Optimizing Skin Quality via AI-Enhanced Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
- The physiological impact of physical activity on skin health, including mechanisms such as improved microcirculation, collagen synthesis, reduced oxidative stress, and modulation of inflammation.
- The application of artificial intelligence in designing, adapting, and monitoring personalized exercise protocols using real-time biometric and environmental data.
- The integration of AI technologies in dermatological diagnostics, monitoring, or wellness optimization.
3. Results
3.1. Effects of Exercise on Skin Health
3.2. Exercise and Artificial Intelligence
3.3. Artificial Intelligence and Dermatology
4. Discussion
4.1. AI-Augmented Exercise for Skin Health
4.2. Technical Limitations and Ethical Considerations of AI-Enhanced Wearables in Dermatology
4.3. Ethical and Regulatory Roadmap for AI in Dermatology
4.4. Monitoring Oxidative Stress and Stress-Related Skin Conditions
4.5. Evidence for Adherence and Dermatological Impact
4.6. Innovative Applications and Collaboration Needs
4.7. Review Limitations
5. Conclusions and Future Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.; Walter, A.J.; Geisler, A.; Roongpisuthipong, W.; Sikorski, G. Association of facial exercise with the appearance of aging. JAMA Dermatol. 2018, 154, 365–367. [Google Scholar] [CrossRef]
- Grech, V.S.; Kefala, V.; Rallis, E. Cosmetology in the era of artificial intelligence. Cosmetics 2024, 11, 135. [Google Scholar] [CrossRef]
- Gasenko, K. Revolutionizing beauty: How artificial intelligence is transforming the beauty industry in the USA. Věda A Perspektivy 2024, 7, 8–16. [Google Scholar] [CrossRef]
- Chen, H.K.; Chen, F.H.; Lin, S.F. An AI-based exercise prescription recommendation system. Appl. Sci. 2021, 11, 2661. [Google Scholar] [CrossRef]
- Canzone, A.; Belmonte, G.; Patti, A.; Vicari, D.S.S.; Rapisarda, F.; Giustino, V.; Drid, P.; Bianco, A. The multiple uses of artificial intelligence in exercise programs: A narrative review. Front. Public Health 2025, 13, 1510801. [Google Scholar] [CrossRef] [PubMed]
- Rospo, G.; Valsecchi, V.; Bonomi, A.G.; Thomassen, I.W.J.; van Dantzig, S. Cardiorespiratory improvements achieved by American College of Sports Medicine’s exercise prescription implemented on a mobile app. JMIR Mhealth Uhealth 2016, 4, e77. [Google Scholar] [CrossRef]
- Alagić, A.; Badnjevic, A.; Pokvić, L.G. Application of artificial intelligence in the analysis of the facial skin health condition. IFAC-PapersOnLine 2022, 55, 31–37. [Google Scholar] [CrossRef]
- Satya-Akunuri, K.S.; Burkhart, C.K. Artificial intelligence in dermatology: Current uses, shortfalls, and potential opportunities for further implementation in diagnostic and care. Open Dermatol. J. 2023, 17, e187437222304140. [Google Scholar] [CrossRef]
- Ghangho, X.; Samuel, S.; Wei, G. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 2023, 5, 1344–1355. [Google Scholar] [CrossRef]
- Kruk, J. Physical activity in the prevention of the most frequent chronic diseases: An analysis of the recent evidence. Asian Pac. J. Cancer Prev. 2007, 8, 325–338. [Google Scholar]
- Cho, C.; Lee, S. The effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. Int. J. Sci. 2024, 25, 9274. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, E.C.; Witkowski, M. Exercise and vascular function: How much is too much? Physiology 2022, 37, 278–290. [Google Scholar] [CrossRef]
- Oizumi, R.; Sugimoto, Y.; Aibara, H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR Dermatol. 2024, 7, e51962. [Google Scholar] [CrossRef]
- Lanting, M.S.; Johnson, N.; Baker, M. The effect of exercise training on cutaneous microvascular reactivity: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.A.; Morris, J.K.; Billinger, S.A. Hippocampal blood flow rapidly and preferentially increases after a bout of moderate-intensity exercise in older adults with poor cerebrovascular health. Cereb. Cortex 2022, 33, 5297–5306. [Google Scholar] [CrossRef]
- Fuertes-Kenneally, L.; Blasco-Peris, C.; Casanova-Lizón, A. Effects of high-intensity interval training on vascular function in patients with cardiovascular disease: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1196665. [Google Scholar] [CrossRef]
- McIntosh, M.C.; Anglin, D.A.; Robinson, A.T.; Beck, D.T.; Roberts, M.D. Making the case for resistance training in improving vascular function and skeletal muscle capillarization. Front. Physiol. 2024, 15, 1338507. [Google Scholar] [CrossRef]
- Lee, J.; Tang, J.C.Y.; Dutton, J. The collagen synthesis response to an acute bout of resistance exercise is greater when ingesting 30 g hydrolyzed collagen compared with 15 g and 0 g in resistance-trained young men. J. Nutr. 2024, 154, 2076–2086. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Schunck, M.; Zague, V.; Segger, D.; Degwert, J.; Oesser, S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol. Physiol. 2014, 27, 113–119. [Google Scholar] [CrossRef]
- Heinemeier, K.M.; Olesen, J.L.; Schjerling, P.; Haddad, F.; Langberg, H.; Baldwin, K.M.; Kjaer, M. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: Differential effects of specific contraction types. J. Appl. Physiol. 2007, 102, 573–581. [Google Scholar] [CrossRef]
- Langton, A.K.; Sherratt, M.J.; Griffiths, C.E.M. A new wrinkle on old skin: The role of elastic fibres in skin aging. Int. J. Cosmet. Sci. 2010, 32, 330–339. [Google Scholar] [CrossRef]
- Tominaga, K.; Hongo, N.; Karato, M.; Yamashita, E. Cosmetic benefits of astaxanthin on human subjects. Acta Biochim. Pol. 2012, 59, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.J.; Flatley, E.; Elkattawy, O. Exercise in dermatology: Exercise’s influence on skin aging, skin cancer, psoriasis, venous ulcers, and androgenetic alopecia. J. Am. Acad. Dermatol. 2022, 87, 183–184. [Google Scholar] [CrossRef]
- Forte, P.; Branquinho, R.; Ferraz, R. The relationships between Physical Activity, Exercise, and Sports on the Immune System. Int. J. Environ. Res. Public Health 2022, 19, 6777. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; Assor, M.; Rodríguez-Mañas, L. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 2020, 35, 101513. [Google Scholar] [CrossRef] [PubMed]
- Nitish, N.; Jain, R. A Navigational Approach to Health: Actionable Guidance for Improved Quality of Life. IEEE Comput. 2019, 52, 12–20. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Pang, J.; Zeng, C.; Ma, X.; Li, P.; Ma, L.; Huang, J.; Xie, H. Assessment of Personalized Exercise Prescriptions Issued by ChatGPT 4.0 and Intelligent Health Promotion Systems for Patients with Hypertension Comorbidities. J. Multidiscip. Healthc. 2024, 17, 5063–5078. [Google Scholar] [CrossRef]
- Fang, J.; Lee, V.C.; Ji, H.; Wang, H. Enhancing Digital Health Services: A Machine Learning Approach to Personalized Exercise Goal Setting. Digit. Health 2024, 10, 20552076241233247. [Google Scholar] [CrossRef]
- Schoeppe, S.; Alley, S.; Van Lippevelde, W.; Bray, N.A.; Williams, S.L.; Duncan, M.J.; Vandelanotte, C. Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 127. [Google Scholar] [CrossRef]
- Zhan, C. Application of artificial intelligence in the development of personalized sports injury rehabilitation plan. Mol. Cell. Biomech. 2024, 21, 326. [Google Scholar] [CrossRef]
- Zou, R. Exploring the Role of Artificial Intelligence in Sports Injury Prevention and Rehabilitation. Scalable Comput. Pract. Exp. 2025, 26, 316–325. [Google Scholar] [CrossRef]
- Kakavas, G.; Malliaropoulos, N.; Pruna, R. Artificial intelligence: A tool for sports trauma prediction. Injury 2020, 51 (Suppl. 3), S63–S65. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R. Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope? J. Sports Sci. Med. 2006, 5, 474–479. [Google Scholar] [PubMed]
- Reis, F.J.J.; Alaiti, R.K.; Vallio, C.S. Artificial intelligence and machine learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz. J. Phys. Ther. 2024, 28, 101083. [Google Scholar] [CrossRef]
- Desa, V. The Future of Artificial Intelligence in Sports Medicine and Return to Play. Semin. Musculoskelet. Radiol. 2024, 28, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Smaranda, A.M.; Drăgoiu, T.S.; Caramoci, A. Artificial Intelligence in Sports Medicine: Reshaping Electrocardiogram Analysis for Athlete Safety—A Narrative Review. Sports 2024, 12, 144. [Google Scholar] [CrossRef]
- Pareek, A.; Ro, D.H.; Karlsson, J. Machine learning/artificial intelligence in sports medicine: State of the art and future directions. J. Isakos 2024, 9, 635–644. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer. 2019, 119, 11–17. [Google Scholar] [CrossRef]
- Janda, M.; Soyer, H.P. Automated diagnosis of melanoma. Med. J. Aust. 2017, 207, 361–362. [Google Scholar] [CrossRef]
- Han, S.S.; Park, G.H.; Lim, W.; Kim, M.S.; Na, J.I.; Park, I.; Chang, S.E. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis. PLoS ONE 2018, 13, e0191493. [Google Scholar] [CrossRef]
- Liu, Y.; Jain, A.; Eng, C.; Way, D.H.; Lee, K.; Bui, P.; Kanada, K.; de Oliveira Marinho, G.; Gallegos, J.; Gabriele, S.; et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 2020, 26, 900–908. [Google Scholar] [CrossRef]
- Tschandl, P.; Rinner, C.; Apalla, Z.; Argenziano, G.; Codella, N.; Halpern, A.; Janda, M.; Lallas, A.; Longo, C.; Malvehy, J.; et al. Human–computer collaboration for skin cancer recognition. Nat. Med. 2020, 26, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Mohan, J.; Sowmya, V.; Vinayakumar, R. Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI. Comput. Biol. Med. 2025, 190, 110007. [Google Scholar] [CrossRef]
- Omiye, J.A.; Gui, H.; Daneshjou, R.; Ran, Z. Principles, applications, and future of artificial intelligence in dermatology. Front. Med. 2023, 10, 1278232. [Google Scholar] [CrossRef]
- Rajegowda, G.M.; Spyridis, Y.; Villarini, B.; Argyriou, V. An AI-assisted skincare routine recommendation system in XR. arXiv 2024, arXiv:2403.13466. [Google Scholar]
- Zhou, J.; He, X.; Sun, L.; Xu, J.; Chen, X.; Chu, Y.; Zhou, L.; Liao, X.; Zhang, B.; Gao, X. SkinGPT-4: An Interactive Dermatology Diagnostic System with Visual Large Language Model. arXiv 2023, arXiv:2304.10691. [Google Scholar]
- Panagoulias, D.P.; Tsoureli-Nikita, E.; Virvou, M.; Tsihrintzis, G.A. Dermacen Analytica: A Novel Methodology Integrating Multi-Modal Large Language Models with Machine Learning in Tele-Dermatology. arXiv 2024, arXiv:2403.14243. [Google Scholar] [CrossRef]
- Cortes, J.; Paravar, T.; Oldenburg, R. Physician Opinions on Artificial Intelligence Chatbots In Dermatology: A National Online Cross-Sectional Survey. J. Drugs Dermatol. 2024, 23, 972–978. [Google Scholar] [CrossRef]
- Liopyris, K.; Markatos, K.; Gkegkes, I.D.; Gregoriou, S. Artificial Intelligence in Dermatology: Challenges and Perspectives. Dermatol. Ther. 2022, 12, 2637–2651. [Google Scholar] [CrossRef]
- Gomolin, A.; Netchiporouk, E.; Gniadecki, R.; Litvinov, I.V. Artificial intelligence applications in dermatology: Where do we stand? Front. Med. 2020, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Hogarty, D.T.; Su, J.C.; Phan, K.; Attia, M.; Hossny, M.; Nahavandi, S.; Lenane, P.; Moloney, F.J.; Yazdabadi, A. Artificial Intelligence in Dermatology—Where We Are and the Way to the Future: A Review. Am. J. Clin. Dermatol. 2020, 21, 41–47. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Sarda, A.; Gupta, S.; Das, S. Use of Artificial Intelligence in Dermatology. Indian J. Dermatol. 2020, 65, 352–357. [Google Scholar] [CrossRef]
- Busik, V. How artificial intelligence and large language models are revolutionizing dermatology. Dermatologie 2024, 75, 743–746. [Google Scholar] [CrossRef]
- Alwahaibi, N.; Alwahaibi, M. Mini review on skin biopsy: Traditional and modern techniques. Front. Med. 2025, 12, 1476685. [Google Scholar] [CrossRef] [PubMed]
- Hirani, R.; Noruzi, K.; Khuram, H. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. [Google Scholar] [CrossRef]
- Li, Z.; Koban, K.C. Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J. Clin. Med. 2022, 11, 6826. [Google Scholar] [CrossRef]
- Zeng, N.; Liao, N.; Han, C.; Liu, W.; Gao, Z. Leveraging fitness tracker and personalized exercise prescription to promote breast cancer survivors’ health outcomes: A feasibility study. J. Clin. Med. 2020, 9, 1775. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
Authors | Study Focus | Key Findings |
---|---|---|
Kruk J. 2007 [10] | Exercise and chronic disease | Reduces oxidative stress and inflammation |
Cho C, et al., 2004 [11] | Blood flow restriction aerobic exercise | Enhances antioxidant mechanisms and skin health |
McLoughlin EC, et al., 2022 [12] | Exercise and skin function | Supports skin elasticity and vascular health |
Oizumi R et al., 2024 [13] | Epidermal barrier | Improves skin elasticity and epidermal barrier |
Lanting MS et al., 2017 [14] | Exercise and microvascular reactivity | Confirms improved oxygen/nutrient delivery to skin |
Palmer JA et al., 2022 [15] | Blood flow post-exercise | Indicates potential for improved skin circulation |
Fuertes-Kenneally L, et al., 2023 [16] | HIIT and vascular function | Improves microcirculation and skin perfusion |
McIntosh MC, et al., 2024 [17] | Resistance training and vascular function | Increases capillary permeability and skin vascularity |
Lee J, et al., 2024 [18] | Collagen synthesis and resistance exercise | Boosts collagen with hydrolyzed collagen intake |
Proksch E, et al., 2014 [19] | Collagen peptides and skin | Improves skin hydration and elasticity |
Heinemeier KM, et al., 2007 [20] | Exercise and IGF-I | Stimulates regeneration via growth factors |
Langton AK, et al., 2010 [21] | Elastic fibers and skin aging | Emphasizes importance of elastic fiber integrity |
Tominaga K, et al., 2012 [22] | Astaxanthin and exercise | Combined benefits on skin quality |
Yeh CJ, et al., 2022 [23] | Exercise and skin diseases | Improves psoriasis and alopecia via cytokine reduction |
Conti P, et al., 2023 [24] | Exercise and immune response | Reduces oxidative stress in skin diseases |
El Assar M, et al., 2022 [25] | Exercise and aging | Improves microcirculation and skin regeneration |
Authors | Study Focus | Key Findings |
---|---|---|
Nitish N, et al., 2029 [26] | AI guidance in health | Navigation-based personalized health and quality of life improvement |
Xu Y, et al., 2024 [27] | ChatGPT and personalized exercise | AI systems can create tailored exercise plans based on user profiles |
Canzone A, et al., 2025 [5] | AI in exercise program design | Real-time data enables personalization and decision-making |
Fang J, et al., 2024 [28] | Digital health and goal setting | ML improves personalized exercise goal setting |
Schoeppe S, et al., 2016 [29] | Apps for physical activity | AI-supported apps improve diet and activity tracking |
Zhan C. 2024 [30] | AI in injury rehabilitation | AI creates adaptive rehab plans using video/sensor data |
Zou R. 2025 [31] | Injury prevention and rehab | AI predicts injury risk and supports safe return to sport |
Kakavas G, et al., 2020 [32] | Sports trauma prediction | AI predicts injuries using athlete history and condition |
Bartlett R. 2006 [33] | Biomechanics and AI | AI enhances diagnosis and rehab monitoring |
Reis FJJ, et al., 2024 [34] | AI in sports medicine | AI uses data from diagnostic tools |
Desa V, et al., 2024 [35] | AI and return to play | AI supports decision-making in rehabilitation |
Smaranda AM, et al., 2024 [36] | AI in ECG analysis | AI reshapes ECG analysis for athlete safety |
Pareek A, et al., 2025 [37] | AI in Sports | Outlines AI’s current and future roles in sports injury management |
Authors | Study Focus | Key Findings |
---|---|---|
Esteva A, et al., 2017 [38] | Skin cancer classification | AI matches dermatologist-level accuracy |
Brinker TJ, et al., 2029 [39] | Melanoma classification | AI outperforms dermatologists in image classification |
Janda M, et al., 2017 [40] | Melanoma diagnosis automation | High sensitivity useful in low-access settings |
Han SS, et al., 2028 [41] | Onychomycosis diagnosis | Deep learning matches expert diagnosis |
Liu Y, et al., 2020 [42] | Differential diagnosis of skin diseases | AI diagnoses 26 conditions with expert-level accuracy |
Tschandl P, et al., 2020 [43] | Human-AI collaboration | Physician + AI improves diagnostic performance |
Mohan J, et al., 2025 [44] | Transformer models in dermatology | Enhances accuracy and explainability |
Omiye JA, et al., 2023 [45] | Explainable AI | Improves trust and clarity in diagnosis |
Malalur Rajegowda G, et al., 2024 [46] | AI skincare in XR | 93% accuracy in skincare recommendation |
Zhou J, et al., 2023 [47] | SkinGPT-4 | Visual LLMs for dermatological diagnostics |
Panagoulias DP, et al., 2024 [48] | Tele-dermatology | AI supports decision-making via multi-modal data |
Cortes J, et al., 2024 [49] | Physician attitudes on AI | Interest in AI chatbots despite ethical concerns |
Liopyris K, et al., 2022 [50] | Challenges in dermatology AI | Discusses biases and regulation needs |
Gomolin A, et al., 2020 [51] | AI in dermatology Overview | Evaluates current AI applications |
Hogarty DT, et al., 2020 [52] | Future of AI in dermatology | Reviews applications and prospects |
De A, et al., 2020 [53] | AI use in Indian dermatology | Highlights AI’s expanding role |
Busik V. et al., 2024 [54] | AI and LLMs in dermatology | Reviews current LLM applications |
Alwahaibi N, et al., 2025 [55] | Skin biopsy techniques | Discusses AI’s impact on diagnostics |
Hirani R, et al., 2024 [56] | AI in healthcare evolution | Historical and futuristic view on AI in care |
Li Z, et al., 2022 [57] | Dermatology image analysis | Overview of AI trends and developments |
Topic | Information |
---|---|
Effects of Exercise on Skin | - Improved microcirculation - Enhanced collagen synthesis - Reduced inflammation - Antioxidant activity - Improved skin elasticity and hydration - Beneficial for chronic skin conditions (psoriasis, atopic dermatitis, acne) |
Use of AI in Dermatology | - Image analysis for diagnosis and disease monitoring - Detection of early lesions and signs of aging - Personalized treatment recommendations via systems like Skin GPT-4 and Dermacen Analytica - Use of Explainable AI (XAI) for transparent and trustworthy decision-making |
Combining Exercise and AI for Skin Health | - Biometric and physiological data analysis through wearable devices - Customized workout plans based on real-time data (e.g., hydration, skin temperature) - Prevention of irritation and dryness by regulating exercise intensity/duration - Predictive models identifying exercise-related flare-ups (e.g., acne) - Regulation of cortisol (stress hormone) levels through exercise |
Collaboration and Future Directions | - Collaboration between doctors, developers, and re searchers - Skin quality as an indicator of overall health - Development of new therapeutic protocols combining AI and exercise - Integration with biosensors and advanced wearable technologies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tertipi, N.; Sfyri, E.; Grech, V.S.; Kefala, V.; Rallis, E. Optimizing Skin Quality via AI-Enhanced Physical Activity. Cosmetics 2025, 12, 104. https://doi.org/10.3390/cosmetics12030104
Tertipi N, Sfyri E, Grech VS, Kefala V, Rallis E. Optimizing Skin Quality via AI-Enhanced Physical Activity. Cosmetics. 2025; 12(3):104. https://doi.org/10.3390/cosmetics12030104
Chicago/Turabian StyleTertipi, Niki, Eleni Sfyri, Vasiliki Sofia Grech, Vasiliki Kefala, and Efstathios Rallis. 2025. "Optimizing Skin Quality via AI-Enhanced Physical Activity" Cosmetics 12, no. 3: 104. https://doi.org/10.3390/cosmetics12030104
APA StyleTertipi, N., Sfyri, E., Grech, V. S., Kefala, V., & Rallis, E. (2025). Optimizing Skin Quality via AI-Enhanced Physical Activity. Cosmetics, 12(3), 104. https://doi.org/10.3390/cosmetics12030104