Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Sampling, Preparation and Processing of Samples
2.1.2. Packaging and Storage of Samples
2.2. Microbial Analysis
2.3. Physical and Chemical Analyses
2.4. Instrumental Color Measurement
2.5. Sensory Analysis
2.6. Data Analysis
3. Results
3.1. Microorganisms Quantification
3.2. Physical–Chemical Parameters
3.3. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
D.O.P. | Protected Designation of Origin |
LAB | Lactic Acid Bacteria |
CIE | Commission Internationale de l’Eclairage |
OFE | Overall Freshness Evaluation |
References
- Official Journal of the European Union. Commission Regulation (EU) No 601/2014 of 4 June 2014 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Categories of Meat and the Use of Certain Food Additives in Meat Preparations; Official Journal of the European Union: Brussels, Belgium, 2014. [Google Scholar]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat Consumption: Which Are the Current Global Risks? A Review of Recent (2010–2020) Evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar]
- Li, X.; Zhang, R.; Hassan, M.M.; Cheng, Z.; Mills, J.; Hou, C.; Realini, C.E.; Chen, L.; Day, L.; Zheng, X.; et al. Active Packaging for the Extended Shelf-Life of Meat: Perspectives from Consumption Habits, Market Requirements and Packaging Practices in China and New Zealand. Foods 2022, 11, 2903. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability Labels on Food Products: Consumer Motivation, Understanding and Use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012.
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Realini, C.E.; Guàrdia, M.D.; Díaz, I.; García-Regueiro, J.A.; Arnau, J. Effects of Acerola Fruit Extract on Sensory and Shelf-Life of Salted Beef Patties from Grinds Differing in Fatty Acid Composition. Meat Sci. 2014, 99, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Hoelscher, H.; Fell, E.L.; Colet, R.; Nascimento, L.H.; Backes, Â.S.; Backes, G.T.; Cansian, R.L.; Valduga, E.; Steffens, C. Antioxidant Activity of Rosemary Extract, Acerola Extract and a Mixture of Tocopherols in Sausage during Storage at 8 °C. J. Food Sci. Technol. 2024, 61, 69–83. [Google Scholar] [CrossRef]
- de Paiva, G.B.; Trindade, M.A.; Romero, J.T.; da Silva-Barretto, A.C. Antioxidant Effect of Acerola Fruit Powder, Rosemary and Licorice Extract in Caiman Meat Nuggets Containing Mechanically Separated Caiman Meat. Meat Sci. 2021, 173, 108406. [Google Scholar] [CrossRef] [PubMed]
- Suchopárová, M.; Janoud, Š.; Rydlova, L.; Beňo, F.; Pohůnek, V.; Ševčík, R. Effect of Acerola (Malpighia Emarginata DC.) Fruit Extract on the Quality of Soft Salami. J. Food Nutr. Res. 2022, 61, 368. [Google Scholar]
- Wang, K.; Mi, L.; Wang, X.; Zhou, L.; Xu, Z. Integration of Untargeted Metabolomics and Object-Oriented Data-Processing Protocols to Characterize Acerola Powder Composition as Functional Food Ingredient. Antioxidants 2023, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, Ł.; Porębska, I.; Świder, O.; Sokołowska, B.; Szczepańska-Stolarczyk, J.; Lendzion, K.; Marszałek, K. The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages. Molecules 2024, 29, 3171. [Google Scholar] [CrossRef]
- Lopes, M.; Cavaleiro, C.; Ramos, F. Sodium Reduction in Bread: A Role for Glasswort (Salicornia Ramosissima J. Woods). Compr. Rev. Food Sci. Food Saf. 2017, 16, 1056–1071. [Google Scholar] [CrossRef]
- Nájar, A.M.; Romero-Bernal, M.; del Río, C.; Montaner, J. A Review on Polyphenols in Salicornia Ramosissima with Special Emphasis on Their Beneficial Effects on Brain Ischemia. Nutrients 2023, 15, 793. [Google Scholar] [CrossRef]
- Lopes, M.; Roque, M.J.; Cavaleiro, C.; Ramos, F. Nutrient Value of Salicornia Ramosissima—A Green Extraction Process for Mineral Analysis. J. Food Compos. Anal. 2021, 104, 104135. [Google Scholar] [CrossRef]
- Limongelli, F.; Crupi, P.; Clodoveo, M.L.; Corbo, F.; Muraglia, M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef]
- Ferreira, I.; Leite, A.; Vasconcelos, L.; Rodrigues, S.; Mateo, J.; Munekata, P.E.S.; Teixeira, A. Sodium Reduction in Traditional Dry-Cured Pork Belly Using Glasswort Powder (Salicornia Herbacea) as a Partial NaCl Replacer. Foods 2022, 11, 3816. [Google Scholar] [CrossRef] [PubMed]
- Associação de Criadores de Bovinos Mertolengos. Carne Mertolenga Denominação de Origem Protegida—Caderno de Especificações; Associação de Criadores de Bovinos Mertolengos: Évora, Portugal, 2021. [Google Scholar]
- European Commission. Commission Staff Working Document: Evaluation of Geographical Indications and Traditional Specialities Guaranteed Protected in the EU; SWD(2021) 427 final; European Commission: Brussels, Belgium, 2021.
- Bourafai-Aziez, A.; Jacob, D.; Charpentier, G.; Cassin, E.; Rousselot, G.; Moing, A.; Deborde, C. Development, Validation, and Use of 1H-NMR Spectroscopy for Evaluating the Quality of Acerola-Based Food Supplements and Quantifying Ascorbic Acid. Molecules 2022, 27, 5614. [Google Scholar] [CrossRef]
- Olędzki, R.; Harasym, J. Acerola (Malpighia Emarginata) Anti-Inflammatory Activity—A Review. Int. J. Mol. Sci. 2024, 25, 2089. [Google Scholar]
- Mezadri, T.; Villaño, D.; Fernández-Pachón, M.S.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidant Compounds and Antioxidant Activity in Acerola (Malpighia emarginata DC.) Fruits and Derivatives. J. Food Compos. Anal. 2008, 21, 282–290. [Google Scholar] [CrossRef]
- Tuffs, S.W.; Herfst, C.A.; Baroja, M.L.; Podskalniy, V.A.; DeJong, E.N.; Coleman, C.E.M.; McCormick, J.K. Regulation of Toxic Shock Syndrome Toxin-1 by the Accessory Gene Regulator in Staphylococcus Aureus Is Mediated by the Repressor of Toxins. Mol. Microbiol. 2019, 112, 1163–1177. [Google Scholar] [CrossRef]
- Seong, P.N.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kang, S.M.; Kim, J.H.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Hoa, V.B. Potential Use of Glasswort Powder as a Salt Replacer for the Production of Healthier Dry-Cured Ham Products. Czech J. Food Sci. 2017, 35, 149–159. [Google Scholar] [CrossRef]
- Martínez, L.; Jongberg, S.; Ros, G.; Skibsted, L.H.; Nieto, G. Plant Derived Ingredients Rich in Nitrates or Phenolics for Protection of Pork against Protein Oxidation. Food Res. Int. 2020, 129, 108789. [Google Scholar] [CrossRef] [PubMed]
- Fruet, A.P.B.; Nörnberg, J.L.; Calkins, C.R.; De Mello, A. Effects of Different Antioxidants on Quality of Beef Patties from Steers Fed Low-Moisture Distillers Grains. Meat Sci. 2019, 154, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat Spoilage during Distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Torrieri, E.; Masi, P.; Villani, F. Changes in the Spoilage-Related Microbiota of Beef during Refrigerated Storage under Different Packaging Conditions. Appl. Environ. Microbiol. 2006, 72, 4663–4671. [Google Scholar] [CrossRef]
- de W. Blackburn, C. (Ed.) Food Spoilage Microorganisms, 1st ed.; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic Acid Bacteria and Their Controversial Role in Fresh Meat Spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef]
- Holley, R.A. Brochothrix. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 331–334. [Google Scholar]
- Limbo, S.; Torri, L.; Sinelli, N.; Franzetti, L.; Casiraghi, E. Evaluation and Predictive Modeling of Shelf Life of Minced Beef Stored in High-Oxygen Modified Atmosphere Packaging at Different Temperatures. Meat Sci. 2010, 84, 129–136. [Google Scholar] [CrossRef]
- Tremonte, P.; Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Ibañez, E.; Mendiola, J.A.; Di Renzo, T.; Reale, A.; Coppola, R. Antimicrobial Effect of Malpighia Punicifolia and Extension of Water Buffalo Steak Shelf-Life. J. Food Sci. 2016, 81, M97–M105. [Google Scholar] [CrossRef] [PubMed]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of Freezing and Thawing on the Quality of Meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Waimin, J.; Gopalakrishnan, S.; Heredia-Rivera, U.; Kerr, N.A.; Nejati, S.; Gallina, N.L.F.; Bhunia, A.K.; Rahimi, R. Low-Cost Nonreversible Electronic-Free Wireless PH Sensor for Spoilage Detection in Packaged Meat Products. ACS Appl. Mater. Interfaces 2022, 14, 45752–45764. [Google Scholar] [CrossRef]
- Husin, N.; Zulkhairi, M.; Rahim, A.; Azizan, M.; Noor, M.; Fitry, I.; Rashedi, M.; Hassan, N. Real-Time Monitoring of Food Freshness Using Delphinidin-Based Visual Indicator. Malays. J. Anal. Sci. 2020, 24, 558–569. [Google Scholar]
- Alves da Paz, M.E.; de Barcelos, S.C.; Cals de Oliveira, V.; Pinto, M.B.; Alves Teixeira Sá, D.M. Impact of Adding Dehydrated Acerola (Malpighia emarginata DC) on the Microbiological, Colorimetric, and Sensory Characteristics of Acerola Ice Cream. Int. J. Gastron. Food Sci. 2025, 39, 101101. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Fontana, A.J.; Schmidt, S.J.; Labuza, T.P. (Eds.) Water Activity in Foods; Wiley: Hoboken, NJ, USA, 2007; ISBN 9780813824086. [Google Scholar]
- Li, X.; Lindahl, G.; Zamaratskaia, G.; Lundström, K. Influence of Vacuum Skin Packaging on Color Stability of Beef Longissimus Lumborum Compared with Vacuum and High-Oxygen Modified Atmosphere Packaging. Meat Sci. 2012, 92, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Hernández Salueña, B.; Sáenz Gamasa, C.; Diñeiro Rubial, J.M.; Alberdi Odriozola, C. CIELAB Color Paths during Meat Shelf Life. Meat Sci. 2019, 157, 107889. [Google Scholar] [CrossRef] [PubMed]
Salt | Acerola Extract | Salicornia Powder | |
---|---|---|---|
Control | - | - | - |
Salt | 1% | - | - |
Salt and Acerola | 1% | 0.3% | - |
Salic. 1% | - | - | 1% |
Salic. 2% | - | - | 2% |
Acerola and Salic. 1% | - | 0.3% | 1% |
Acerola and Salic. 2% | - | 0.3% | 2% |
Microorganism | log ufc/g Sample |
---|---|
Total mesophiles | 4.59 ± 0.17 |
Total psychrotrophs | 4.91 ± 0.17 |
Enterobacteriaceae | 3.69 ± 1.43 |
Pseudomonas spp. | 4.19 ± 0.47 |
Brochothrix thermosphacta | 3.61 ± 0.32 |
Lactic acid bacteria | 2.70 ± 0.49 |
Molds and Yeasts | - |
Salmonella spp. | - |
E. coli | - |
L. monocytogenes | - |
Treatment | Time | p | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 10 | |||
Mesophiles | Control | 5.58 ± 0.43 | 6.70 ± 0.25 | 6.81 ± 0.78 | 7.50 ± 1.29 | 6.70 ± 1.65 | n.s. |
Salt | 5.48 ± 0.51 | 6.61 ± 0.28 | 6.84 ± 0.95 | 7.44 ± 0.88 | 6.46 ± 2.07 | n.s. | |
Salt and Acerola | 5.58 ± 0.66 | 6.58 ± 0.12 | 6.99 ± 0.64 | 6.96 ± 0.38 | 6.35 ± 1.17 | n.s. | |
Salic. 1% | 6.46 ± 0.05 | 5.85 ± 1.16 | 6.96 ± 0.63 | 6.87 ± 0.02 | 6.66 ± 0.51 | n.s. | |
Salic. 2% | 6.10 ± 0.63 | 6.88 ± 0.43 | 7.36 ± 0.63 | 6.96 ± 0.50 | 6.85 ± 0.73 | n.s. | |
Acerola and Salic. 1% | 6.47 ± 0.15 | 6.43 ± 0.20 | 7.13 ± 0.46 | 7.01 ± 0.39 | 6.11 ± 0.69 | n.s. | |
Acerola and Salic. 2% | 6.52 ± 0.07 | 7.00 ± 0.63 | 7.30 ± 0.56 | 7.22 ± 0.40 | 6.98 ± 0.81 | n.s. | |
Psychrotrophs | Control | 5.92 ± 0.68 b | 7.12 ± 0.20 ab | 7.48 ± 0.28 a | 7.61 ± 0.63 a | 7.88 ± 0.33 a | ≤0.01 |
Salt | 5.40 ± 0.67 b | 6.99 ± 0.58 ab | 7.76 ± 0.35 a | 7.79 ± 0.56 a | 7.97 ± 0.27 a | ≤0.01 | |
Salt and Acerola | 5.58 ± 0.57 b | 6.89 ± 0.65 a | 7.49 ± 0.31 a | 7.75 ± 0.44 a | 7.37 ± 0.16 a | ≤0.001 | |
Salic. 1% | 5.05 ± 0.52 b | 6.88 ± 0.36 a | 7.55 ± 0.14 a | 7.63 ± 0.90 a | 7.86 ± 0.34 a | ≤0.001 | |
Salic. 2% | 5.30 ± 0.66 b | 7.10 ± 0.51 a | 7.98 ± 0.05 a | 7.75 ± 0.47 a | 7.91 ± 0.03 a | ≤0.001 | |
Acerola and Salic. 1% | 5.23 ± 0.48 b | 7.15 ± 0.93 a | 7.93 ± 0.21 a | 7.70 ± 0.64 a | 8.09 ± 0.04 a | ≤0.001 | |
Acerola and Salic. 2% | 5.18 ± 0.59 b | 6.67 ± 0.93 ab | 7.72 ± 0.13 a | 7.49 ± 0.22 a | 7.47 ± 0.57 a | ≤0.01 | |
Enterobacteriaceae | Control | 2.81 ± 1.12 | 3.90 ± 0.81 | 4.66 ± 1.63 | 4.87 ± 0.42 | 4.64 ± 0.86 | n.s. |
Salt | 3.17 ± 0.61 | 4.06 ± 0.66 | 4.64 ± 1.26 | 4.89 ± 0.63 | 4.26 ± 1.30 | n.s. | |
Salt and Acerola | 3.28 ± 0.20 | 4.08 ± 0.14 | 4.71 ± 1.16 | 4.99 ± 0.94 | 4.94 ± 0.36 | n.s. | |
Salic. 1% | 3.28 ± 0.91 | 3.87 ± 0.66 | 4.71 ± 1.54 | 4.71 ± 0.54 | 4.27 ± 1.37 | n.s. | |
Salic. 2% | 2.98 ± 0.53 | 3.72 ± 0.68 | 5.14 ± 1.29 | 4.66 ± 0.56 | 4.19 ± 1.43 | n.s. | |
Acerola and Salic. 1% | 3.39 ± 0.55 b | 4.60 ± 1.37 ab | 4.52 ± 0.35 ab | 6.18 ± 1.22 a | 5.14 ± 0.13 ab | ≤0.05 | |
Acerola and Salic. 2% | 3.10 ± 0.35 | 4.10 ± 0.25 | 4.95 ± 0.83 | 5.08 ± 0.78 | 4.73 ± 1.24 | n.s. | |
LAB | Control | 3.27 ± 0.31 c | 4.46 ± 0.98 bc | 5.96 ± 0.85 ab | 7.10 ± 1.16 a | 4.89 ± 0.28 abc | ≤0.01 |
Salt | 3.59 ± 1.86 c | 4.20 ± 0.46 bc | 6.05 ± 1.13 ab | 7.50 ± 1.32 a | 4.93 ± 0.16 bc | ≤0.01 | |
Salt and Acerola | 3.37 ± 0.54 b | 4.56 ± 0.72 ab | 6.21 ± 0.90 ab | 7.05 ± 0.98 b | 4.52 ± 0.12 ab | ≤0.05 | |
Salic. 1% | 3.21 ± 0.62 c | 4.58 ± 0.47 bc | 6.18 ± 1.05 ab | 6.83 ± 0.83 a | 5.11 ± 0.66 abc | ≤0.01 | |
Salic. 2% | 3.02 ± 0.33 c | 3.91 ± 0.37 bc | 6.10 ± 0.81 a | 6.45 ± 0.95 a | 5.06 ± 0.24 ab | ≤0.01 | |
Acerola and Salic. 1% | 4.13 ± 1.93 | 3.97 ± 0.66 | 5.59 ± 0.88 | 6.93 ± 0.91 | 5.16 ± 0.55 | n.s. | |
Acerola and Salic. 2% | 4.03 ± 1.89 | 4.40 ± 0.62 | 5.52 ± 0.60 | 6.71 ± 0.17 | 6.29 ± 1.37 | n.s. | |
B. thermosphacta | Control | 3.55 ± 0.87 | 5.81 ± 0.14 | 5.84 ± 0.91 | 5.56 ± 1.02 | 5.83 ± 1.30 | n.s. |
Salt | 3.74 ± 0.73 | 5.29 ± 0.43 | 5.79 ± 1.26 | 6.38 ± 0.91 | 5.18 ± 2.65 | n.s. | |
Salt and Acerola | 3.95 ± 0.85 | 5.32 ± 0.53 | 5.71 ± 0.83 | 5.67 ± 0.74 | 5.29 ± 1.31 | n.s. | |
Salic. 1% | 3.95 ± 0.74 | 5.35 ± 0.10 | 5.45 ± 1.26 | 5.13 ± 0.89 | 4.93 ± 1.74 | n.s. | |
Salic. 2% | 3.73 ± 1.22 | 4.91 ± 0.53 | 6.20 ± 1.65 | 4.68 ± 1.65 | 4.75 ± 2.48 | n.s. | |
Acerola and Salic. 1% | 3.25 ± 0.70 | 4.93 ± 0.44 | 5.07 ± 1.52 | 4.35 ± 1.85 | 4.85 ± 0.61 | n.s. | |
Acerola and Salic. 2% | 3.50 ± 0.58 | 4.92 ± 0.23 | 5.77 ± 1.22 | 5.36 ± 0.83 | 4.66 ± 2.34 | n.s. | |
Molds and Yeasts | Control | 2.60 ± 0.52 | 2.89 ± 0.77 | 3.50 ± 0.74 | 3.84 ± 0.08 | 3.89 ± 0.36 | n.s. |
Salt | 2.90 ± 0.26 | 3.00 ± 0.35 | 3.45 ± 0.40 | 3.79 ± 0.38 | 3.39 ± 0.23 | n.s. | |
Salt and Acerola | 2.68 ± 0.14 | 3.07 ± 0.22 | 3.32 ± 0.34 | 3.50 ± 1.11 | 3.19 ± 1.01 | n.s. | |
Salic. 1% | 2.85 ± 0.24 | 3.34 ± 0.39 | 3.09 ± 0.36 | 3.13 ± 0.98 | 3.57 ± 0.74 | n.s. | |
Salic. 2% | 2.59 ± 0.03 | 2.63 ± 0.57 | 3.31 ± 0.62 | 3.25 ± 0.51 | 3.44 ± 0.41 | n.s. | |
Acerola and Salic. 1% | 3.05 ± 0.36 | 3.00 ± 0.18 | 2.97 ± 0.25 | 3.56 ± 0.32 | 3.76 ± 0.97 | n.s. | |
Acerola and Salic. 2% | 3.19 ± 0.81 | 2.97 ± 0.36 | 3.69 ± 0.44 | 3.44 ± 0.69 | 3.20 ± 0.59 | n.s. | |
Pseudomonas spp. | Control | 3.66 ± 0.42 | 4.43 ± 0.32 | 4.53 ± 0.52 | 4.91 ± 0.41 | 4.49 ± 0.70 | n.s. |
Salt | 4.13 ± 0.96 | 4.38 ± 0.17 | 4.41 ± 0.74 | 5.19 ± 0.66 | 4.86 ± 0.61 | n.s. | |
Salt and Acerola | 3.84 ± 0.57 | 4.14 ± 0.17 | 4.41 ± 0.45 | 4.86 ± 0.93 | 4.11 ± 0.16 | n.s. | |
Salic. 1% | 3.84 ± 0.38 | 3.78 ± 0.20 | 4.76 ± 0.52 | 4.71 ± 0.58 | 4.30 ± 0.43 | n.s. | |
Salic. 2% | 3.32 ± 0.24 | 4.08 ± 0.18 | 4.37 ± 0.60 | 4.43 ± 0.37 | 4.55 ± 1.21 | n.s. | |
Acerola and Salic. 1% | 3.69 ± 0.41 | 3.95 ± 0.21 | 4.31 ± 0.67 | 4.91 ± 0.54 | 5.00 ± 0.06 | n.s. | |
Acerola and Salic. 2% | 4.46 ± 0.93 | 4.10 ± 0.34 | 4.82 ± 0.78 | 4.76 ± 0.72 | 4.24 ± 0.34 | n.s. |
Treatment | Time | p | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 10 | |||
pH | Control | 5.77 ± 0.19 | 5.74 ± 0.26 | 5.78 ± 0.14 | 5.69 ± 0.26 | 5.64 ± 0.23 | n.s. |
Salt | 5.66 ± 0.14 | 5.59 ± 0.08 | 5.54 ± 0.04 | 5.49 ± 0.03 | 5.44 ± 0.15 | n.s. | |
Salt and Acerola | 5.69 ± 0.18 | 5.67 ± 0.11 | 5.62 ± 0.13 | 5.66 ± 0.16 | 5.50 ± 0.13 | n.s. | |
Salic. 1% | 5.65 ± 0.15 | 5.53 ± 0.12 | 5.50 ± 0.08 | 5.39 ± 0.07 | 5.34 ± 0.15 | n.s. | |
Salic. 2% | 5.62 ± 0.20 | 5.58 ± 0.21 | 5.42 ± 0.18 | 5.38 ± 0.13 | 5.25 ± 0.01 | n.s. | |
Acerola and Salic. 1% | 5.70 ± 0.19 | 5.62 ± 0.17 | 5.52 ± 0.10 | 5.49 ± 0.10 | 5.62 ± 0.26 | n.s. | |
Acerola and Salic. 2% | 5.70 ± 0.18 | 5.70 ± 0.25 | 5.60 ± 0.13 | 5.59 ± 0.20 | 5.51 ± 0.19 | n.s. | |
p | n.s. | n.s. | n.s. | n.s. | n.s. | ||
aw | Control | 1.00 ± 0.00 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | 1.00 ± 0.00 | n.s. |
Salt | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.99 ± 0.00 | 0.99 ± 0.01 | n.s. | |
Salt and Acerola | 0.99 ± 0.01 | 0.99 ± 0.00 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | n.s. | |
Salic. 1% | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | n.s. | |
Salic. 2% | 0.99 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.01 | n.s. | |
Acerola and Salic. 1% | 0.99 ± 0.01 | 0.99 ± 0.00 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | n.s. | |
Acerola and Salic. 2% | 0.99 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 | n.s. | |
p | n.s. | n.s. | n.s. | n.s. | n.s. | ||
L* | Control | 39.03 ± 0.96 a | 44.38 ± 2.58 a | 41.04 ± 0.43 a | 41.79 ± 1.36 a | 41.16 ± 2.32 | ≤0.05 |
Salt | 37.04 ± 1.85 ab | 40.08 ± 0.59 ab | 40.25 ± 0.70 ab | 38.99 ± 1.72 ab | 41.30 ± 3.17 | n.s. | |
Salt and Acerola | 38.40 ± 2.43 a | 39.06 ± 2.94 ab | 37.62 ± 2.27 abc | 38.70 ± 1.32 abc | 40.33 ± 1.54 | n.s. | |
Salic. 1% | 33.85 ± 0.68 bc | 37.66 ± 0.77 b | 37.86 ± 0.61 abc | 38.06 ± 0.70 bc | 39.92 ± 0.54 | ≤0.001 | |
Salic. 2% | 33.61 ± 0.91 bc | 37.67 ± 3.99 b | 37.46 ± 1.73 bc | 36.90 ± 1.30 bc | 37.12 ± 0.90 | n.s. | |
Acerola and Salic. 1% | 36.13 ± 2.28 abc | 37.66 ± 1.49 b | 38.81 ± 1.31 ab | 38.99 ± 0.74 ab | 37.67 ± 0.40 | n.s. | |
Acerola and Salic. 2% | 32.61 ± 0.61 c | 36.67 ± 2.47 b | 34.54 ± 0.66 c | 35.53 ± 1.22 c | 37.05 ± 1.92 | ≤0.05 | |
p | ≤0.001 | ≤0.05 | ≤0.001 | ≤0.001 | ≤0.05 | ||
a* | Control | 21.86 ± 0.84 a | 23.30 ± 3.99 | 21.17 ± 2.48 a | 21.38 ± 1.51 a | 16.75 ± 0.60 | ≤0.05 |
Salt | 19.56 ± 0.77 ab | 21.46 ± 0.71 | 22.35 ± 1.35 a | 20.97 ± 1.70 ab | 18.22 ± 1.53 | ≤0.05 | |
Salt and Acerola | 18.85 ± 0.25 ab | 22.22 ± 1.59 | 19.45 ± 1.82 ab | 18.78 ± 0.92 abc | 16.07 ± 3.23 | ≤0.05 | |
Salic. 1% | 17.63 ± 1.96 b | 16.23 ± 4.10 | 17.37 ± 0.77 ab | 17.61 ± 0.18 bc | 15.18 ± 3.85 | n.s. | |
Salic. 2% | 14.43 ± 1.62 cd | 15.23 ± 2.77 | 17.00 ± 5.35 ab | 14.01 ± 1.23 de | 12.96 ± 2.49 | n.s. | |
Acerola and Salic. 1% | 16.53 ± 0.31 bc | 15.57 ± 2.53 | 17.00 ± 0.44 ab | 16.69 ± 1.47 cd | 15.96 ± 3.76 | n.s. | |
Acerola and Salic. 2% | 12.85 ± 1.01 d | 17.27 ± 5.52 | 14.05 ± 1.82 b | 12.60 ± 0.75 e | 12.55 ± 1.99 | n.s. | |
p | ≤0.001 | ≤0.05 | ≤0.05 | ≤0.001 | n.s. | ||
b* | Control | 12.51 ± 0.95 | 11.96 ± 1.18 | 12.27 ± 1.55 | 11.28 ± 2.69 | 8.17 ± 2.92 b | n.s. |
Salt | 11.05 ± 0.72 | 12.71 ± 1.01 | 13.36 ± 0.41 | 12.23 ± 0.93 | 11.51 ± 0.40 ab | ≤0.05 | |
Salt and Acerola | 10.99 ± 1.41 | 12.68 ± 1.21 | 11.46 ± 1.25 | 10.82 ± 1.23 | 8.87 ± 1.30 ab | n.s. | |
Salic. 1% | 12.76 ± 0.95 | 12.84 ± 1.30 | 12.58 ± 0.66 | 12.41 ± 0.74 | 11.79 ± 0.11 a | n.s. | |
Salic. 2% | 12.16 ± 0.20 | 12.14 ± 2.06 | 12.95 ± 1.46 | 11.80 ± 0.66 | 11.02 ± 0.40 ab | n.s. | |
Acerola and Salic. 1% | 12.99 ± 0.77 | 12.34 ± 0.27 | 12.75 ± 0.40 | 11.83 ± 1.96 | 10.51 ± 0.86 ab | n.s. | |
Acerola and Salic. 2% | 11.40 ± 0.57 | 13.42 ± 1.46 | 11.99 ± 0.62 | 11.29 ± 0.71 | 10.32 ± 0.67 ab | ≤0.05 | |
p | n.s. | n.s. | n.s. | n.s. | ≤0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, G.; Paiva, J.; Gonçalves, C.; Saraiva, S.; Faria, M.; Silva-Santos, T.; Moura-Alves, M.; García-Díez, J.; de Almeida, J.M.M.M.; Rocha, H.; et al. Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat. Resources 2025, 14, 153. https://doi.org/10.3390/resources14100153
Melo G, Paiva J, Gonçalves C, Saraiva S, Faria M, Silva-Santos T, Moura-Alves M, García-Díez J, de Almeida JMMM, Rocha H, et al. Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat. Resources. 2025; 14(10):153. https://doi.org/10.3390/resources14100153
Chicago/Turabian StyleMelo, Gonçalo, Joana Paiva, Carla Gonçalves, Sónia Saraiva, Madalena Faria, Tânia Silva-Santos, Márcio Moura-Alves, Juan García-Díez, José M. M. M. de Almeida, Humberto Rocha, and et al. 2025. "Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat" Resources 14, no. 10: 153. https://doi.org/10.3390/resources14100153
APA StyleMelo, G., Paiva, J., Gonçalves, C., Saraiva, S., Faria, M., Silva-Santos, T., Moura-Alves, M., García-Díez, J., de Almeida, J. M. M. M., Rocha, H., & Saraiva, C. (2025). Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat. Resources, 14(10), 153. https://doi.org/10.3390/resources14100153