Role of Lipids in Water Permeation of Different Curl Pattern Hair Types
Abstract
1. Introduction
2. Materials and Methods
2.1. Hair
2.2. Hair Morphology
2.3. Lipid Extractions
2.4. Lipid Analyses: TLC/FID
2.5. Moisture Content
2.6. Dynamic Vapor Sorption (DVS)
2.7. IR Spectroscopy (ATR-FTIR)
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP2 | Curl Pattern type 2 |
CP3 | Curl Pattern type 3 |
DVS | Dynamic Vapor Sorption |
ATR-FTIR | Attenuated total reflectance–Fourier transform infrared |
TLC/FID | Thin-layer chromatography–flame ionization detection |
CP | Curl Pattern |
RH | Relative humidity |
GAB | Guggenheim Anderson de Boer |
18-MEA | 18-methyleicosanoic acid |
Ota | Over total amount |
Owf | Over total weight of fiber |
ECOL | Cholesterol ester |
FFA | Free fatty acid |
CHOL | Cholesterol |
Cer | Ceramides |
E | External lipid-extracted |
I | Internal lipid-extracted |
Wm | Monolayer moisture content |
Cg | Guggenheim constant |
K | Energy constant |
R2 | Correlation coefficient |
Da | Apparent diffusion coefficient |
CMC | Cell membrane complex |
HEX | Hexagonal chain conformation |
LIQ | Liquid crystalline chain conformation |
Asym. Str. | Asymmetric stretching |
Sym. Str. | Symmetric stretching |
References
- Swift, J.A. Fine details on the surface of human hair. Int. J. Cosmet. Sci. 1991, 13, 143–159. [Google Scholar] [CrossRef]
- Coderch, L.; Oliver, M.A.; Martinez, V.; Manich, A.M.; Rubio, L.; Martí, M. Exogenous and endogenous lipids of human hair. Skin Res. Techol. 2017, 23, 479–485. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, W.; Wang, B.; Meyers, M.A. Structure and mechanical behavior of human hair. Mater. Sci. Eng. C 2017, 73, 152–163. [Google Scholar] [CrossRef]
- Kreplak, L.; Briki, F.; Duvault, Y.; Doucet, J.; Merigoux, C.; Leroy, F.; Lévêque, J.L.; Miller, L.; Carr, G.L.; Williams, G.P.; et al. Profiling lipids across Caucasian and Afro-American hair transverse cuts, using synchrotron infrared microspectrometry. Int. J. Cosmet. Sci. 2001, 23, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Bantignies, J.-L.; Fuchs, G.; Carr, G.L.; Williams, G.P.; Lutz, D.; Marull, S. Organic reagent interaction with hair spatially characterized by infrared microspectroscopy using synchrotron radiation. Int. J. Cosmet. Sci. 1998, 20, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.A.; Martí, M.; Coderch, L.; Carrer, V.; Kreuzer, M.; Barba, C. Lipid loses and barrier function modifications of the brown-to white hair transition. Skin Res. Technol. 2019, 25, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Sandt, C.; Borondics, F. A new typology of human hair medullas based on lipid composition analysis by synchrotron FTIR microspectroscopy. Analyst 2021, 146, 3942–3954. [Google Scholar] [CrossRef]
- Csuka, D.A.; Csuka, E.A.; Juhász, M.L.W.; Sharma, A.N.; Mesinkovska, N.A. A systematic review on the lipid composition of human hair. Int. J. Dermatol. 2023, 62, 404–415. [Google Scholar] [CrossRef]
- Martí, M.; Barba, C.; Manich, A.M.; Rubio, L.; Alonso, C.; Coderch, L. The influence of hair lipids in ethnic hair properties. Int. J. Cosmet. Sci. 2016, 38, 77–84. [Google Scholar] [CrossRef]
- Coderch, L.; Alonso, C.; García, M.T.; Pérez, L.; Martí, M. Hair lipid structure: Effect of surfactants. Cosmetics 2023, 10, 107. [Google Scholar] [CrossRef]
- Masukawa, Y.; Narita, H.; Imokawa, G. Characterization of the lipid composition at the proximal root regions of human hair. J. Cosmet. Sci. 2005, 56, 516–517. [Google Scholar] [CrossRef]
- Barba, C.; Martí, M.; Carilla, J.; Manich, A.M.; Coderch, L. Moisture sorption/desorption of protein fibres. Thermochim. Acta 2013, 552, 70–76. [Google Scholar] [CrossRef]
- Ji, J.H.; Park, T.S.; Lee, H.J.; Kim, Y.D.; Pi, L.Q.; Jin, X.H.; Lee, W.S. The ethnic differences of the damage of hair and integral hair lipid after ultra violet radiation. Ann Dermatol. 2013, 25, 54–60. [Google Scholar] [CrossRef]
- Bildstein, L.; Deniset-Besseau, A.; Pasini, I.; Mazilier, C.; Keuong, Y.W.; Dazzi, A.; Baghdalli, N. Discrete Nanoscale Distribution of Hair Lipids Fails to Provide Humidity Resistance. Anal. Chem 2020, 92, 11498–11504. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, G.; Garcel, A.-L.; Loazano, I.; Collaidin, C.; Porter, C.; Panhard, S.; Saint-Léger, D.; de La Metterie, R. Worldwide diversity of hair curliness: A new method of assessment. J. Dermatol. 2007, 46 (Suppl. 1), 2–6. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, L.J. Human hair: A unique physicochemical composite. J. Am. Acad. Dermatol. 2003, 48, 106–114. [Google Scholar] [CrossRef]
- Kamath, Y.K.; Hornby, S.B.; Weigmann, H.D. Mechanical and fractographic behavior of negroid hair. J. Soc. Cosmet. Chem. 1984, 35, 21–43. [Google Scholar]
- Syed, A.; Kuhajda, A.; Ayoub, H.; Ahmad, K.; Frank, E.M. African-American hair: Its physical properties and differences relative to Caucasian hair. Cosmet. Toil. 1995, 110, 39–48. [Google Scholar]
- Franbourg, A.; Hallegot, P.; Baltenneck, F.; Toutain, C.; Leroy, F. Current research on ethnic hair. J. Am. Acad. Dermatol. 2003, 48, S115–S119. [Google Scholar] [CrossRef]
- Barba, C.; Oliver, M.A.; Martí, M.; Kreuzer, M.; Coderch, L. Lipid distribution on ethnic hairs by Fourier transform infrared synchrotron spectroscopy. Skin Res. Technol. 2022, 28, 75–83. [Google Scholar] [CrossRef]
- McMullen, R.L.; Laura, D.; Chen, S.; Koelmel, D.; Zhang, G.; Gillece, T. Determination of physicochemical properties of delipidized hair. J. Cosmet. Sci. 2013, 64, 355–370. [Google Scholar]
- DeLauder, S.F.; Kidwell, D.A. The incorporation of dyes into hair as a model for drug binding. Forensic Sci. Int. 2000, 107, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Hayashi, R.; Okamoto, M.; Inoue, S. Morphology and properties of Asian and Caucasian hair. J. Cosmet. Sci. 2006, 57, 327–338. [Google Scholar] [PubMed]
- Lee, Y.; Kim, Y.-D.; Pi, L.; Lee, S.; Hong, H.; Lee, W. Comparison of hair shaft damage after chemical treatment in Asian, White European, and African hair. Int. J. Dermatol. 2014, 53, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Coderch, L.; Oliver, M.A.; Carrer, V.; Manich, A.M.; Martí, M. External lipid function in ethnic hairs. J. Cosmet. Dermatol. 2019, 18, 1912–1920. [Google Scholar] [CrossRef]
- Timmermann, E.O. Multilayer sorption parameter: BET or GAB values? Colloids Surf. A Phys. Eng. Asp. 2003, 220, 235–260. [Google Scholar] [CrossRef]
- Vickerstaff, T. The Physical Chemistry of Dyeing; Oliver and Boyd: London, UK, 1954. [Google Scholar]
- Jones, L.N.; River, D.E. 18-Methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron 1997, 28, 469–485. [Google Scholar] [CrossRef]
- Coderch, L.; Méndez, S.; Barba, C.; Pons, R.; Martí, M.; Parra, J.L. Lamellar rearrangement of internal lipids from human hair. Chem. Phys. Lipids 2008, 155, 1–6. [Google Scholar] [CrossRef]
- Nishimura, K.; Nishino, I.; Inaoka, Y.; Kitada, Y.; Fukushima, M. Interrelationship between the hair lipids and the hair moisture. Nippon Koshohin Kagakkaishi 1989, 13, 134–139. [Google Scholar]
- Rawlings, A.V. Ethnic skin types: Are there differences in skin structure and function? Int. J. Cosmet. Sci. 2006, 28, 79–93. [Google Scholar] [CrossRef]
- Hellemans, L.; Muizzuddin, N.; Declercq, L.; Maes, D. Characterization of stratum corneum properties in human subjects from a different genetic background. J. Investig. Dermatol. 2005, 124, 371. [Google Scholar]
- Muizzuddin, N.; Hellemans, L.; Van Overloop, L.; Corstjens, H.; Declercq, L.; Maes, D. Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J. Dermatol. Sci. 2010, 59, 123–128. [Google Scholar] [CrossRef]
- Richards, G.M.; Oresajo, C.O.; Halder, R.M. Structure and function of ethnic skin and hair. Dermatol. Clin. 2003, 21, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Sugino, K.; Imokawa, G.; Maibach, H.I. Ethnic difference of stratum corneum lipid in relation to stratum corneum function. J. Investig. Dermatol. 1993, 100, 587. [Google Scholar] [CrossRef]
- Jungersted, J.M.; Høgh, J.K.; Hellgren, L.I.; Jemec, G.B.E.; Agner, T. Ethnicity and stratum corneum ceramides. Br. J. Dermatol. 2010, 163, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.; Wickett, R.R. (Eds.) Chapter 10; Adsorption Properties of Hair. In Practical Modern Hair Science; Allured Business Media: Carol Stream, IL, USA, 2012. [Google Scholar]
- Skedung, L.; Collier, E.S.; Harris, K.L.; Rutland, M.W.; Applebaum, M.; Greaves, A.J.; Luengo, G.S. A Curly Q: Is Frizz a Matter of Friction? Perception 2021, 50, 728–732. [Google Scholar] [CrossRef]
- Ishihara, A.; Tsukamoto, Y.; Inoue, H.; Noda, Y.; Koizumi, S.; Joko, K. Analysis of water distribution in delipidated human hair by small-angle neutron scattering (SANS). Int. J. Cosmet. Sci. 2021, 43, 653–661. [Google Scholar] [CrossRef]
- Barba, C.; Martí, M.; Carilla, J.; Manich, A.M.; Coderch, L. The effect of internal lipids on the water sorption kinetics of keratinized tissues. J. Therm. Anal. Calorim. 2016, 123, 2013–2020. [Google Scholar] [CrossRef]
- Keis, K.; Huemmer, C.I.; Kamath, Y.H. Effect of oil films on moisture vapour absorption on human hair. J. Cosmet. Sci. 2007, 58, 135–145. [Google Scholar]
- Baldwin, R.L. Dynamic hydration shell restores Kauzmann’s 1959 explanation of how the hydrophobic factor drives protein folding. Proc. Natl. Acad. Sci. USA 2014, 111, 13052–13056. [Google Scholar] [CrossRef]
- Grdadolnik, J.; Merzel, F.; Avbelj, F. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. USA 2017, 114, 322–327. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Flach, C.R.; Moore, D.J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta (BBA)-Biomembr. 2006, 1758, 923–933. [Google Scholar] [CrossRef]
- Coderch, L.; Lorenzo, R.D.; Mussone, M.; Alonso, C.; Martí, M. The Role of Lipids in the Process of Hair Ageing. Cosmetics 2022, 9, 124. [Google Scholar] [CrossRef]
- Coderch, L.; Alonso, C.; Petitjean, S.; Baghdadli, N.; Martí, M. Influence of Room Humidity and Temperature on Water Permeation and Lipid Structure of Caucasian and Asian Hair Fibers (In Preparation).
Hair Morphology | CP3 | CP2 |
---|---|---|
Mean diameter (µm) | 72.66 ± 18.01 | 88.66 ± 19.46 |
Big diameter (µm) | 85.54 ± 26.69 | 100.27 ± 27.32 |
Small diameter (µm) | 63.38 ± 16.28 | 81.03 ± 17.16 |
Medulla proportion (%) | 0.79 ± 1.23 | 3.05 ± 2.66 |
LIPIDS | CP3 External L. | CP2 External L. | CP3 Internal L. | CP2 Internal L. |
---|---|---|---|---|
% over total amount analyzed (% ota) | ||||
ECOL | 65.47 ± 14.72 | 60.41 ± 18.42 | 6.13 ± 0.73 | 8.55 ± 4.20 |
FFA | 22.07 ± 8.72 | 24.02 ± 18.30 | 56.77 ± 2.61 | 52.39 ± 6.11 |
CHOL | 1.06 ± 2.59 | 6.63 ± 3.10 | 8.44 ± 3.93 | 6.27 ± 2.42 |
Cer | 11.41 ± 9.96 | 8.94 ± 2.60 | 27.00 ± 5.34 | 32.79 ± 8.13 |
TOTAL | 100.00 | 100.00 | 100.00 | 100.00 |
% overweight of fiber (% owf) | ||||
TOTAL EXTRACTED | 0.3630 ± 0.1840 | 1.3600 ± 1.2620 | 2.5850 ± 0.3860 | 3.1640 ± 0.6170 |
ECOL | 0.0966 ± 0.0529 | 0.4517 ± 0.4129 | 0.0896 ± 0.0184 | 0.1494 ± 0.0619 |
FFA | 0.0384 ± 0.0347 | 0.3263 ± 0.4024 | 0.8378 ± 0.2030 | 1.089 ± 0.6083 |
CHOL | 0.0014 ± 0.0035 | 0.0441 ± 0.0296 | 0.1242 ± 0.0618 | 0.1099 ± 0.297 |
Cer | 0.0246 ± 0.0316 | 0.0777 ± 0.0707 | 0.3995 ± 0.1519 | 0.7049 ± 0.4727 |
TOTAL ANALIZED | 0.1610 ± 0.1038 | 0.8998 ± 0.8988 | 1.4511 ± 0.3554 | 2.0533 ± 1.0257 |
Virgin CP3 | External Lipid-Extracted CP3 | Internal Lipid-Extracted CP3 | Virgin CP2 | External Lipid-Extracted CP2 | Internal Lipid-Extracted CP2 | |
---|---|---|---|---|---|---|
Moisture 50% RH | 10.9 ± 0.7 | 10.9 ± 0.9 | 11.0 ± 1.0 | 10.0 ± 1.2 | 10.3 ± 0.9 | 10.9 ± 0.7 |
Regain at 95% RH (%) | 25.55 ± 0.52 * | 24.63 ± 0.63 | 25.40 ± 0.33 | 23.10 ± 1.34 * | 23.65 ± 0.37 | 25.07 ± 0.94 *** |
Wm (%) | 0.086 ± 0.003 | 0.078 ± 0.002 ** | 0.086 ± 0.001 | 0.081 ± 0.004 | 0.073 ± 0.005 *** | 0.087 ± 0.002 |
Cg | 5.40 ± 0.04 * | 6.18 ± 0.27 ** | 5.45 ± 0.06 | 5.14 ± 0.14 * | 6.11 ± 0.39 *** | 5.25 ± 0.21 |
K | 0.699 ± 0.005 | 0.722 ± 0.012 ** | 0.706 ± 0.009 | 0.689 ± 0.019 | 0.736 ± 0.019 *** | 0.704 ± 0.006 |
R2 | 0.999 ± 0.000 | 0.999 ± 0.001 | 0.999 ± 0.000 | 0.999 ± 0.000 | 0.999 ± 0.001 | 0.999 ± 0.000 |
Da Absorption (min−1 × 10−3) | 0.0250 ± 0.0072 | 0.0235 ± 0.0077 | 0.0222 ± 0.0068 | 0.0254 ± 0.0112 | 0.0232 ± 0.0084 | 0.0215 ± 0.0074 |
Da Desorption (min−1 × 10−3) | 0.0293 * ± 0.0001 | 0.0274 ± 0.0012 | 0.0264 ± 0.0002 | 0.0323 * ± 0.0039 | 0.0277 ± 0.0013 | 0.0260 ± 0.0022 *** |
CP3 | CP2 | |||||
---|---|---|---|---|---|---|
Virgin | External Lipids Extracted | Internal Lipids Extracted | Virgin | External Lipids Extracted | Internal Lipids Extracted | |
Absorbance a.u. | ||||||
CH2 Asym. str. | 0.130 ± 0.003 | 0.132 ± 0.017 | 0.130 ± 0.002 | 0.131 ± 0.044 | 0.114 ± 0.008 | 0.118 ± 0.007 |
CH2 Sym. str. | 0.098 ± 0.003 | 0.097 ± 0.020 | 0.116 ± 0.007 | 0.097 ± 0.034 | 0.088 ± 0.008 | 0.084 ± 0.010 |
Frequency λ (cm−1) | ||||||
CH2 Asym. str. | 2925.2 ± 3.8 | 2928.1 ± 1.6 | 2929.7 ± 0.8 | 2923.6 ± 3.9 | 2928.5 ± 1.5 | 2929.9 ± 1.0 |
CH2 Sym. str. | 2852.7 ± 1.5 | 2854.3 ± 1.3 | 2854.5 ± 3.1 | 2852.1 ± 1.6 | 2857.0 ± 1.0 | 2855.4 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coderch, L.; Sabatier, L.; Pasini, I.; Alonso, C.; Martí, M.; Baghdadli, N. Role of Lipids in Water Permeation of Different Curl Pattern Hair Types. Cosmetics 2025, 12, 193. https://doi.org/10.3390/cosmetics12050193
Coderch L, Sabatier L, Pasini I, Alonso C, Martí M, Baghdadli N. Role of Lipids in Water Permeation of Different Curl Pattern Hair Types. Cosmetics. 2025; 12(5):193. https://doi.org/10.3390/cosmetics12050193
Chicago/Turabian StyleCoderch, Luisa, Laura Sabatier, Isabelle Pasini, Cristina Alonso, Meritxell Martí, and Nawel Baghdadli. 2025. "Role of Lipids in Water Permeation of Different Curl Pattern Hair Types" Cosmetics 12, no. 5: 193. https://doi.org/10.3390/cosmetics12050193
APA StyleCoderch, L., Sabatier, L., Pasini, I., Alonso, C., Martí, M., & Baghdadli, N. (2025). Role of Lipids in Water Permeation of Different Curl Pattern Hair Types. Cosmetics, 12(5), 193. https://doi.org/10.3390/cosmetics12050193