic Ingredients—What Is Possible Today? Curr. Opin. Toxicol. 2017, 5, 46–54. [Google Scholar] [CrossRef]
- Gellatly, N.; Sewell, F. Regulatory Acceptance of in Silico Approaches for the Safety Assessment of Cosmetic-Related Substances. Comput. Toxicol. 2019, 11, 82–89. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Alternative Methods to Animal Testing for the Safety Evaluation of Cosmetic Ingredients: An Overview. Cosmetics 2017, 4, 30. [Google Scholar] [CrossRef]
- Cosmetics Europe—The Personal Care Association Non-Animal Approaches to Safety Assessment of Cosmetic Products-Edge Science and Constant Innovation: The Keys to Success. Available online: https://cosmeticseurope.eu/resources/non-animal-approaches-to-safety-assessment-of-cosmetic-products-2/ (accessed on 21 June 2024).
- Bialas, I.; Zelent-Kraciuk, S.; Jurowski, K. The Skin Sensitisation of Cosmetic Ingredients: Review of Actual Regulatory Status. Toxics 2023, 11, 392. [Google Scholar] [CrossRef]
- Dahmer, D.; Scandorieiro, S.; Bigotto, B.G.; Bergamini, T.A.; Germiniani-Cardozo, J.; da Costa, I.M.; Kobayashi, R.K.T.; Nakazato, G.; Borsato, D.; Prudencio, S.H.; et al. Multifunctional Biotechnological Lip Moisturizer for Lip Repair and Hydration: Development, In Vivo Efficacy Assessment and Sensory Analysis. Cosmetics 2023, 10, 166. [Google Scholar] [CrossRef]
- Slavkova, M.; Lazov, C.; Spassova, I.; Kovacheva, D.; Tibi, I.P.-E.; Stefanova, D.; Tzankova, V.; Petrov, P.D.; Yoncheva, K. Formulation of Budesonide-Loaded Polymeric Nanoparticles into Hydrogels for Local Therapy of Atopic Dermatitis. Gels 2024, 10, 79. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, Y.; Jia, R.; Liu, X.; Cheng, Z.; Cheng, Y.; Xu, Y.; Xie, Z.; Xia, H. Design and Evaluation of Paeonol-Loaded Liposomes in Thermoreversible Gels for Atopic Dermatitis. Gels 2023, 9, 198. [Google Scholar] [CrossRef]
- Nicol, N.H.; Rippke, F.; Weber, T.M.; Hebert, A.A. Daily Moisturization for Atopic Dermatitis: Importance, Recommendations, and Moisturizer Choices. J. Nurse Pract. 2021, 17, 920–925. [Google Scholar] [CrossRef]
- Simões, A.; Veiga, F.; Vitorino, C. Developing Cream Formulations: Renewed Interest in an Old Problem. J. Pharm. Sci. 2019, 108, 3240–3325. [Google Scholar] [CrossRef]
- Sheraz, M.A.; Khan, M.F.; Ahmed, S.; Kazi, S.H.; Khattak, S.R.; Ahmad, I. Factors affecting formulation characteristics and stability of ascorbic acid in water-in-oil creams. Int. J. Cosmet. Sci. 2014, 36, 494–504. [Google Scholar] [CrossRef]
- Abu Zayed, M.; Thean, Y.; Jaymin, C.; Walsh, T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023, 112, 1772–1793. [Google Scholar] [CrossRef]
- Analysis of Cosmetic Creams—Stability Test. Available online: https://www.cheops-tsar.de/chemlab/en/experiments/advanced/0007_Stability_Test_Cosmetic_Creams.pdf (accessed on 2 July 2024).
- Ali, A.; Skedung, L.; Burleigh, S.; Lavant, E.; Ringstad, L.; Anderson, C.D.; Wahlgren, M.; Engblom, J. Relationship between sensorial and physical characteristics of topical creams: A comparative study on effects of excipients. Int. J. Pharm. 2022, 613, 121370. [Google Scholar] [CrossRef]
- Terescenco, D.; Terescenco, N.; Picard, C.; Savary, G. Sensory perception of textural properties of cosmetic Pickering emulsions. Int. J. Cosmet. Sci. 2020, 42, 198–207. [Google Scholar] [CrossRef]
- Tang, T.; Tang, W.; Zhang, J.; Chen, S.; Chen, N.; Zhu, H.; Ge, G.; Zhang, S. Tactile Perception of Skin and Skin Cream. Tribol. Lett. 2015, 59, 24. [Google Scholar] [CrossRef]
- Moussour, M.; Lavarde, M.; Pensé-Lhéritier, A.M.; Bouton, F. Sensory analysis of cosmetic powders: Personal care ingredients and emulsions. Int. J. Cosmet. Sci. 2017, 39, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.K. Allergic Reaction to Phenyl Dimethicone in a Sunscreen. Arch. Dermatol. 1984, 120, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Oyafuso, M.H.; Carvalho, F.C.; Chiavacci, L.A.; Gremião, M.P.; Chorilli, M. Design and Characterization of Silicone and Surfactant Based Systems for Topical Drug Delivery. J. Nanosci. Nanotechnol. 2015, 15, 817–826. [Google Scholar] [CrossRef]
- Tafuro, G.; Costantini, A.; Piatto, M.; Lucchetti, S.; Francescato, S.; Busata, L.; Baratto, G.; Semenzato, A. Eco-Designing Cosmetic Products while Preserving the Sensorial-Application Properties: An Instrumental Approach toward Sustainable Formulations. Cosmetics 2024, 11, 60. [Google Scholar] [CrossRef]
- Tafuro, G.; Di Domenico, E.; Costantini, A.; Francescato, S.; Busata, L.; Baratto, G.; Semenzato, A. Stability and Application Properties of Surfactant-Free Cosmetic Emulsions: An Instrumental Approach to Evaluate Their Potential. Cosmetics 2022, 9, 123. [Google Scholar] [CrossRef]
- Imbart, S.; Laplanche, A.; Ruzic, C.; Lavarde, M.; Marull-Tufeu, S.; Bernard, C.; Pensé-Lhéritier, A.-M.; Aoussat, A. Design of a Sensorial-Instrumental Correlation Methodology for a Category of Cosmetic Products: O/W Emulsions. Cosmetics 2022, 9, 84. [Google Scholar] [CrossRef]
- Adejokun, D.A.; Dodou, K. A Novel Quality Control Method for the Determination of the Refractive Index of Oil-in-Water Creams and Its Correlation with Skin Hydration. Cosmetics 2021, 8, 74. [Google Scholar] [CrossRef]
- Gore, E.; Picard, C.; Savary, G. Spreading behavior of cosmetic emulsions: Impact of the oil phase. Biotribology 2018, 9, 17–24. [Google Scholar] [CrossRef]
- Gore, E.; Picard, C.; Savary, G. Complementary approaches to understand the spreading behavior on skin of O/W emulsions containing different emollients. Colloids Surf. B Biointerfaces 2020, 93, 111132. [Google Scholar] [CrossRef]
- Hadjiefstathiou, C.; Manière, A.; Attia, J.; Pion, F.; Ducrot, P.; Grisel, M.; Gore, E. Sensory signature of lignins, new generation of bio-based ingredients in cosmetics. Int. J. Biol. Macromol. 2024, 260, 129399. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, C.F.; Sato, A.M.; Camargo, F.B.; Campos, P.M.; Rocha-Filho, P.A. Rheological behavior, zeta potential, and accelerated stability tests of Buriti oil (Mauritia flexuosa) emulsions containing lyotropic liquid crystals. Drug Dev. Ind. Pharm. 2010, 36, 93–101. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Supplier (Location) | EG01 (w/w) | EG02 (w/w) | EG03 (w/w) | EG04 (w/w) |
---|---|---|---|---|---|
Arginine HCl | Fagron (Trikala-Larissa, Greece) | 1.00 | 1.00 | 1.00 | 1.00 |
N-acetylcysteine | Fagron (Trikala-Larissa, Greece) | 1.00 | 1.00 | 1.00 | 1.00 |
Blainvillea acmella flower extract | Select Botanical (Barcelona, Spain) | 0.20 | 0.20 | 0.20 | 0.20 |
Tocopherol | Merck (Darmstadt, Germany) | 0.20 | 0.20 | 0.20 | 0.20 |
Hyaluronic acid | Fagron (Trikala-Larissa, Greece) | 1.00 | 1.00 | 1.00 | 1.00 |
Aloe vera extract | Fagron (Trikala-Larissa, Greece) | 10.00 | 10.00 | 10.00 | 10.00 |
Olea europaea oil | Fagron (Trikala-Larissa, Greece) | 25.00 | 25.00 | 25.00 | 25.00 |
Euxyl™ PE 9010 | Dow Chemical (Midland, MI, USA) | 0.50 | 0.50 | 0.50 | 0.50 |
Methyl Glucose Sesquistearate | Lehvoss (Origgio, VA, Italy) | 1.00 | – | – | – |
Ceteareth-20 | Lehvoss (Origgio, VA, Italy) | – | 1.00 | – | – |
Polyglyceryl-3 Methylglucose Distearate | Lehvoss (Origgio, VA, Italy) | – | – | 1.00 | – |
Carbopol® 971 PNF | Lehvoss (Origgio, VA, Italy) | – | – | – | 1.00 |
Stearic acid | Medchim TM (Bucharest, Romania) | 3.00 | – | 3.00 | – |
Cetyl alcohol | Medchim TM (Bucharest, Romania) | – | 3.00 | – | – |
Glycerol | Medchim TM (Bucharest, Romania) | – | – | – | 3.00 |
Triethanolamine | Medchim TM (Bucharest, Romania) | – | 0.25 | – | – |
Purified water q.s. * to 100 | – | ad 100 | ad 100 | ad 100 | ad 100 |
Spreading | Spreading Difficulty ET0.5 | ET3.5 | ET6.5 | Very Easy Spreading ET9.5 |
---|---|---|---|---|
Absorbency | Very absorbent (5–10 rotations) | 35 rotations | 65 rotations | Non-absorbent >95 rotations |
Shininess | Mast (BR0.5) | BR3.5 | BR6.5 | Brilliant BR9.5 |
Greasiness | Not greasy/dry Bare skin GR0.5 | GR3.5 | GR6.5 | Very greasy GR9.5 |
Stickiness | Not sticky Bare skin CO0.5 | CO3.5 | CO6.5 | Very sticky CO9.5 |
Softness | Not smooth DX0.5 | DX3.5 | DX6.5 | Very smooth (dry and slippery) DX9.5 |
Test subjects | Number of test subjects: 5 valid cases Specific inclusion criteria: test subjects |
| |
Methodology | Application of the investigational product EG01: |
| |
Evaluation of skin acceptability and tolerance | Checking of the skin acceptability (local tolerance) based on: |
|
Erythema | Edema | Skin Dryness | Papules | Pustules | Sensations of Discomfort |
---|---|---|---|---|---|
Score 0: no erythema Score 1: very slight erythema Score 2: slight erythema Score 3: moderate erythema Score 4: severe erythema | Score 0: no edema Score 1: more or less important edema | Score 0: no dryness Score 1: slight dryness Score 2: moderate dryness Score 3: important dryness | Score 0: no papule Score 1: presence of few papule(s) Score 2: the presence of numerous papules | Score 0: no pustule Score 1: presence of few pustule(s) Score 2: presence of numerous pustules | Score 0: no sensation of discomfort Score 1: very slight sensation of discomfort Score 2: slight sensation of discomfort Score 3: moderate sensation of discomfort Score 4: severe sensation of discomfort |
Formula | T0 | T1 | T3 | T4 | T5 |
---|---|---|---|---|---|
EG01 | h | h | h | h | h |
EG02 | h | h | h | h | h |
EG03 | h | h | h | h | h |
EG04 | h | h | h | ss | ps |
Formula | Day 0 | Day 90 After Preparation | ||||
---|---|---|---|---|---|---|
pH | Appearance | Color | pH | Appearance | Color | |
EG01 | 5.68 | Milky-white | 5.65 | Milky-white | ||
EG02 | 5.85 | Milky-white | 5.90 | Milky-white | ||
EG03 | 5.87 | Milky-white | 5.83 | Milky-white |
Products | Spreading | Absorbency | Shininess | Stickiness | Greasiness | Softness |
---|---|---|---|---|---|---|
EG01 | 5.10 ± 1.10 a | 21.75 ± 7.65 b | 3.46 ± 1.67 a | 1.48 ± 1.08 b | 2.31 ± 1.05 a | 5.44 ± 1.24 a |
EG02 | 4.65 ± 1.26 a | 18.50 ± 5.63 b | 5.17 ± 1.56 ab | 2.79 ± 1.37 a | 2.65 ± 1.40 a | 4.21 ± 1.89 b |
EG03 | 5.02 ± 1.02 a | 29.13 ± 13.96 a | 4.35 ± 1.58 b | 1.58 ± 1.19 b | 2.85 ± 1.10 a | 5.33 ± 1.68 a |
Clinical Signs/Sensations of Discomfort (Attributable to the Investigational Formula EG01) | Clinical Signs/Sensations of Discomfort (Attributable to the Investigational Formula EG03) | ||||
---|---|---|---|---|---|
Reference of the concerned subjects | Description (Date-Type) | % | Reference of the concerned subjects | Description (Date-Type) | % |
None | None | 0 | None | None | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bîrsan, M.; Gore, E.; Scripcariu, Ș.-I.; Vlad, R.-A.; Antonoaea, P.; Pintea, C.; Pintea, A.; Cotoi, C.-T.; Focșa, A.-V.; Ciurba, A. Multi-Active Cosmeceutical Formulations: Stability, Sensory Performance, and Skin Tolerability. Cosmetics 2025, 12, 195. https://doi.org/10.3390/cosmetics12050195
Bîrsan M, Gore E, Scripcariu Ș-I, Vlad R-A, Antonoaea P, Pintea C, Pintea A, Cotoi C-T, Focșa A-V, Ciurba A. Multi-Active Cosmeceutical Formulations: Stability, Sensory Performance, and Skin Tolerability. Cosmetics. 2025; 12(5):195. https://doi.org/10.3390/cosmetics12050195
Chicago/Turabian StyleBîrsan, Magdalena, Ecaterina Gore, Șadiye-Ioana Scripcariu, Robert-Alexandru Vlad, Paula Antonoaea, Cezara Pintea, Andrada Pintea, Cornelia-Titiana Cotoi, Alin-Viorel Focșa, and Adriana Ciurba. 2025. "Multi-Active Cosmeceutical Formulations: Stability, Sensory Performance, and Skin Tolerability" Cosmetics 12, no. 5: 195. https://doi.org/10.3390/cosmetics12050195
APA StyleBîrsan, M., Gore, E., Scripcariu, Ș.-I., Vlad, R.-A., Antonoaea, P., Pintea, C., Pintea, A., Cotoi, C.-T., Focșa, A.-V., & Ciurba, A. (2025). Multi-Active Cosmeceutical Formulations: Stability, Sensory Performance, and Skin Tolerability. Cosmetics, 12(5), 195. https://doi.org/10.3390/cosmetics12050195