Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis
Abstract
1. Introduction
2. Case Presentation
2.1. Case Story
2.2. Design of PSI and Virtual Planning
2.3. Trial of 3D PSI
2.4. Surgical Procedure
2.5. Assessment and Follow-Up
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, D.D.; Schorn, L.; Strong, E.B.; Grant, M.; Schramm, A.; Hufendiek, K.; Gellrich, N.-C.; Rana, M. Computer-Assisted Secondary Orbital Reconstruction. Craniomaxillofac. Trauma Reconstr. 2021, 14, 29–35. [Google Scholar] [CrossRef]
- Erbano, B.O.; Opolski, A.C.; Olandoski, M.; Foggiatto, J.A.; Kubrusly, L.F.; Dietz, U.A.; Zini, C.; Marinho, M.M.M.A.; Leal, A.G.; Ramina, R. Rapid Prototyping of Three-Dimensional Biomodels as an Adjuvant in the Surgical Planning for Intracranial Aneurysms. Acta Cir. Bras. 2013, 28, 756–761. [Google Scholar] [CrossRef]
- Gander, T.; Essig, H.; Metzler, P.; Lindhorst, D.; Dubois, L.; Rücker, M.; Schumann, P. Patient Specific Implants (PSI) in Reconstruction of Orbital Floor and Wall Fractures. J. Craniomaxillofac. Surg. 2015, 43, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Brucoli, M.; Boffano, P.; Broccardo, E.; Benech, A.; Corre, P.; Bertin, H.; Pechalova, P.; Pavlov, N.; Petrov, P.; Tamme, T.; et al. The “European Zygomatic Fracture” Research Project: The Epidemiological Results from a Multicenter European Collaboration. J. Craniomaxillofac. Surg. 2019, 47, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Chui, C.H.K.; Wagner, M.; Zimmerer, R.; Rana, M.; Gellrich, N.-C. Increasing the Accuracy of Orbital Reconstruction with Selective Laser-Melted Patient-Specific Implants Combined with Intraoperative Navigation. J. Oral Maxillofac. Surg. 2015, 73, 1113–1118. [Google Scholar] [CrossRef]
- Forouzanfar, T.; Salentijn, E.; Peng, G.; van den Bergh, B. A 10-Year Analysis of the “Amsterdam” Protocol in the Treatment of Zygomatic Complex Fractures. J. Craniomaxillofac. Surg. 2013, 41, 616–622. [Google Scholar] [CrossRef]
- Osaki, T.; Tamura, R.; Nomura, T.; Hashikawa, K.; Terashi, H. Treatment of Orbital Blowout Fracture Using a Customized Rigid Carrier. J. Craniomaxillofac. Surg. 2020, 48, 1052–1056. [Google Scholar] [CrossRef]
- Sozzi, D.; Gibelli, D.; Canzi, G.; Tagliaferri, A.; Monticelli, L.; Cappella, A.; Bozzetti, A.; Sforza, C. Assessing the Precision of Posttraumatic Orbital Reconstruction through “Mirror” Orbital Superimposition: A Novel Approach for Testing the Anatomical Accuracy. J. Craniomaxillofac. Surg. 2018, 46, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Szymor, P. Comparison of Pre-Bent Titanium Mesh versus Polyethylene Implants in Patient Specific Orbital Reconstructions. Head Face Med. 2013, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Mataliotakis, G.I.; Angoules, A.G.; Kanakaris, N.K.; Giannoudis, P.V. Complications Following Autologous Bone Graft Harvesting from the Iliac Crest and Using the RIA: A Systematic Review. Injury 2011, 42 (Suppl. S2), S3–S15. [Google Scholar] [CrossRef]
- Yamada, T.; Mochizuki, H.; Kiuchi, Y. Temporary Use of Silicone Plates for the Surgical Repair of Orbital Blow-out Fractures. Investig. Ophthalmol. Visual Sci. 2011, 52, 720–725. [Google Scholar]
- Baum, S.H.; Schmeling, C.; Pförtner, R.; Mohr, C. Autologous Dermis-Fat Grafts as Primary and Secondary Orbital Transplants before Rehabilitation with Artificial Eyes. J. Cranio-Maxillofac. Surg. 2018, 46, 90–97. [Google Scholar] [CrossRef]
- Kanno, T.; Sukegawa, S.; Karino, M.; Furuki, Y. Navigation-Assisted Orbital Trauma Reconstruction Using a Bioactive Osteoconductive/Bioresorbable u-HA/PLLA System. J. Maxillofac. Oral Surg. 2019, 18, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, L.A.; Yaremchuk, M.J. Secondary Reconstruction of Posttraumatic Orbital Deformities. Ann. Plast. Surg. 1990, 25, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, D.J.; Mainprize, J.G.; Edwards, G.P.; Antonyshyn, O.M. Patient-specific orbital implants: Development and implementation of technology for more accurate orbital reconstruction. J. Craniofac. Surg. 2016, 27, 131–133. [Google Scholar] [CrossRef]
- Bai, H.; Zhao, Y.; Wang, C.; Wang, Z.; Wang, J.; Liu, H.; Feng, Y.; Lin, Q.; Li, Z.; Liu, H. Enhanced Osseointegration of Three-Dimensional Supramolecular Bioactive Interface through Osteoporotic Microenvironment Regulation. Theranostics 2020, 10, 4779–4794. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Kanno, T.; Furuki, Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn. Dent. Sci. Rev. 2018, 54, 139–149. [Google Scholar] [CrossRef]
- de Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. In Tribology—Fundamentals and Advancements; InTech: London, UK, 2013; ISBN 9789535111351. [Google Scholar]
- Hua, J.; Aziz, S.; Shum, J.W. Virtual Surgical Planning in Oral and Maxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 519–530. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Additive Manufacturing Applications in Medical Cases: A Literature Based Review. Alex. J. Med. 2018, 54, 411–422. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Mendelson, B.; Wong, C.-H. Changes in the Facial Skeleton with Aging: Implications and Clinical Applications in Facial Rejuvenation. Aesthetic Plast. Surg. 2020, 44, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Conforte, J.J.; Alves, C.P.; Sánchez, M.d.P.R.; Ponzoni, D. Impact of Trauma and Surgical Treatment on the Quality of Life of Patients with Facial Fractures. Int. J. Oral Maxillofac. Surg. 2016, 45, 575–581. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwich, M.A.; Darwich, K.; Yousof, K.; Szávai, S.; Nazha, H.M.; Juhre, D. Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics 2023, 10, 52. https://doi.org/10.3390/cosmetics10020052
Darwich MA, Darwich K, Yousof K, Szávai S, Nazha HM, Juhre D. Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics. 2023; 10(2):52. https://doi.org/10.3390/cosmetics10020052
Chicago/Turabian StyleDarwich, Mhd Ayham, Khaldoun Darwich, Khalil Yousof, Szabolcs Szávai, Hasan Mhd Nazha, and Daniel Juhre. 2023. "Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis" Cosmetics 10, no. 2: 52. https://doi.org/10.3390/cosmetics10020052
APA StyleDarwich, M. A., Darwich, K., Yousof, K., Szávai, S., Nazha, H. M., & Juhre, D. (2023). Computer-Assisted Reconstruction of an Orbital Trauma Case Treated with a Patient-Specific Titanium Prosthesis. Cosmetics, 10(2), 52. https://doi.org/10.3390/cosmetics10020052