Role of Emulsifiers and SPF Booster in Sunscreen Performance: Assessing SPF, Rheological Behavior, Texture, and Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sunscreen Formulation
2.3. Sectrophotometric Determination of SPF
2.4. Texture Analysis
2.5. Rheological Behavior
2.6. Microscopic Structure
2.7. Stability
2.8. Sensory Analysis
2.9. Effect of Zinc Oxide Addition on the Physical Properties of the F8 Formulation
2.10. Statistical Analysis
3. Results
3.1. Sunscreen Formulation
3.2. Spectrophotometric Determination of SPF
3.3. Texture Analysis
3.4. Rheological Behavior
3.5. Microscopic Analysis
3.6. Sensory Analysis
3.7. Effect of Zinc Oxide Addition on the Physical Properties of the F8 Formulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CAS | Chemical Abstracts Service Number |
CF | correction factor |
CV | coefficient of variation |
DNA | deoxyribonucleic acid |
EC | European Commission |
EE | erythemal effect |
FDA | Food and Drug Administration |
I | solar intensity |
N | flow behavior index |
SD | standard deviation |
SPF | sun protection factor |
UV | Ultraviolet |
Γ | shear rate (s−1) |
H | dynamic viscosity (mPa·s) |
Τ | shear stress (Pa) |
References
- Mbanga, L.; Mpiana, P.T.; Mbala, B.; Ilinga, L.; Ngoy, B.; Mvingu, B.; Mulenga, M. Comparative in Vitro Sun Protection Factor (SPF) Values of Some Herbal Extracts Found in Kinshasa by Ultraviolet Spectrophotometry. J. Phys. Chem. Sci. 2015, 2, 1–6. [Google Scholar]
- Fontbonne, A.; Teme, B.; Abric, E.; Lecerf, G.; Callejon, S.; Moga, A.; Cadars, B.; Giraud, F.; Chavagnac-Bonneville, M.; Ardiet, N.; et al. Positive and Ecobiological Contribution in Skin Photoprotection of Ectoine and Mannitol Combined in Vivo with UV Filters. J. Cosmet. Dermatol. 2024, 23, 308–315. [Google Scholar] [CrossRef] [PubMed]
- De Silva, W.G.M.; McCarthy, B.Y.; Han, J.; Yang, C.; Holland, A.J.A.; Stern, H.; Dixon, K.M.; Tang, E.K.Y.; Tuckey, R.C.; Rybchyn, M.S.; et al. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-Ol3, Reduces UV-Induced Damage in Skin. Metabolites 2023, 13, 775. [Google Scholar] [CrossRef]
- Sarkany, R. Sun Protection. Medicine 2021, 49, 453–456. [Google Scholar] [CrossRef]
- McKnight, G.; Shah, J.; Hargest, R. Physiology of the Skin. Surgery 2022, 40, 8–12. [Google Scholar] [CrossRef]
- Sabzevari, N.; Qiblawi, S.; Norton, S.A.; Fivenson, D. Sunscreens: UV Filters to Protect Us: Part 1: Changing Regulations and Choices for Optimal Sun Protection. Int. J. Womens Dermatol. 2021, 7, 28–44. [Google Scholar] [CrossRef]
- Jesus, A.; Augusto, I.; Duarte, J.; Sousa, E.; Cidade, H.; Cruz, M.T.; Lobo, J.M.S.; Almeida, I.F. Recent Trends on UV Filters. Appl. Sci. 2022, 12, 12003. [Google Scholar] [CrossRef]
- Ma, Y.; Yoo, J. History of Sunscreen: An Updated View. J. Cosmet. Dermatol. 2021, 20, 1044–1049. [Google Scholar] [CrossRef]
- Chisvert, A.; Salvador, A. 3.1—UV Filters in Sunscreens and Other Cosmetics. Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products; Salvador, A., Chisvert, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 83–120. ISBN 978-0-444-52260-3. [Google Scholar]
- Nitulescu, G.; Lupuliasa, D.; Adam-Dima, I.; Nitulescu, G.M. Ultraviolet Filters for Cosmetic Applications. Cosmetics 2023, 10, 101. [Google Scholar] [CrossRef]
- Chavda, V.P.; Acharya, D.; Hala, V.; Daware, S.; Vora, L.K. Sunscreens: A Comprehensive Review with the Application of Nanotechnology. J. Drug Deliv. Sci. Technol. 2023, 86, 104720. [Google Scholar] [CrossRef]
- Pavlou, P.; Siamidi, A.; Vlachou, M.; Varvaresou, A. UV Filters and Their Distribution on the Skin through Safe, Non-Penetrating Vehicles. J. Cosmet. Sci. 2021, 72, 298–324. [Google Scholar] [PubMed]
- Halpern, S.; Simonnet, J.-T.; Shah, A.; Candau, D.; Roudot, A. Sunscreen Compositions Having Synergistic Combination of UV Filters. No. US9107843B2, 18 August 2015. [Google Scholar]
- Singer, S.; Karrer, S.; Berneburg, M. Modern Sun Protection. Curr. Opin. Pharmacol. 2019, 46, 24–28. [Google Scholar] [CrossRef]
- de Oliveira, D.N.; Delafiori, J.; Ferreira, M.S.; Catharino, R.R. In Vitro Evaluation of Sun Protection Factor and Stability of Commercial Sunscreens Using Mass Spectrometry. J. Chromatogr. B 2015, 988, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, F.; Fan, G.; Zheng, Y.; Li, B.; Li, N.; Liu, Y.; Wang, X.; Liu, W.; Krutmann, J.; et al. Identification of Factors Associated with Minimal Erythema Dose Variations in a Large-scale Population Study of 22 146 Subjects. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1595. [Google Scholar] [CrossRef]
- Smaoui, S.; Ben Hlima, H.; Ben Chobba, I.; Kadri, A. Development and Stability Studies of Sunscreen Cream Formulations Containing Three Photo-Protective Filters. Arab. J. Chem. 2017, 10, S1216–S1222. [Google Scholar] [CrossRef]
- Wojciechowska, K.; Walczak, A.; Rostowska, E.; Poleszak, E. Comparison of Sensory and Rheological Properties of Green Cosmetic Creams Prepared on Different Natural, ECOCERT and BDIH Certificated Self-Emulsifying Bases. Curr. Issues Pharm. Med. Sci. 2021, 34, 218–223. [Google Scholar] [CrossRef]
- Tania, B.; Dwiastuti, R.; Lestari, A.; Setya, D. Sunscreen Cream Formulation of Noni Leaf Extract (Morinda citrifolia L.) with Emulsifier Combination of Tween 80 and Lecithin. J. Farm. Dan Ilmu Kefarmasian Indones. 2022, 9, 262–271. [Google Scholar] [CrossRef]
- Purwanto, U.R.E.; Cahyani, I.M.; Purwaningsih, Y.; Sandhi, B.G.F.; Febryana, F. Optimization of Polysorbate 80 and Sorbitan Monooleate 80 Aas Emulsifiers in Foundation Makeup Containing Ethyl Cinnamate. Indones. J. Pharm. 2023, 34, 45–53. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, H.; Zhu, Z.; Li, Y.; Du, X.; Guo, L. Comparison of the Rheological Behavior of Composite Gels Containing Potato Starch and Enzyme-Modified Potato Protein. LWT 2022, 164, 113610. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Wu, X.; Coulthard, C.T.; Qian, Y.; Chen, C.; O’Hare, D. Boosting the Effectiveness of UV Filters and Sunscreen Formulations Using Photostable, Non-Toxic Inorganic Platelets. Chem. Commun. 2024, 60, 1039–1042. [Google Scholar] [CrossRef]
- Landry, K.S.; Young, E.; Avery, T.S.; Gropman, J. Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station. Cosmetics 2023, 10, 138. [Google Scholar] [CrossRef]
- Sunhancer Eco SPF Booster—Lubrizol. Available online: https://www.lubrizol.com/Personal-Care/Products/Product-Finder/Products-Data/Sunhancer-Eco-SPF-Booster (accessed on 17 May 2025).
- Nunes, A.R.; Vieira, Í.G.P.; Queiroz, D.B.; Leal, A.L.A.B.; Maia Morais, S.; Muniz, D.F.; Calixto-Junior, J.T.; Coutinho, H.D.M. Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Adv. Pharmacol. Sci. 2018, 2018, 5341487. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Bioactive Compounds of Rice (Oryza sativa L.): Review on Paradigm and Its Potential Benefit in Human Health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Kusumawati, A.H.; Farhamzah, F.; Alkandahri1, M.Y.; Sadino, A.; Agustina, L.S.; Apriana, S.D. Antioxidant Activity and Sun Protection Factor of Black Glutinous Rice (Oryza Sativa Var. Glutinosa). Trop. J. Nat. Prod. Res. (TJNPR) 2021, 5, 1958–1961. [Google Scholar] [CrossRef]
- Santos, Y.R.; Andreo-Filho, N.; Lopes, P.S.; Araujo, D.R.; Sepulveda, A.F.; Sales, C.C.; Baby, A.R.; Duque, M.D.; Leite-Silva, V.R. The Influence of Complementary Processing Methods to Emulsification on the Sunscreen Emulsion Properties. Processes 2025, 13, 520. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture Analysis of Cosmetic/Pharmaceutical Raw Materials and Formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef]
- Bîrsan, M. Texture Analysis and Comparative Screening of The Sensory Properties of New Skincare Products. Farmacia J. 2024, 72, 875–884. [Google Scholar] [CrossRef]
- Krutof, A.; Hawboldt, K. Blends of Pyrolysis Oil, Petroleum, and Other Bio-Based Fuels: A Review. Renew. Sustain. Energy Rev. 2016, 59, 406–419. [Google Scholar] [CrossRef]
- Saito, G.; Bizari, M.; Cebim, M.; Correa, M.; Miguel, J.; Davolos, M. Study of the Colloidal Stability and Optical Properties of Sunscreen Creams. EcléTica QuíMica J. 2019, 44, 26. [Google Scholar] [CrossRef]
- Gaspar, L.R.; Maia Campos, P.M.B.G. Rheological Behavior and the SPF of Sunscreens. Int. J. Pharm. 2003, 250, 35–44. [Google Scholar] [CrossRef]
- Gilbert, L.; Picard, C.; Savary, G.; Grisel, M. Rheological and Textural Characterization of Cosmetic Emulsions Containing Natural and Synthetic Polymers: Relationships between Both Data. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 150–163. [Google Scholar] [CrossRef]
- Maruyama, K.; Sakashita, T.; Hagura, Y.; Suzuki, K. Relationship between Rheology, Particle Size and Texture of Mayonnaise. Food Sci. Technol. Res. 2007, 13, 1–6. [Google Scholar] [CrossRef]
- Censi, R.; Peregrina, D.; Lacava, G.; Agas, D.; Lupidi, G.; Sabbieti, M.; Martino, P. Cosmetic Formulation Based on an Açai Extract. Cosmetics 2018, 5, 48. [Google Scholar] [CrossRef]
- Morávková, T.; Stern, P. Rheological and Textural Properties of Cosmetic Emulsions. Appl. Rheol. 2011, 21, 35200. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Wang, X. The Comparison of Titanium Dioxide and Zinc Oxide Used in Sunscreen Based on Their Enhanced Absorption. Appl. Comput. Eng. 2023, 24, 237–245. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A Review of Inorganic UV Filters Zinc Oxide and Titanium Dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef]
- Jiménez Reinosa, J.; Leret, P.; Álvarez-Docio, C.M.; del Campo, A.; Fernández, J.F. Enhancement of UV Absorption Behavior in ZnO–TiO2 Composites. Bol. Soc. Esp. Ceram. Vidr. 2016, 55, 55–62. [Google Scholar] [CrossRef]
- Addae, A.J.; Weiss, P.S. Standardizing the White Cast Potential of Sunscreens with Metal Oxide Ultraviolet Filters. Acc. Mater. Res. 2024, 5, 392–399. [Google Scholar] [CrossRef]
- Tsuruta, M.; Miyoshi, T.; Tsuruyama, M.; Matsumoto, S.; Yamashina, T.; Irie, K.; Matsuo, N.; Itonaga, T.; Hiraki, Y.; Kawamata, Y. Preparation and Evaluation of a Modified Mohs Paste Mixed with Zinc Oxide 10% Topical Oil-Based Ointment. J. Palliat. Med. 2018, 21, 598–603. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Chemical and Mechanical Accelerated and Long-Term Stability Evaluation of Sunscreen Formulation Containing Grape Seed Extract. J. Cosmet. Dermatol. 2022, 21, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
Commercial Name | Tinosorb®S | Tinosorb®M | Eusolex®/ Uvinul® MC 80 | Eusolex® OS |
---|---|---|---|---|
Chemical name | Bemotrizinol | Bisoctrizol | Octinoxate | Octisalate |
State | Solid | Solid | Liquid | Liquid |
Molecular formula | C38H49N3O5 | C41H50N6O2 | C18H26O3 | C15H22O3 |
CAS * | 187393-00-6 | 103597-45-1 | 5466-77-3 | 118-60-5 |
Molecular weight (g·mol−1) | 627.8 | 658.9 | 290.4 | 250.3 |
Melting point (°C) | >400 | 195 | ˂−13 | ˂25 |
Log P | 80.4 | 12.7 | 5.8 | 5.9 |
Solubility in water (mg·L−1) | 0.339 | Insoluble | 0.200 | 0.074 |
Function | UVA/UVB filter | UVA/UVB filter | UVB filter Anti-aging agent | UVB filter Fragrance |
The Ingredient | F1 (%) | F2 (%) | F3 (%) | F4 (%) | F5 (%) | F6 (%) | F7 (%) | F8 (%) |
---|---|---|---|---|---|---|---|---|
Olive oil | 16.30 | 15.80 | 15.30 | 15.30 | 15.30 | 15.30 | 15.00 | 15.00 |
Polysorbate® 80 | 5.40 | 5.40 | 5.40 | - | - | - | - | 2.50 |
Beautyderm® K10 | - | - | - | 7.00 | 7.00 | 7.00 | 0.50 | 4.00 |
Stearin | 8.10 | 7.90 | 7.70 | 8.10 | 7.90 | 7.70 | 8.00 | 8.00 |
Tinosorb® M | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 10.00 | 10.00 |
Tinosorb® S | 3.40 | 3.40 | 3.40 | 3.40 | 3.40 | 3.40 | 10.00 | 10.00 |
Eusolex® | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 10.00 | 10.00 |
Eusolex® OS | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 | 5.00 | 5.00 |
Wool fat | 8.10 | 7.90 | 7.70 | 8.10 | 7.90 | 7.70 | 10.00 | 10.00 |
Uvinul® MC 80 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | - | - |
Booster | 1.00 | 3.00 | 5.00 | 1.00 | 3.00 | 5.00 | 3.00 | 3.00 |
Purified water | 27.30 | 26.50 | 25.8 | 27.22 | 25.62 | 24.02 | 13.00 | 14.50 |
Tocopherol | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 3.00 | 3.00 |
Span® 80 | - | - | - | - | - | - | 2.50 | - |
Cetyl alcohol | - | - | - | - | - | - | 5.00 | - |
Glycerol (85%, w/w) | 5.32 | 5.22 | 5.10 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Wavelength (nm) | EE ∙ I |
---|---|
290 | 0.0150 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3227 |
310 | 0.1864 |
315 | 0.0837 |
320 | 0.0180 |
Hardness (g) | Compressibility (g.s) | Adhesiveness (g.s) | Cohesiveness | |
---|---|---|---|---|
F1 | 12.81 ± 0.10 | 45.24 ± 0.44 | −11.25 ± 0.10 | 0.96 ± 0.00 |
F2 | 11.07 ± 0.10 | 40.05 ± 0.39 | −10.62 ± 0.11 | 1.03 ± 0.01 |
F3 | 9.25 ± 0.09 | 33.01 ± 0.32 | −8.54 ± 0.09 | 1.05 ± 0.01 |
F4 | 14.25 ± 0.14 | 50.79 ± 0.51 | −11.30 ± 0.10 | 0.97 ± 0.10 |
F5 | 14.93 ± 0.14 | 51.83 ± 0.50 | −14.38 ± 0.13 | 1.09 ± 0.01 |
F6 | 34.64 ± 0.30 | 110.07 ± 1.09 | −24.24 ± 0.23 | 0.84 ± 0.00 |
F7 | 8.84 ± 0.61 | 31.25 ± 1.94 | −0.05 ± 0.00 | 0.98 ± 0.01 |
F8 | 8.36 ± 0.32 | 29.82 ± 0.48 | −0.05 ± 0.00 | 1.00 ± 0.07 |
F8 + ZnO | 7.88 ± 0.12 | 28.17 ± 0.20 | −0.05 ± 0.00 | 1.03 ± 0.00 |
K+ (Pa·sn) | K− (Pa·sn) | n+ | n− | Hysteresis Loop Area (Pa·s−1) 103 | |
---|---|---|---|---|---|
F1 | 74.13 ± 0.31 | 5.31 ± 0.46 | 0.22 ± 0.00 | 0.55 ± 0.00 | 97.36 ± 0.01 |
F2 | 37.67 ± 5.21 | 12.47 ± 0.85 | 0.31 ± 0.00 | 0.45 ± 0.00 | 35.26 ± 0.10 |
F3 | 30.33 ± 0.20 | 14.22 ± 0.11 | 0.38 ± 0.00 | 0.50 ± 0.00 | 18.27 ± 0.85 |
F4 | 8.09 ± 0.19 | 7.24 ± 0.17 | 0.62 ± 0.00 | 0.63 ± 0.00 | 6.47 ± 0.00 |
F5 | 23.49 ± 0.18 | 3.88 ± 0.11 | 0.42 ± 0.00 | 0.71 ± 0.00 | 11.64 ± 0.32 |
F6 | 30.99 ± 0.23 | 3.67 ± 0.18 | 0.40 ± 0.00 | 0.75 ± 0.01 | 19.11 ± 0.52 |
F7 | 60.59 ± 0.39 | 15.79 ± 0.23 | 0.34 ± 0.00 | 0.55 ± 0.00 | 31.58 ± 1.80 |
F8 | 29.04 ± 0.18 | 5.98 ± 0.90 | 0.36 ± 0.00 | 0.60 ± 0.00 | 19.49 ± 0.80 |
F8 + ZnO | 19.91 ± 0.24 | 7.57 ± 1.15 | 0.43 ± 0.00 | 0.59 ± 00 | 8.50 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Špaglová, M.; Čermáková, P.; Jackuliaková, P.; Piešťanský, J. Role of Emulsifiers and SPF Booster in Sunscreen Performance: Assessing SPF, Rheological Behavior, Texture, and Stability. Cosmetics 2025, 12, 118. https://doi.org/10.3390/cosmetics12030118
Špaglová M, Čermáková P, Jackuliaková P, Piešťanský J. Role of Emulsifiers and SPF Booster in Sunscreen Performance: Assessing SPF, Rheological Behavior, Texture, and Stability. Cosmetics. 2025; 12(3):118. https://doi.org/10.3390/cosmetics12030118
Chicago/Turabian StyleŠpaglová, Miroslava, Paula Čermáková, Patrícia Jackuliaková, and Juraj Piešťanský. 2025. "Role of Emulsifiers and SPF Booster in Sunscreen Performance: Assessing SPF, Rheological Behavior, Texture, and Stability" Cosmetics 12, no. 3: 118. https://doi.org/10.3390/cosmetics12030118
APA StyleŠpaglová, M., Čermáková, P., Jackuliaková, P., & Piešťanský, J. (2025). Role of Emulsifiers and SPF Booster in Sunscreen Performance: Assessing SPF, Rheological Behavior, Texture, and Stability. Cosmetics, 12(3), 118. https://doi.org/10.3390/cosmetics12030118