Post-COVID-19 Recovery: An Integrated Framework of Construction Project Performance Evaluation in China
Abstract
:1. Introduction
2. Literature Review
2.1. Impact of COVID-19 on Construction Project Performance
2.2. Critical Success Factors of Construction Project Performance
2.3. Key Performance Indicator (KPI) of Construction Project Performance
3. Methodology
3.1. Prospective Research and Questionnaire Survey
3.2. Factor Analysis
3.3. Analytic Hierarchy Process (AHP)
3.4. Structural Equation Modeling (SEM)
4. Results
4.1. Respondent Profile
4.2. Questionnaire Result Assessment
4.3. Factor Analysis of CSFs
- F1. Strength of participating parties and macro support
- F2. Innovation and project control
- F3. Project organization management
- F4. Consistency of goals and external expectations
- F5. Project flexibility and risk management
4.4. CSFs Importance Index Analysis by Analytic Hierarchy Process
4.5. Summary of the KPI Result and Ranking Using Descriptive Statistics
4.6. Hypothetical Explanation Linking CSF and KPI
4.7. Structural Equation Modeling (SEM)
5. Interpretation and Discussion
5.1. Strength of Participating Parties and Macro Support
5.2. Innovative Applications
5.3. Project Organization Management
5.4. Consistency of Goals and External Expectations
5.5. Project Flexibility and Risk Management
5.6. Project Performance Recovery Roadmap
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Items | Factor Loadings | Communalities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Factor 8 | Factor 9 | ||
1 | 0.201 | −0.191 | 0.11 | 0.54 | 0.416 | 0.071 | 0.39 | 0.01 | 0.011 | 0.711 |
2 | 0.206 | 0.284 | 0.354 | 0.16 | −0.003 | −0.175 | 0.447 | 0.333 | 0.093 | 0.624 |
3 | 0.111 | 0.16 | 0.079 | 0.404 | 0.244 | 0.191 | 0.59 | 0.005 | 0.106 | 0.662 |
4 | 0.22 | −0.024 | 0.388 | 0.258 | 0.137 | 0.12 | 0.018 | 0.179 | 0.565 | 0.651 |
5 | −0.072 | −0.001 | 0.181 | 0.055 | 0.026 | 0.107 | 0.217 | 0.604 | 0.434 | 0.654 |
6 | 0.197 | 0.193 | 0.118 | 0.066 | −0.082 | 0.085 | 0.671 | 0.123 | 0.289 | 0.658 |
7 | −0.033 | 0.635 | 0.175 | 0.1 | 0.04 | 0.264 | 0.435 | −0.069 | −0.009 | 0.71 |
8 | 0.193 | 0.242 | 0.183 | 0.57 | 0.054 | −0.064 | 0.12 | 0.261 | 0.148 | 0.565 |
9 | 0.077 | 0.178 | 0.554 | 0.136 | 0.029 | 0.3 | 0.502 | 0.031 | −0.065 | 0.711 |
10 | 0.175 | 0.305 | 0.304 | −0.097 | 0.164 | −0.026 | 0.308 | 0.078 | 0.581 | 0.692 |
11 | 0.199 | 0.212 | 0.7 | 0.18 | 0.058 | −0.005 | 0.161 | 0.167 | 0.093 | 0.673 |
12 | 0.201 | 0.477 | −0.025 | 0.275 | 0.061 | 0.238 | 0.1 | 0.041 | 0.486 | 0.652 |
13 | 0.315 | 0.092 | −0.054 | −0.235 | 0.378 | 0.53 | 0.284 | 0.371 | −0.033 | 0.81 |
14 | −0.105 | 0.205 | 0.064 | 0.528 | −0.023 | 0.282 | 0.245 | 0.135 | 0.19 | 0.529 |
15 | 0.096 | 0.075 | 0.172 | 0.201 | 0.105 | 0.157 | −0.028 | 0.875 | 0.014 | 0.887 |
16 | 0.337 | 0.22 | 0.601 | 0.05 | −0.017 | 0.321 | 0.09 | 0.202 | 0.112 | 0.691 |
17 | −0.017 | 0.214 | 0.159 | 0.337 | 0.002 | 0.687 | −0.008 | 0.073 | 0.099 | 0.672 |
18 | 0.265 | 0.103 | 0.19 | 0.728 | 0.152 | 0.117 | 0 | 0.057 | −0.007 | 0.687 |
19 | 0.256 | −0.056 | 0.024 | 0.134 | 0.115 | 0.59 | 0.217 | −0.02 | 0.464 | 0.711 |
20 | 0.129 | 0.099 | 0.643 | 0.173 | 0.153 | 0.162 | 0.008 | 0.113 | 0.331 | 0.642 |
21 | 0.164 | 0.163 | 0.231 | −0.032 | 0.221 | 0.593 | 0.163 | 0.143 | −0.015 | 0.556 |
22 | 0.723 | 0.205 | 0.249 | 0.077 | 0.151 | 0.202 | 0.143 | 0.007 | 0.02 | 0.718 |
23 | 0.778 | −0.016 | 0.135 | 0.086 | 0.099 | −0.052 | 0.202 | 0.087 | 0.204 | 0.733 |
24 | 0.617 | 0.055 | 0.366 | 0.083 | 0.31 | 0.125 | 0.088 | −0.08 | 0.03 | 0.652 |
25 | 0.651 | 0.248 | −0.038 | 0.327 | −0.148 | 0.223 | −0.049 | 0.158 | 0.154 | 0.716 |
26 | 0.366 | −0.011 | 0.134 | 0.145 | 0.363 | 0.418 | −0.302 | 0.002 | 0.076 | 0.577 |
27 | 0.167 | 0.521 | 0.17 | 0.212 | 0.359 | −0.001 | 0.124 | 0.41 | −0.073 | 0.691 |
28 | 0.114 | 0.798 | 0.191 | 0.068 | 0.17 | 0.063 | 0.129 | 0.034 | 0.146 | 0.763 |
29 | 0.057 | 0.089 | 0.136 | 0.031 | 0.857 | 0.124 | 0.03 | 0.031 | −0.026 | 0.783 |
30 | 0.383 | 0.527 | 0.268 | 0.199 | −0.007 | 0.239 | −0.026 | 0.191 | 0.051 | 0.633 |
31 | 0.333 | 0.302 | 0.14 | 0.284 | 0.361 | 0.007 | 0.086 | 0.036 | 0.265 | 0.512 |
32 | 0.099 | 0.17 | −0.058 | 0.179 | 0.734 | 0.115 | −0.006 | 0.138 | 0.299 | 0.735 |
Eigenvalues (Initial) | 10.276 | 2.076 | 1.624 | 1.471 | 1.407 | 1.381 | 1.296 | 1.123 | 1.004 | - |
% of Variance (Initial) | 32.114% | 6.488% | 5.073% | 4.598% | 4.398% | 4.315% | 4.051% | 3.509% | 3.137% | - |
% of Cum. Variance (Initial) | 32.114% | 38.602% | 43.675% | 48.274% | 52.671% | 56.986% | 61.037% | 64.546% | 67.684% | - |
Eigenvalues (Rotated) | 3.132 | 2.66 | 2.634 | 2.445 | 2.406 | 2.399 | 2.211 | 1.904 | 1.868 | - |
% of Variance (Rotated) | 9.788% | 8.311% | 8.231% | 7.641% | 7.519% | 7.496% | 6.909% | 5.951% | 5.838% | - |
% of Cum. Variance (Rotated) | 9.788% | 18.099% | 26.330% | 33.970% | 41.489% | 48.986% | 55.895% | 61.845% | 67.684% | - |
KMO | 0.784 | - | ||||||||
Bartlett’s Test of Sphericity (Chi-Square) | 1472.165 | - | ||||||||
df | 496 | - | ||||||||
p value | 0 | - |
Items | Factor Loadings | Communalities | ||
---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | ||
KPI 1 | 0.44 | 0.26 | 0.743 | 0.813 |
KPI 2 | 0.178 | 0.173 | 0.705 | 0.559 |
KPI 3 | 0.259 | 0.094 | 0.847 | 0.794 |
KPI 4 | 0.168 | 0.298 | 0.768 | 0.707 |
KPI 5 | 0.65 | 0.44 | 0.338 | 0.73 |
KPI 6 | 0.69 | 0.203 | 0.363 | 0.65 |
KPI 7 | 0.664 | 0.326 | 0.435 | 0.736 |
KPI 8 | 0.508 | 0.424 | 0.389 | 0.588 |
KPI 9 | 0.807 | 0.3 | 0.246 | 0.801 |
KPI 10 | 0.782 | 0.288 | 0.229 | 0.746 |
KPI 11 | 0.332 | 0.513 | 0.297 | 0.462 |
KPI 12 | 0.727 | 0.244 | 0.329 | 0.696 |
KPI 13 | 0.608 | 0.531 | 0.161 | 0.677 |
KPI 14 | 0.353 | 0.632 | 0.157 | 0.549 |
KPI 15 | 0.348 | 0.727 | 0.226 | 0.7 |
KPI 16 | 0.401 | 0.583 | 0.144 | 0.521 |
KPI 17 | 0.291 | 0.67 | 0.243 | 0.592 |
KPI 18 | 0.102 | 0.782 | 0.127 | 0.638 |
KPI 19 | 0.585 | 0.49 | 0.21 | 0.627 |
KPI 20 | 0.225 | 0.728 | 0.236 | 0.636 |
KPI 21 | 0.582 | 0.514 | 0.245 | 0.663 |
KPI 22 | 0.502 | 0.523 | 0.359 | 0.653 |
KPI 23 | 0.516 | 0.598 | 0.241 | 0.682 |
KPI 24 | 0.538 | 0.626 | 0.105 | 0.693 |
KPI 25 | 0.644 | 0.494 | 0.1 | 0.669 |
Eigenvalues (Initial) | 13.794 | 1.693 | 1.097 | - |
% of Variance (Initial) | 55.174% | 6.772% | 4.386% | - |
% of Cum. Variance (Initial) | 55.174% | 61.946% | 66.333% | - |
Eigenvalues (Rotated) | 6.645 | 6.121 | 3.817 | - |
% of Variance (Rotated) | 26.578% | 24.486% | 15.268% | - |
% of Cum. Variance (Rotated) | 26.578% | 51.064% | 66.333% | - |
KMO | 0.932 | - | ||
Bartlett’s Test of Sphericity (Chi-Square) | 1881.479 | - | ||
df | 300 | - | ||
p value | 0 | - |
Reliability Statistics (Cronbach Alpha) | |||
---|---|---|---|
Items | Corrected Item—Total Correlation (CITC) | Cronbach Alpha if Item Deleted | Cronbach α |
1 | 0.468 | 0.928 | 0.93 |
2 | 0.526 | 0.928 | |
3 | 0.573 | 0.927 | |
4 | 0.569 | 0.927 | |
5 | 0.402 | 0.929 | |
6 | 0.495 | 0.928 | |
7 | 0.487 | 0.928 | |
8 | 0.531 | 0.928 | |
9 | 0.561 | 0.927 | |
10 | 0.547 | 0.928 | |
11 | 0.586 | 0.927 | |
12 | 0.574 | 0.927 | |
13 | 0.481 | 0.928 | |
14 | 0.435 | 0.929 | |
15 | 0.466 | 0.929 | |
16 | 0.646 | 0.926 | |
17 | 0.473 | 0.928 | |
18 | 0.527 | 0.928 | |
19 | 0.514 | 0.928 | |
20 | 0.583 | 0.927 | |
21 | 0.503 | 0.928 | |
22 | 0.631 | 0.926 | |
23 | 0.515 | 0.928 | |
24 | 0.557 | 0.927 | |
25 | 0.52 | 0.928 | |
26 | 0.394 | 0.929 | |
27 | 0.589 | 0.927 | |
28 | 0.552 | 0.928 | |
29 | 0.382 | 0.93 | |
30 | 0.616 | 0.927 | |
31 | 0.578 | 0.927 | |
32 | 0.475 | 0.928 | |
Cronbach α (Standardized): 0.931 |
Reliability Statistics (Cronbach Alpha) | |||
---|---|---|---|
Items | Corrected Item—Total Correlation (CITC) | Cronbach Alpha if Item Deleted | Cronbach α |
KPI1 | 0.756 | 0.963 | 0.965 |
KPI2 | 0.502 | 0.966 | |
KPI3 | 0.576 | 0.965 | |
KPI4 | 0.604 | 0.964 | |
KPI5 | 0.829 | 0.962 | |
KPI6 | 0.712 | 0.963 | |
KPI7 | 0.808 | 0.962 | |
KPI8 | 0.74 | 0.963 | |
KPI 9 | 0.803 | 0.963 | |
KPI 10 | 0.769 | 0.963 | |
KPI 11 | 0.63 | 0.964 | |
KPI 12 | 0.75 | 0.963 | |
KPI 13 | 0.768 | 0.963 | |
KPI 14 | 0.656 | 0.964 | |
KPI 15 | 0.743 | 0.963 | |
KPI 16 | 0.653 | 0.964 | |
KPI 17 | 0.679 | 0.964 | |
KPI 18 | 0.567 | 0.965 | |
KPI 19 | 0.753 | 0.963 | |
KPI 20 | 0.667 | 0.964 | |
KPI 21 | 0.781 | 0.963 | |
KPI 22 | 0.782 | 0.963 | |
KPI 23 | 0.79 | 0.963 | |
KPI 24 | 0.759 | 0.963 | |
KPI 25 | 0.742 | 0.963 | |
Cronbach α (Standardized): 0.965 |
Group (M ± SD) | t(CR) | p | ||
---|---|---|---|---|
Low Grouping (n = 25) | High Grouping (n = 25) | |||
1 | 3.36 ± 0.64 | 4.12 ± 0.53 | −4.597 | 0.000 ** |
2 | 3.44 ± 0.96 | 4.60 ± 0.50 | −5.354 | 0.000 ** |
3 | 3.44 ± 0.65 | 4.56 ± 0.58 | −6.41 | 0.000 ** |
4 | 3.56 ± 0.87 | 4.56 ± 0.51 | −4.967 | 0.000 ** |
5 | 3.44 ± 0.82 | 4.20 ± 0.65 | −3.64 | 0.001 ** |
6 | 3.48 ± 0.82 | 4.48 ± 0.65 | −4.76 | 0.000 ** |
7 | 3.40 ± 0.71 | 4.40 ± 0.58 | −5.477 | 0.000 ** |
8 | 3.52 ± 0.87 | 4.60 ± 0.50 | −5.373 | 0.000 ** |
9 | 3.44 ± 0.77 | 4.60 ± 0.50 | −6.328 | 0.000 ** |
10 | 3.60 ± 0.82 | 4.48 ± 0.59 | −4.378 | 0.000 ** |
11 | 3.16 ± 0.75 | 4.36 ± 0.49 | −6.722 | 0.000 ** |
12 | 3.56 ± 0.77 | 4.68 ± 0.56 | −5.903 | 0.000 ** |
13 | 3.52 ± 0.77 | 4.52 ± 0.51 | −5.413 | 0.000 ** |
14 | 3.84 ± 0.80 | 4.68 ± 0.56 | −4.309 | 0.000 ** |
15 | 3.28 ± 0.68 | 4.40 ± 0.71 | −5.715 | 0.000 ** |
16 | 3.24 ± 0.72 | 4.56 ± 0.51 | −7.473 | 0.000 ** |
17 | 3.72 ± 0.61 | 4.56 ± 0.51 | −5.278 | 0.000 ** |
18 | 3.28 ± 0.46 | 4.28 ± 0.61 | −6.528 | 0.000 ** |
19 | 3.44 ± 0.82 | 4.60 ± 0.58 | −5.781 | 0.000 ** |
20 | 3.44 ± 0.82 | 4.56 ± 0.51 | −5.807 | 0.000 ** |
21 | 3.48 ± 0.71 | 4.48 ± 0.51 | −5.698 | 0.000 ** |
22 | 2.96 ± 0.68 | 4.48 ± 0.59 | −8.497 | 0.000 ** |
23 | 2.80 ± 1.00 | 4.24 ± 0.72 | −5.834 | 0.000 ** |
24 | 2.84 ± 0.90 | 4.48 ± 0.65 | −7.384 | 0.000 ** |
25 | 3.20 ± 0.76 | 4.52 ± 0.59 | −6.856 | 0.000 ** |
26 | 3.40 ± 0.82 | 4.24 ± 0.60 | −4.152 | 0.000 ** |
27 | 3.52 ± 0.82 | 4.68 ± 0.48 | −6.102 | 0.000 ** |
28 | 3.32 ± 1.07 | 4.68 ± 0.56 | −5.641 | 0.000 ** |
29 | 3.64 ± 0.91 | 4.44 ± 0.65 | −3.582 | 0.001 ** |
30 | 3.28 ± 0.68 | 4.64 ± 0.49 | −8.128 | 0.000 ** |
31 | 3.36 ± 0.86 | 4.48 ± 0.59 | −5.38 | 0.000 ** |
32 | 3.96 ± 0.79 | 4.68 ± 0.48 | −3.905 | 0.000 ** |
Group (M ± SD) | t(CR) | p | ||
---|---|---|---|---|
Low Grouping (n = 25) | High Grouping (n = 25) | |||
KPI 1 | 2.00 ± 0.58 | 4.12 ± 0.65 | −12.24 | 0.000 ** |
KPI 2 | 2.44 ± 0.96 | 4.35 ± 0.94 | −7.178 | 0.000 ** |
KPI 3 | 3.04 ± 0.54 | 4.50 ± 0.86 | −7.294 | 0.000 ** |
KPI 4 | 2.96 ± 0.68 | 4.23 ± 0.91 | −5.651 | 0.000 ** |
KPI 5 | 2.48 ± 0.65 | 4.69 ± 0.47 | −13.83 | 0.000 ** |
KPI 6 | 2.40 ± 0.82 | 4.46 ± 0.58 | −10.416 | 0.000 ** |
KPI 7 | 2.20 ± 0.76 | 4.46 ± 0.58 | −11.925 | 0.000 ** |
KPI 8 | 2.64 ± 0.70 | 4.62 ± 0.57 | −11.062 | 0.000 ** |
KPI 9 | 2.24 ± 0.72 | 4.42 ± 0.64 | −11.399 | 0.000 ** |
KPI 10 | 2.48 ± 0.77 | 4.42 ± 0.58 | −10.217 | 0.000 ** |
KPI 11 | 2.80 ± 0.65 | 4.15 ± 0.73 | −6.996 | 0.000 ** |
KPI 12 | 1.96 ± 0.61 | 4.23 ± 0.71 | −12.217 | 0.000 ** |
KPI 13 | 2.40 ± 0.96 | 4.73 ± 0.53 | −10.682 | 0.000 ** |
KPI 14 | 2.96 ± 0.79 | 4.27 ± 0.67 | −6.407 | 0.000 ** |
KPI 15 | 3.00 ± 0.82 | 4.58 ± 0.50 | −8.336 | 0.000 ** |
KPI 16 | 2.80 ± 0.82 | 4.31 ± 0.68 | −7.18 | 0.000 ** |
KPI 17 | 2.96 ± 0.73 | 4.38 ± 0.64 | −7.405 | 0.000 ** |
KPI 18 | 3.08 ± 0.76 | 4.42 ± 0.76 | −6.322 | 0.000 ** |
KPI 19 | 2.52 ± 0.65 | 4.54 ± 0.58 | −11.664 | 0.000 ** |
KPI 20 | 2.88 ± 0.78 | 4.54 ± 0.51 | −9.022 | 0.000 ** |
KPI 21 | 2.28 ± 0.84 | 4.35 ± 0.56 | −10.342 | 0.000 ** |
KPI 22 | 2.60 ± 0.65 | 4.65 ± 0.49 | −12.878 | 0.000 ** |
KPI 23 | 2.72 ± 0.74 | 4.54 ± 0.71 | −8.999 | 0.000 ** |
KPI 24 | 2.64 ± 0.86 | 4.35 ± 0.63 | −8.109 | 0.000 ** |
KPI 25 | 2.36 ± 0.91 | 4.42 ± 0.58 | −9.643 | 0.000 ** |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor | Eigen Values | % of Variance (Initial) | % of Variance (Rotated) | ||||||
Eigen | % of Variance | Cum. % of Variance | Eigen | % of Variance | Cum. % of Variance | Eigen | % of Variance | Cum. % of Variance | |
1 | 10.276 | 32.114 | 32.114 | 10.276 | 32.114 | 32.114 | 3.132 | 9.788 | 9.788 |
2 | 2.076 | 6.488 | 38.602 | 2.076 | 6.488 | 38.602 | 2.66 | 8.311 | 18.099 |
3 | 1.624 | 5.073 | 43.675 | 1.624 | 5.073 | 43.675 | 2.634 | 8.231 | 26.33 |
4 | 1.471 | 4.598 | 48.274 | 1.471 | 4.598 | 48.274 | 2.445 | 7.641 | 33.97 |
5 | 1.407 | 4.398 | 52.671 | 1.407 | 4.398 | 52.671 | 2.406 | 7.519 | 41.489 |
6 | 1.381 | 4.315 | 56.986 | - | - | - | - | - | - |
7 | 1.296 | 4.051 | 61.037 | - | - | - | - | - | - |
8 | 1.123 | 3.509 | 64.546 | - | - | - | - | - | - |
9 | 1.004 | 3.137 | 67.684 | - | - | - | - | - | - |
10 | 0.964 | 3.012 | 70.696 | - | - | - | - | - | - |
11 | 0.907 | 2.835 | 73.53 | - | - | - | - | - | - |
12 | 0.87 | 2.72 | 76.25 | - | - | - | - | - | - |
13 | 0.791 | 2.47 | 78.72 | - | - | - | - | - | - |
14 | 0.687 | 2.148 | 80.869 | - | - | - | - | - | - |
15 | 0.657 | 2.052 | 82.92 | - | - | - | - | - | - |
16 | 0.649 | 2.028 | 84.948 | - | - | - | - | - | - |
17 | 0.591 | 1.847 | 86.795 | - | - | - | - | - | - |
18 | 0.501 | 1.567 | 88.362 | - | - | - | - | - | - |
19 | 0.452 | 1.412 | 89.775 | - | - | - | - | - | - |
20 | 0.433 | 1.352 | 91.127 | - | - | - | - | - | - |
21 | 0.4 | 1.25 | 92.377 | - | - | - | - | - | - |
22 | 0.37 | 1.156 | 93.533 | - | - | - | - | - | - |
23 | 0.351 | 1.097 | 94.63 | - | - | - | - | - | - |
24 | 0.287 | 0.896 | 95.526 | - | - | - | - | - | - |
25 | 0.268 | 0.836 | 96.362 | - | - | - | - | - | - |
26 | 0.242 | 0.756 | 97.118 | - | - | - | - | - | - |
27 | 0.222 | 0.694 | 97.812 | - | - | - | - | - | - |
28 | 0.195 | 0.61 | 98.422 | - | - | - | - | - | - |
29 | 0.156 | 0.486 | 98.909 | - | - | - | - | - | - |
30 | 0.146 | 0.457 | 99.366 | - | - | - | - | - | - |
31 | 0.113 | 0.354 | 99.719 | - | - | - | - | - | - |
32 | 0.09 | 0.281 | 100 | - | - | - | - | - | - |
Factor Loading (Rotated) | ||||||
---|---|---|---|---|---|---|
Items | Factor Loading | Communalities | ||||
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | ||
1 | 0.133 | 0.223 | 0.258 | 0.588 | −0.006 | 0.479 |
2 | 0.586 | 0.271 | 0.325 | 0.069 | −0.144 | 0.547 |
3 | 0.511 | 0.094 | 0.218 | 0.406 | 0.118 | 0.497 |
4 | 0.141 | 0.42 | 0.503 | 0.164 | 0.138 | 0.495 |
5 | 0.212 | −0.007 | 0.637 | 0.001 | 0.169 | 0.479 |
6 | 0.62 | 0.171 | 0.202 | −0.006 | 0.071 | 0.459 |
7 | 0.773 | −0.033 | −0.006 | 0.096 | 0.242 | 0.667 |
8 | 0.299 | 0.283 | 0.509 | 0.276 | −0.129 | 0.522 |
9 | 0.608 | 0.202 | 0.171 | 0.017 | 0.247 | 0.501 |
10 | 0.532 | 0.281 | 0.171 | 0.115 | 0.093 | 0.413 |
11 | 0.46 | 0.434 | 0.32 | 0.045 | 0.011 | 0.505 |
12 | 0.413 | 0.221 | 0.281 | 0.196 | 0.237 | 0.393 |
13 | 0.181 | 0.139 | 0.018 | 0.24 | 0.687 | 0.582 |
14 | 0.338 | −0.047 | 0.491 | 0.174 | 0.142 | 0.408 |
15 | 0.051 | 0.106 | 0.708 | 0.112 | 0.236 | 0.584 |
16 | 0.385 | 0.505 | 0.282 | −0.083 | 0.352 | 0.613 |
17 | 0.196 | 0.053 | 0.359 | 0.063 | 0.582 | 0.512 |
18 | 0.115 | 0.369 | 0.419 | 0.402 | −0.013 | 0.487 |
19 | 0.13 | 0.261 | 0.237 | 0.132 | 0.561 | 0.474 |
20 | 0.283 | 0.395 | 0.383 | 0.104 | 0.187 | 0.429 |
21 | 0.263 | 0.163 | 0.098 | 0.126 | 0.637 | 0.527 |
22 | 0.278 | 0.718 | −0.038 | 0.172 | 0.264 | 0.693 |
23 | 0.143 | 0.755 | 0.058 | 0.159 | 0.019 | 0.62 |
24 | 0.176 | 0.683 | −0.064 | 0.289 | 0.196 | 0.624 |
25 | 0.119 | 0.608 | 0.254 | 0.026 | 0.191 | 0.486 |
26 | −0.188 | 0.411 | 0.072 | 0.325 | 0.471 | 0.537 |
27 | 0.45 | 0.158 | 0.256 | 0.415 | 0.107 | 0.476 |
28 | 0.69 | 0.15 | 0.025 | 0.209 | 0.148 | 0.565 |
29 | 0.075 | 0.062 | −0.088 | 0.758 | 0.289 | 0.675 |
30 | 0.413 | 0.437 | 0.221 | 0.057 | 0.265 | 0.484 |
31 | 0.299 | 0.383 | 0.163 | 0.456 | 0.067 | 0.474 |
32 | 0.076 | 0.083 | 0.147 | 0.74 | 0.258 | 0.648 |
Items | Eigenvectors | Weight | Maximum Eigenvalue | CI |
---|---|---|---|---|
1 | 0.945 | 2.952% | 32 | 0 |
2 | 1.016 | 3.176% | ||
3 | 1.003 | 3.135% | ||
4 | 1.016 | 3.176% | ||
5 | 0.976 | 3.051% | ||
6 | 1.046 | 3.268% | ||
7 | 0.99 | 3.093% | ||
8 | 1.019 | 3.185% | ||
9 | 1.032 | 3.226% | ||
10 | 1.024 | 3.201% | ||
11 | 1.003 | 3.135% | ||
12 | 1.043 | 3.259% | ||
13 | 1.008 | 3.151% | ||
14 | 1.04 | 3.251% | ||
15 | 0.953 | 2.977% | ||
16 | 1.019 | 3.185% | ||
17 | 1.035 | 3.234% | ||
18 | 0.961 | 3.002% | ||
19 | 1 | 3.126% | ||
20 | 0.998 | 3.118% | ||
21 | 0.982 | 3.068% | ||
22 | 0.955 | 2.985% | ||
23 | 0.918 | 2.869% | ||
24 | 0.95 | 2.968% | ||
25 | 0.971 | 3.035% | ||
26 | 0.945 | 2.952% | ||
27 | 1.048 | 3.276% | ||
28 | 1.022 | 3.193% | ||
29 | 1.022 | 3.193% | ||
30 | 1.003 | 3.135% | ||
31 | 0.987 | 3.085% | ||
32 | 1.07 | 3.342% |
RI Table | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
RI | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 | 1.59 | 1.5943 |
Order | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
RI | 1.6064 | 1.6133 | 1.6207 | 1.6292 | 1.6358 | 1.6403 | 1.6462 | 1.6497 | 1.6556 | 1.6587 | 1.6631 | 1.667 | 1.6693 | 1.6724 |
Order | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
RI | 1.6755 | 1.6773 | 1.68 | 1.6828 | 1.6837 | 1.6864 | 1.6883 | 1.6903 | 1.6921 | 1.6929 | 1.6947 | 1.6958 | 1.6985 | 1.6991 |
Order | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |
RI | 1.7006 | 1.7015 | 1.7023 | 1.7045 | 1.7056 | 1.7065 | 1.7066 | 1.7071 | 1.709 | 1.71 | 1.7109 | 1.7113 | 1.7123 | 1.7127 |
Dimensions | Indicators | Assessment Outcome | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A. Owner (N = 34) | B. Designer N = 21) | C. Constructor (N = 39) | Overall | ||||||||||||||
Min | Max | Mean | Std. Deviation | Min | Max | Mean | Std. Deviation | Min | Max | Mean | Std. Deviation | Min | Max | Mean | Std. Deviation | ||
Efficiency (Project management success) | KPI 1 | 1 | 5 | 3.029 | 1.193 | 1 | 4 | 3.238 | 0.995 | 1 | 5 | 3.238 | 1.185 | 1 | 5 | 3.149 | 1.136 |
KPI 2 | 1 | 5 | 3.118 | 1.365 | 2 | 5 | 3.857 | 0.964 | 1 | 5 | 3.667 | 1.162 | 1 | 5 | 3.489 | 1.233 | |
KPI 3 | 1 | 5 | 3.441 | 1.078 | 1 | 5 | 3.905 | 0.995 | 2 | 5 | 3.833 | 0.824 | 1 | 5 | 3.702 | 0.971 | |
Satisfaction of key stakeholders | KPI 4 | 1 | 5 | 3.559 | 1.021 | 2 | 5 | 3.81 | 0.75 | 1 | 5 | 3.643 | 0.932 | 1 | 5 | 3.638 | 0.926 |
KPI 5 | 1 | 5 | 3.618 | 1.28 | 2 | 5 | 3.857 | 0.91 | 1 | 5 | 3.81 | 0.943 | 1 | 5 | 3.723 | 1.062 | |
KPI 6 | 1 | 5 | 3.529 | 1.212 | 2 | 5 | 3.714 | 0.956 | 1 | 5 | 3.643 | 1.186 | 1 | 5 | 3.606 | 1.147 | |
KPI 7 | 1 | 5 | 3.265 | 1.163 | 2 | 5 | 3.81 | 0.873 | 1 | 5 | 3.548 | 1.173 | 1 | 5 | 3.489 | 1.124 | |
KPI 8 | 2 | 5 | 3.5 | 1.052 | 2 | 5 | 4.095 | 0.831 | 1 | 5 | 3.786 | 1.025 | 1 | 5 | 3.723 | 1.01 | |
KPI 9 | 1 | 5 | 3.353 | 1.228 | 2 | 5 | 3.81 | 0.981 | 1 | 5 | 3.69 | 1.07 | 1 | 5 | 3.574 | 1.122 | |
KPI 10 | 2 | 5 | 3.471 | 0.896 | 1 | 5 | 3.81 | 0.928 | 1 | 5 | 3.571 | 1.107 | 1 | 5 | 3.585 | 0.999 | |
Enterprise (organization) strategic goals | KPI 11 | 2 | 5 | 3.324 | 0.912 | 2 | 5 | 3.619 | 0.74 | 1 | 5 | 3.595 | 0.885 | 1 | 5 | 3.5 | 0.877 |
KPI 12 | 1 | 5 | 2.941 | 1.324 | 2 | 5 | 3.381 | 1.117 | 1 | 5 | 3.357 | 1.265 | 1 | 5 | 3.213 | 1.26 | |
KPI 13 | 1 | 5 | 3.5 | 1.261 | 2 | 5 | 3.81 | 0.928 | 1 | 5 | 3.81 | 1.174 | 1 | 5 | 3.691 | 1.173 | |
KPI 14 | 2 | 5 | 3.647 | 0.812 | 2 | 5 | 3.81 | 0.75 | 1 | 5 | 3.643 | 0.932 | 1 | 5 | 3.67 | 0.847 | |
KPI 15 | 2 | 5 | 3.824 | 0.834 | 1 | 5 | 3.81 | 1.03 | 1 | 5 | 3.952 | 0.854 | 1 | 5 | 3.862 | 0.875 | |
KPI 16 | 2 | 5 | 3.412 | 0.821 | 1 | 5 | 3.571 | 0.978 | 1 | 5 | 3.762 | 0.958 | 1 | 5 | 3.596 | 0.931 | |
Industry innovation and development | KPI 17 | 2 | 5 | 3.735 | 0.828 | 2 | 5 | 3.81 | 1.03 | 1 | 5 | 3.81 | 0.833 | 1 | 5 | 3.766 | 0.873 |
KPI 18 | 2 | 5 | 3.735 | 0.963 | 2 | 5 | 3.762 | 0.889 | 1 | 5 | 3.81 | 0.862 | 1 | 5 | 3.777 | 0.894 | |
KPI 19 | 2 | 5 | 3.529 | 1.022 | 2 | 5 | 3.81 | 0.873 | 1 | 5 | 3.762 | 1.078 | 1 | 5 | 3.681 | 1.018 | |
KPI 20 | 2 | 5 | 3.676 | 0.976 | 3 | 5 | 3.81 | 0.68 | 1 | 5 | 3.905 | 0.932 | 1 | 5 | 3.798 | 0.899 | |
Comprehensive social impact | KPI 21 | 1 | 5 | 3.324 | 1.199 | 1 | 5 | 3.619 | 1.117 | 1 | 5 | 3.643 | 0.932 | 1 | 5 | 3.5 | 1.075 |
KPI 22 | 2 | 5 | 3.559 | 1.133 | 2 | 5 | 3.857 | 1.014 | 1 | 5 | 3.833 | 1.08 | 1 | 5 | 3.723 | 1.092 | |
KPI 23 | 2 | 5 | 3.559 | 0.894 | 2 | 5 | 3.762 | 0.889 | 1 | 5 | 3.881 | 1.041 | 1 | 5 | 3.745 | 0.961 | |
KPI 24 | 2 | 5 | 3.618 | 1.045 | 2 | 5 | 3.952 | 0.921 | 1 | 5 | 3.738 | 0.885 | 1 | 5 | 3.734 | 0.952 | |
KPI 25 | 1 | 5 | 3.324 | 1.093 | 1 | 5 | 3.714 | 1.056 | 1 | 5 | 3.952 | 1.058 | 1 | 5 | 3.649 | 1.095 |
References
- Wang, Q.-C.; Ren, Y.-T.; Liu, X.; Chang, R.-D.; Zuo, J. Exploring the heterogeneity in drivers of energy-saving behaviours among hotel guests: Insights from the theory of planned behaviour and personality profiles. Environ. Impact Assess. Rev. 2023, 99, 107012. [Google Scholar] [CrossRef]
- Bertelsen, S. Construction as a Complex System. In Proceedings of the 11th Annual Conference of the International Group for Lean Construction, Blacksburg, VA, USA, 22–24 July 2003; pp. 11–23. [Google Scholar]
- Alsharef, A.; Banerjee, S.; Uddin, S.M.J.; Albert, A.; Jaselskis, E. Early impacts of the COVID-19 pandemic on the United States construction industry. Int. J. Environ. Res. Public Health 2021, 18, 1559. [Google Scholar] [CrossRef] [PubMed]
- Araya, F.; Sierra, L. Influence between COVID-19 Impacts and Project Stakeholders in Chilean Construction Projects. Sustainability 2021, 13, 10082. [Google Scholar] [CrossRef]
- Raoufi, M.; Fayek, A.R. New modes of operating for construction organizations during the COVID-19 pandemic: Challenges, actions, and future best practices. J. Manag. Eng. 2022, 38, 4021091. [Google Scholar] [CrossRef]
- Xu, Q.; Hwang, B.-G.; Choo, R.Q.; Kong, L.; Wang, Q.-C.; Liu, X. Comparison of Construction Project Risks Before and During COVID-19 in Singapore: Criticality and Management Strategies. Constr. Manag. Econ. 2023, 41, 1–17. [Google Scholar] [CrossRef]
- Jeon, J.; Padhye, S.; Bhattacharyya, A.; Cai, H.; Hastak, M. Impact of COVID-19 on the US Construction Industry as Revealed in the Purdue Index for Construction. J. Manag. Eng. 2022, 38, 4021082. [Google Scholar] [CrossRef]
- Ebekozien, A.; Aigbavboa, C.; Aigbedion, M. Construction industry post-COVID-19 recovery: Stakeholders perspective on achieving sustainable development goals. Int. J. Constr. Manag. 2021, 23, 1376–1386. [Google Scholar] [CrossRef]
- Jallow, H.; Renukappa, S.; Suresh, S. The impact of COVID-19 outbreak on United Kingdom infrastructure sector. Smart Sustain. Built Environ. 2020, 10, 581–593. [Google Scholar] [CrossRef]
- Yu, A.T.W.; Javed, A.A.; Lam, T.I.; Shen, G.Q.; Sun, M. Integrating value management into sustainable construction projects in Hong Kong. Eng. Constr. Archit. Manag. 2018, 25, 1475–1500. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Ghosh, P. Factors affecting COVID-19 infected and death rates inform lockdown-related policymaking. PLoS ONE 2020, 15, e0241165. [Google Scholar] [CrossRef]
- Grömling, M. COVID-19 and the Growth Potential. Intereconomics 2021, 56, 45–49. [Google Scholar] [CrossRef]
- Wang, Q.-C.; Liu, X.; Jian, I.Y.; Zhang, E.-J.; Hou, Y.T.; Siu, K.W.M.; Li, Y.B. Community resilience in city emergency: Exploring the roles of environmental perception, social justice and community attachment in subjective well-being of vulnerable residents. Sustain. Cities Soc. 2023, 97, 104745. [Google Scholar] [CrossRef]
- Islam, M.A.; Barna, S.D.; Raihan, H.; Khan, M.N.A.; Hossain, M.T. Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: A web-based cross-sectional survey. PLoS ONE 2020, 15, e0238162. [Google Scholar] [CrossRef]
- Koh, W.C.; Naing, L.; Wong, J. Estimating the impact of physical distancing measures in containing COVID-19: An empirical analysis. Int. J. Infectious Dis. 2020, 100, 42–49. [Google Scholar] [CrossRef]
- Frey, C.B.; Chen, C.; Presidente, G. Democracy, Culture, and Contagion: Political Regimes and Countries Responsiveness to COVID-19. Covid Economics. 2020. Available online: ttps://www.oxfordmartin.ox.ac.uk/downloads/academic/Democracy-Culture-and-Contagion_May13.pdf (accessed on 24 May 2023).
- Sierra, F.; Caspi, A.; Fortinsky, R.H.; Haynes, L.; Lithgow, G.J.; Moffitt, T.E.; Olshansky, S.J.; Perry, D.; Verdin, E.; Kuchel, G.A. Moving geroscience from the bench to clinical care and health policy. J. Am. Geriatr. Soc. 2021, 69, 2455–2463. [Google Scholar] [CrossRef]
- Sierra, F. COVID-19: Main challenges during construction stage. Eng. Constr. Archit. Manag. 2022, 29, 1817–1834. [Google Scholar] [CrossRef]
- Yu, C.-R.; Liu, X.; Wang, Q.-C.; Yang, D. Solving the comfort-retrofit conundrum through post-occupancy evaluation and multi-objective optimisation. Build. Serv. Eng. Res. Technol. 2023, 44, 381–403. [Google Scholar] [CrossRef]
- Ayat, M.; Kang, C.W. Effects of the COVID-19 pandemic on the construction sector: A systemized review. Eng. Constr. Archit. Manag. 2023, 30, 734–754. [Google Scholar] [CrossRef]
- Pamidimukkala, A.; Kermanshachi, S. Impact of COVID-19 on field and office workforce in construction industry. Proj. Leadersh. Soc. 2021, 2, 100018. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Hao, Y.-X.; Chang, R.-D.; Wang, Q.-C. Assessing the vulnerability of energy supply chains: Influencing factors and countermeasures. Sustain. Energy Technol. Assess. 2023, 56, 103018. [Google Scholar] [CrossRef]
- Ekpanyaskul, C.; Padungtod, C. Occupational health problems and lifestyle changes among novice working-from-home workers amid the COVID-19 pandemic. Saf. Health Work 2021, 12, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Stiles, S.; Golightly, D.; Ryan, B. Impact of COVID-19 on health and safety in the construction sector. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, J.; Liu, X.; Wang, G.; Wang, Q.-C. The effects of joint-contract functions on PPP project value creation: A mediation model. Eng. Constr. Archit. Manag. 2023, 30. [Google Scholar] [CrossRef]
- Chua, D.K.H.; Kog, Y.C.; Loh, P.K. Critical Success Factors for Different Project Objectives. J. Constr. Eng. Manag. 1999, 125, 142–150. [Google Scholar] [CrossRef]
- Chan, E.H.; Qian, Q.K.; Lam, P.T. The market for green building in developed Asian cities—The perspectives of building designers. Energy Policy 2009, 37, 3061–3070. [Google Scholar] [CrossRef]
- Kog, Y.C.; Loh, P.K. Critical Success Factors for Different Components of Construction Projects. J. Constr. Eng. Manag. 2012, 138, 520–528. [Google Scholar] [CrossRef]
- Chileshe, N.; Kikwasi, G.J. Critical success factors for implementation of risk assessment and management practices within the Tanzanian construction industry. Eng. Constr. Arch. Manag. 2014, 21, 291–319. [Google Scholar] [CrossRef]
- Yaraghi, N.; Langhe, R.G. Critical success factors for risk management systems. J. Risk Res. 2011, 14, 551–581. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Hwang, B.G.; Low, S.P. Critical success factors for enterprise risk management in Chinese construction companies. Constr. Manag. Econ. 2013, 31, 1199–1214. [Google Scholar] [CrossRef]
- Hosseini, M.; Chileshe, N.; Jepson, J.; Arashpour, M. Critical success factors for implementing risk management systems in developing countries. Constr. Econ. Build. 2016, 16, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Phu, T.Q. Enterprise risk management implementation: The critical success factors for Vietnamese construction companies. Enterp. Risk 2017, 3, 1–15. [Google Scholar]
- Ayat, M.; Qureshi, S.M.; Malikah, M.; Kang, C. The moderating role of emerging technologies on the impact of coronavirus disease 2019 and the performance of construction projects: The case of Pakistan. J. Eng. Des. Technol. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Robichaud, L.B.; Anantatmula, V.S. Greening project management practices for sustainable construction. J. Manag. Eng. 2011, 27, 48–57. [Google Scholar] [CrossRef]
- Rasekh, H.; McCarthy, T.J. Delivering sustainable building projects–challenges, reality and success. J. Green Build. 2016, 11, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Chileshe, N.; Haupt, T.C. The effect of age on the job satisfaction of construction workers. J. Eng. Des. Technol. 2010, 8, 107–118. [Google Scholar] [CrossRef]
- Carthon, B.C.; Wolchok, J.D.; Yuan, J.; Kamat, A.; Tang, D.S.N.; Sun, J.; Ku, G.; Troncoso, P.; Logothetis, C.J.; Allison, J.P.; et al. Preoperative CTLA-4 Blockade: Tolerability and Immune Monitoring in the Setting of a Presurgical Clinical Trial. Clin. Cancer Res. 2010, 16, 2861–2871. [Google Scholar] [CrossRef] [Green Version]
- Shayan, S.; Kim, K.P.; Tam, V.W.Y. Critical success factor analysis for effective risk management at the execution stage of a construction project. Int. J. Constr. Manag. 2019, 22, 379–386. [Google Scholar] [CrossRef]
- Fianko, A.B.Y.; Chileshe, N.; Stephenson, P. Critical success factors of risk assessment and management processes (RAMP) implementation in Ghanaian construction related organisations. Int. J. Proj. Organ. Manag. 2012, 4, 379. [Google Scholar] [CrossRef]
- Ihuah, P.W.; Kakulu, I.I.; Eaton, D. A review of Critical Project Management Success Factors (CPMSF) for sustainable social housing in Nigeria. Int. J. Sustain. Built Environ. 2014, 3, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Aksorn, T.; Hadikusumo, B. Critical success factors influencing safety program performance in Thai construction projects. Saf. Sci. 2008, 46, 709–727. [Google Scholar] [CrossRef]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Lu, W.; Shen, L.; Yam, M.C. Critical Success Factors for Competitiveness of Contractors: China Study. J. Constr. Eng. Manag. 2008, 134, 972–982. [Google Scholar] [CrossRef]
- Hillson, D. The A-B-C of Risk Culture: How to be Risk-Mature; Project Management Institute: Hong Kong, Hong Kong, 2013. [Google Scholar]
- Baral, A.; Liang, Y.; Li, M.; Gonzalez, M.; Shahandashti, M.; Ashuri, B. Impact of COVID-19 on the Diversity of the Construction Workforce. Nat. Hazards Rev. 2022, 23, 04022015. [Google Scholar] [CrossRef]
- Low, S.P.; Liu, J.; He, S. External risk management practices of Chinese construction firms in Singapore. KSCE J. Civ. Eng. 2009, 13, 85–95. [Google Scholar] [CrossRef]
- Al Haadir, S.; Panuwatwanich, K. Critical Success Factors for Safety Program Implementation among Construction Companies in Saudi Arabia. Procedia Eng. 2011, 14, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, K.; Méxas, M.; Meiriño, M.; Drumond, G. Critical success factors associated with the implementation of enterprise risk management. J. Risk Res. 2018, 22, 1004–1019. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhao, X.; Toh, L.P. Risk management in small construction projects in Singapore: Status, barriers and impact. Int. J. Proj. Manag. 2014, 32, 116–124. [Google Scholar] [CrossRef]
- Cheng, E.W.; Li, H. Construction partnering process and associated critical success factors: Quantitative investigation. J. Manag. Eng. 2002, 18, 194–202. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhao, X.; Tan, L.L.G. Green building projects: Schedule performance, influential factors and solutions. Eng. Constr. Arch. Manag. 2015, 22, 327–346. [Google Scholar] [CrossRef]
- Rostami, A.; Sommerville, J.; Wong, I.L.; Lee, C. Risk management implementation in small and medium enterprises in the UK construction industry. Eng. Constr. Arch. Manag. 2015, 22, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Rao, S.S.; Ragu-Nathan, T.; Ragu-Nathan, B. Development and validation of a measurement instrument for studying supply chain management practices. J. Oper. Manag. 2005, 23, 618–641. [Google Scholar] [CrossRef]
- Chan, A.P.; Scott, D.; Chan, A.P. Closure to “Factors Affecting the Success of a Construction Project” by Albert P. C. Chan, David Scott, and Ada P. L. Chan. J. Constr. Eng. Manag. 2005, 131, 748–749. [Google Scholar] [CrossRef]
- Sanvido, V.; Grobler, F.; Parfitt, K.; Guvenis, M.; Coyle, M. Critical Success Factors for Construction Projects. J. Constr. Eng. Manag. 1992, 118, 94–111. [Google Scholar] [CrossRef]
- Petrovic, D. Risk Management in Construction Projects: A Knowledge Management Perspective from Swedish Contractors. 2017. Available online: https://www.diva-portal.org/smash/get/diva2:1150372/FULLTEXT01.pdf (accessed on 24 May 2023).
- Mollaoglu-Korkmaz, S.; Swarup, L.; Riley, D. Delivering sustainable, high-performance buildings: Influence of project delivery methods on integration and project outcomes. J. Manag. Eng. 2013, 29, 71–78. [Google Scholar] [CrossRef]
- Korkmaz, S.; Riley, D.; Horman, M. Assessing Project Delivery for Sustainable, High-Performance Buildings Through Mixed Methods. Arch. Eng. Des. Manag. 2011, 7, 266–274. [Google Scholar] [CrossRef]
- Arslan, G.; Kivrak, S. Critical factors to company success in the construction industry. World Acad. Sci. Eng. Technol. 2008, 45, 43–46. [Google Scholar]
- Egbu, C.O. Managing knowledge and intellectual capital for improved organizational innovations in the construction industry: An examination of critical success factors. Eng. Constr. Arch. Manag. 2004, 11, 301–315. [Google Scholar] [CrossRef]
- Nam, C.H.; Tatum, C.B. Leaders and champions for construction innovation. Constr. Manag. Econ. 1997, 15, 259–270. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.-J.; Skibniewski, M.J.; He, J.-S.; Zhang, Z.-S. Identification of critical success factors for construction innovation: From the perspective of strategic cooperation. Front. Eng. Manag. 2014, 1, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Zhang, R.; Yang, R.; Dai, J. Innovation in Construction: A Critical Review and Future Research. Int. J. Innov. Sci. 2014, 6, 111–126. [Google Scholar] [CrossRef]
- Bilec, M.M.; Ries, R.J.; Needy, K.L.; Gokhan, M.; Phelps, A.F.; Enache-Pommer, E.; Horman, M.J.; Little, S.E.; Powers, T.L.; McGregor, E.; et al. Analysis of the design process of green children’s hospitals: Focus on process modeling and lessons learned. J. Green Build. 2009, 4, 121–134. [Google Scholar] [CrossRef]
- Santos, C.; Santos, V.; Tavares, A.; Varajão, J. Project Management success in health—The need of additional research in public health projects. Proced. Technol. 2014, 16, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Ahadzie, D.; Proverbs, D.; Sarkodie-Poku, I. Competencies required of project managers at the design phase of mass house building projects. Int. J. Proj. Manag. 2014, 32, 958–969. [Google Scholar] [CrossRef]
- Sakr, S.; Liu, A.; Batista, D.M.; Alomari, M. A Survey of Large Scale Data Management Approaches in Cloud Environments. IEEE Commun. Surv. Tutor. 2011, 13, 311–336. [Google Scholar] [CrossRef]
- Murtagh, N.; Roberts, A.; Hind, R. The relationship between motivations of architectural designers and environmentally sustainable construction design. Constr. Manag. Econ. 2016, 34, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.P.C.; Oppong, G.D. Managing the expectations of external stakeholders in construction projects. Eng. Constr. Arch. Manag. 2017, 24, 736–756. [Google Scholar] [CrossRef]
- Ansah, R.H.; Sorooshian, S. Effect of lean tools to control external environment risks of construction projects. Sustain. Cities Soc. 2017, 32, 348–356. [Google Scholar] [CrossRef]
- Rastogi, N.; Trivedi, M.K. PESTLE technique—A tool to identify external risks in construction projects. Int. Res. J. Eng. Technol. 2016, 3, 384–388. [Google Scholar]
- Liu, J.; Meng, F.; Fellows, R. An exploratory study of understanding project risk management from the perspective of national culture. Int. J. Project Manag. 2015, 33, 564–575. [Google Scholar] [CrossRef]
- Pheng, L.S.; Chuan, Q.T. Environmental factors and work performance of project managers in the construction industry. Int. J. Proj. Manag. 2006, 24, 24–37. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Ogunlana, S.O. A study on project success factors in large construction projects in Vietnam. Eng. Constr. Archit. Manag. 2004, 11, 404–413. [Google Scholar] [CrossRef]
- Toor, S.; Ogunlana, S.O. Problems causing delays in major construction projects in Thailand. Constr. Manag. Econ. 2008, 26, 395–408. [Google Scholar] [CrossRef]
- Ogunlana, S.O. Beyond the ‘iron triangle’: Stakeholder perception of key performance indicators (KPIs) for large-scale public sector development projects. Int. J. Proj. Manag. 2010, 28, 228–236. [Google Scholar]
- Atkinson, R. Project management: Cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria. Int. J. Proj. Manag. 1999, 17, 337–342. [Google Scholar] [CrossRef]
- Bryde, D.J.; Brown, D. The influence of a project performance measurement system on the success of a contract for maintaining motorways and trunk roads. Proj. Manag. J. 2004, 35, 57–65. [Google Scholar] [CrossRef]
- Pinto, J.K.; Slevin, D.P. Critical factors in successful project implementation. IEEE Trans. Eng. Manag. 1987, 34, 22–27. [Google Scholar] [CrossRef]
- Freeman, M.; Beale, P. Measuring Project Success; Project Management Institute: Newtown Square, PA, USA, 1992. [Google Scholar]
- Davis, K. Different stakeholder groups and their perceptions of project success. Int. J. Proj. Manag. 2014, 32, 189–201. [Google Scholar] [CrossRef]
- Turner, J.R. The management of the project-based organization: A personal reflection. Int. J. Proj. Manag. 2018, 36, 231–240. [Google Scholar] [CrossRef]
- Westerveld, E. The Project Excellence Model®: Linking success criteria and critical success factors. Int. J. Proj. Manag. 2003, 21, 411–418. [Google Scholar] [CrossRef]
- Gudienė, N.; Banaitis, A.; Banaitienė, N. Evaluation of critical success factors for construction projects—An empirical study in Lithuania. Int. J. Strateg. Prop. Manag. 2013, 17, 21–31. [Google Scholar] [CrossRef]
- Gunduz, M.; Yahya, A.M.A. Analysis of project success factors in construction industry. Technol. Econ. Dev. Econ. 2018, 24, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Ansah, R.H.; Sorooshian, S.; Bin Mustafa, S. Analytic hierarchy process decision making algorithm. Glob. J. Pure Appl. Math. 2015, 11, 2403–2410. [Google Scholar]
- Zamani, R.; Yousefi, P. Optimal decision making approach for selecting effort estimation model. Int. J. Mach. Learn. Comput. 2013, 39, 10–17. [Google Scholar] [CrossRef]
- Alam, M.N.; Jebran, J.K.; Hossain, M.A. Analytical Hierarchy Process (AHP) Approach on consumers preferences for selecting telecom operators in Bangladesh. Inform. Knowl. Manag. 2012, 2, 7–18. [Google Scholar]
- Eybpoosh, M.; Dikmen, I.; Talat Birgonul, M. Identification of risk paths in international construction projects using structural equation modeling. J. Constr. Eng. Manag. 2011, 137, 1164–1175. [Google Scholar] [CrossRef]
- Seo, H.-C.; Lee, Y.-S.; Kim, J.-J.; Jee, N.-Y. Analyzing safety behaviors of temporary construction workers using structural equation modeling. Saf. Sci. 2015, 77, 160–168. [Google Scholar] [CrossRef]
- Dziuban, C.D.; Shirkey, E.C. When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol. Bull. 1974, 81, 358. [Google Scholar] [CrossRef]
- Mallery, P.; George, D. SPSS for Windows Step by Step; Allyn & Bacon, Inc.: Boston, MA, USA, 2000. [Google Scholar]
- Foster, J.J. Data Analysis Using SPSS for Windows-Version 6: A Beginner’s Guide; Sage: San Jose, CA, USA, 1998. [Google Scholar]
- Callender, J.C.; Osburn, H.G. An empirical comparison of coefficient alpha, Guttman’s lambda-2, and MSPLIT maximized split-half reliability estimates. J. Educ. Meas. 1979, 16, 89–99. [Google Scholar] [CrossRef]
- Guilford, J.P. Psychometric Methods; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Golden, B.L.; Wasil, E.A.; Harker, P.T. The Analytic Hierarchy Process. Applications and Studies; Springer: Berlin/Heidelberg, Germany, 1989; p. 2. [Google Scholar]
- Schieg, M.W. Multiple Criteria Analysis of Construction Project Management; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2010. [Google Scholar]
- Cleland, D.I. Project Management: Strategic Design and Implementation; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Olander, S. Stakeholder impact analysis in construction project management. Constr. Manag. Econ. 2007, 25, 277–287. [Google Scholar] [CrossRef]
- Gil, N.; Tether, B.S. Project risk management and design flexibility: Analysing a case and conditions of complementarity. Res. Policy 2011, 40, 415–428. [Google Scholar] [CrossRef]
- Kagioglou, M.; Cooper, R.; Aouad, G. Performance management in construction: A conceptual framework. Constr. Manag. Econ. 2001, 19, 85–95. [Google Scholar] [CrossRef]
- Ebekozien, A.; Aigbavboa, C. COVID-19 recovery for the Nigerian construction sites: The role of the fourth industrial revolution technologies. Sustain. Cities Soc. 2021, 69, 102803. [Google Scholar] [CrossRef]
- Ozorhon, B. Analysis of Construction Innovation Process at Project Level. J. Manag. Eng. 2013, 29, 455–463. [Google Scholar] [CrossRef]
- Pries, F.; Janszen, F. Innovation in the construction industry: The dominant role of the environment. Constr. Manag. Econ. 1995, 13, 43–51. [Google Scholar] [CrossRef]
- Maina, A.N.; Kimani, J.; Anzala, O. Prevalence and risk factors of three curable sexually transmitted infections among women in Nairobi, Kenya. BMC Res. Notes 2016, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Nikityuk, L. Innovation incentive mechanism in the construction industry. In IOP Conference Series: Materials Science and Engineering, 25 April 2019, Irkutsk, Russian Federation; IOP Publishing: Bristol, UK, 2019; Volume 667, p. 012067. [Google Scholar]
- Lindahl, G.; Ryd, N. Clients’ goals and the construction project management process. Facilities 2007, 25, 147–156. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.; De Vries, B.; Zuo, J. How the public reacts to social impacts in construction projects? A structural equation modeling study. Int. J. Project Manag. 2016, 34, 1433–1448. [Google Scholar] [CrossRef]
- Bowers, J.; Khorakian, A. Integrating risk management in the innovation project. Eur. J. Innov. Manag. 2014, 17, 25–40. [Google Scholar] [CrossRef]
- Van Staveren, M.T. Risk, Innovation & Change: Design Propositions for Implementing Risk Management in Organizations; LAP Lambert Academic Publishing: London, UK, 2009. [Google Scholar]
- Murray, M.; Dainty, A. Corporate Social Responsibility in the Construction Industry; Routledge: London, UK, 2013. [Google Scholar]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting structural equation modeling and confirmatory factor analysis results: A review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Molwus, J.J.; Erdogan, B.; Ogunlana, S.O. Sample size and model fit indices for structural equation modelling (SEM): The case of construction management research. In ICCREM 2013: Construction and Operation in the Context of Sustainability; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 338–347. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Kock, N. One-tailed or two-tailed P values in PLS-SEM? Int. J. E-Collab. 2015, 11, 1–7. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies. J. Clean. Prod. 2020, 249, 119347. [Google Scholar] [CrossRef]
- Greif, T.; Stein, N.; Flath, C.M. Peeking into the void: Digital twins for construction site logistics. Comput. Ind. 2020, 121, 103264. [Google Scholar] [CrossRef]
- Olander, S.; Landin, A. A comparative study of factors affecting the external stakeholder management process. Constr. Manag. Econ. 2008, 26, 553–561. [Google Scholar] [CrossRef]
- Li, T.H.Y.; Ng, S.T.; Skitmore, M. Evaluating stakeholder satisfaction during public participation in major infrastructure and construction projects: A fuzzy approach. Autom. Constr. 2013, 29, 123–135. [Google Scholar] [CrossRef]
- Leung, M.; Ng, S.T.; Cheung, S. Measuring construction project participant satisfaction. Constr. Manag. Econ. 2004, 22, 319–331. [Google Scholar] [CrossRef]
Item | CSFs | References |
---|---|---|
1 | Organizational strategy | [5,29,30,31,32,33,34] |
2 | Determination of project goals and scope (to ensure that the project can continue to advance, including target identification, quantitative control index formulation, process monitoring, etc.) | [29,30,31,32,33,35] |
3 | Effective strategy and goal planning | [5,29,30,31,32,33] |
4 | Organizational design and structure of the project | [36,37] |
5 | Good relationship with key stakeholders | [18,29,32,38] |
6 | Adequate communication and coordination of the participating parties | [18,29,32,38] |
7 | Trust between stakeholders (for example, sticking to ethics and fulfilling promises during the project) | [29,32,39] |
8 | Competency and leadership level of the owner (including strategic ability, financial ability and governance ability) | [39,40,41] |
9 | The competency and leadership level of the project manager (including technical skills and communication skills) | [39,42,43] |
10 | The competency level of the contractor (including the construction ability and delivery ability) | [34,44,45] |
11 | The working ability of construction personnel | [30,34,46,47] |
12 | Strong support from within the organization (such as stability, unity and collaboration within the team) | [18,39,40,41,48] |
13 | Healthy organization and project culture (especially flexibility and dedication during the pandemic) | [34,49,50,51] |
14 | Adequacy of resources (including manpower, machinery, materials and construction funds) | [30,31,34,47,50,52,53,54] |
15 | Effective incentive and restraint mechanism (Positive human dynamics) | [29,32,48] |
16 | Project system control, coordination and integration mechanism | [29,32,38] |
17 | Effective risk control, reasonable risk sharing mechanism | [34,38,39,42,48] |
18 | Effective complexity degradation and control | [30,31,49] |
19 | Good scope management | [55,56] |
20 | Effective and detailed contract management (such as contract specification documents with equal rights and responsibilities) | [53,55,56,57] |
21 | Appropriate contracting model and project delivery system | [34,58,59] |
22 | Guide and focus on innovation management (including system innovation, technological innovation, construction management model innovation, investment and financing model innovation, etc.) | [49,57] |
23 | Preliminary scientific research and necessary personnel training (such as integrating industry-university-research innovation institutions, and organizing scientific research projects) | [47,60,61] |
24 | Past experience accumulation and talent reserve of similar projects (scientific research includes the accumulation of past practice of participating units, the technology developed and mastered by relevant research institutes, and the technology and experience imported from abroad) | [30,47,60] |
25 | Adopt or innovatively absorb advanced technologies and methods (such as BIM, modular building technology, etc.) | [61,62,63] |
26 | Application of advanced management methods (such as Dingding) | [61,64] |
27 | Direct or strong leadership of the country/government (so as to give full play to the advantages of the system, carry out necessary coordination, and be able to concentrate on major tasks) | [34,41,65,66] |
28 | Strong support from the government and related institutions (such as policies and guidelines, scientifically planned resumption plans, nucleic acid testing, etc.) | [41,65,66,67] |
29 | Public acceptance and support of construction projects | [68,69] |
30 | Effective external management and supervision (for example, supervision departments at all levels carry out follow-up supervision and audit of the legality and compliance of the project construction process, and relevant pandemic prevention departments supervise pandemic prevention measures, etc.) | [70,71,72] |
31 | Fully understand the restrictions on project implementation by external environmental conditions | [34,70,71,72] |
32 | Stability of the social, economic and political environment | [34,47,51,73] |
Items | KPIs |
---|---|
K1 | Project implementation efficiency and effect |
KPI 1 | Project management triangle (time, quality, cost) target realization |
KPI 2 | Occupational health, safety and environment (HSE) goals achieved |
KPI 3 | Meet relevant regulations and requirements of design, technology, environmental protection, etc. |
KPI 4 | Meet the designed function, and delivery publicly needed value/service |
K2 | Satisfaction of key stakeholders |
KPI 5 | Government satisfaction |
KPI 6 | Owner’s satisfaction |
KPI 7 | Satisfaction of participating parties (including consulting units, design units and construction units, etc.) |
KPI 8 | Public satisfaction |
KPI 9 | Satisfaction of other key stakeholders |
KPI 10 | Establish good cooperation and relationship |
K3 | Organizational Process Assets (OPA) |
KPI 11 | New technologies |
KPI 12 | Profits/benefits realization |
KPI 13 | Opening new markets or increasing market share/competitiveness |
KPI 14 | New organizational capacity and competency |
KPI 15 | Improve brand/reputation |
KPI 16 | Train professionals for companies or projects |
K4 | Enterprise Environmental Factors (EEF) |
KPI 17 | Has industry benchmarking or demonstration effects, certain management systems or technical standards can be promoted to similar or similar projects |
KPI 18 | Effectively promote the innovation and coordinated development of the construction industry and related industries |
KPI 19 | Competitiveness of the industry in the international market |
KPI 20 | Contribute to theoretical and practical innovation in engineering technology and management |
K5 | Comprehensive social impacts |
KPI 21 | Delivery social-economic benefits to the community |
KPI 22 | Sustainability in environment, society and economy |
KPI 23 | Maintain social cohesion/society harmony |
KPI 24 | Enhance people’s pride and self-confidence |
KPI 25 | Job creation |
Test | CSF/KPI | Appendix A | Indicator | Value | Evaluation |
---|---|---|---|---|---|
Validity analysis | CSF | Table A1 | KMO | 0,784 | Good |
Bartlett’s test of sphericity | 1472.165 (p value = 0.000) | Very Good | |||
KPI | Table A2 | KMO | 0.932 | Very Good | |
Bartlett’s test of sphericity | 1881.479 (p value = 0.000) | Very Good | |||
Reliability test | CSF | Table A3 | Cronbach α (Standardized) | 0.931 | Very Good |
KPI | Table A4 | Cronbach α (Standardized) | 0.965 | Very Good | |
Reliability test (split-half) | CSF | Figure A1 | Spearman–Brown split-half reliability coefficient | 0.877 | Very Good |
KPI | Figure A2 | Spearman–Brown split-half reliability coefficient | 0.908 | Very Good | |
Item analysis | CSF | Table A5 | p | p ≤ 0.01 | All significant |
KPI | Table A6 | p | p = 0 | All significant |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | |||||
---|---|---|---|---|---|---|---|---|---|
CSF | Factor Loading | CSF | Factor Loading | CSF | Factor Loading | CSF | Factor Loading | CSF | Factor Loading |
2 | 0.586 | 16 | 0.505 | 4 | 0.503 | 1 | 0.588 | 13 | 0.687 |
3 | 0.511 | 20 | 0.395 | 5 | 0.637 | 29 | 0.758 | 17 | 0.582 |
6 | 0.62 | 22 | 0.718 | 8 | 0.509 | 31 | 0.456 | 19 | 0.561 |
7 | 0.773 | 23 | 0.755 | 15 | 0.708 | 32 | 0.74 | 21 | 0.637 |
9 | 0.608 | 24 | 0.683 | 18 | 0.419 | ||||
10 | 0.532 | 25 | 0.608 | ||||||
11 | 0.46 | 26 | 0.411 | ||||||
12 | 0.413 | 30 | 0.437 | ||||||
14 | 0.338 | ||||||||
27 | 0.45 | ||||||||
28 | 0.69 |
Owner | Designer | Contractor | Overall | ||||
---|---|---|---|---|---|---|---|
KPI 15 | 3.824 | KPI 8 | 4.095 | KPI 25 | 3.952 | KPI 15 | 3.862 |
KPI 18 | 3.735 | KPI 24 | 3.952 | KPI 15 | 3.952 | KPI 20 | 3.798 |
KPI 17 | 3.735 | KPI 3 | 3.905 | KPI 20 | 3.905 | KPI 18 | 3.777 |
KPI 20 | 3.676 | KPI 5 | 3.857 | KPI 23 | 3.881 | KPI 17 | 3.766 |
KPI 14 | 3.647 | KPI 22 | 3.857 | KPI 3 | 3.833 | KPI 23 | 3.745 |
KPI 5 | 3.618 | KPI 2 | 3.857 | KPI 22 | 3.833 | KPI 24 | 3.734 |
KPI 24 | 3.618 | KPI 9 | 3.81 | KPI 5 | 3.81 | KPI 5 | 3.723 |
KPI 4 | 3.559 | KPI 7 | 3.81 | KPI 18 | 3.81 | KPI 8 | 3.723 |
KPI 23 | 3.559 | KPI 4 | 3.81 | KPI 17 | 3.81 | KPI 22 | 3.723 |
KPI 22 | 3.559 | KPI 20 | 3.81 | KPI 13 | 3.81 | KPI 3 | 3.702 |
KPI 6 | 3.529 | KPI 19 | 3.81 | KPI 8 | 3.786 | KPI 13 | 3.691 |
KPI 19 | 3.529 | KPI 17 | 3.81 | KPI 19 | 3.762 | KPI 19 | 3.681 |
KPI 8 | 3.5 | KPI 15 | 3.81 | KPI 16 | 3.762 | KPI 14 | 3.67 |
KPI 13 | 3.5 | KPI 14 | 3.81 | KPI 24 | 3.738 | KPI 25 | 3.649 |
KPI 10 | 3.471 | KPI 13 | 3.81 | KPI 9 | 3.69 | KPI 4 | 3.638 |
KPI 3 | 3.441 | KPI 10 | 3.81 | KPI 2 | 3.667 | KPI 6 | 3.606 |
KPI 16 | 3.412 | KPI 23 | 3.762 | KPI 6 | 3.643 | KPI 16 | 3.596 |
KPI 9 | 3.353 | KPI 18 | 3.762 | KPI 4 | 3.643 | KPI 10 | 3.585 |
KPI 25 | 3.324 | KPI 6 | 3.714 | KPI 21 | 3.643 | KPI 9 | 3.574 |
KPI 21 | 3.324 | KPI 25 | 3.714 | KPI 14 | 3.643 | KPI 11 | 3.5 |
KPI 11 | 3.324 | KPI 21 | 3.619 | KPI 11 | 3.595 | KPI 21 | 3.5 |
KPI 7 | 3.265 | KPI 11 | 3.619 | KPI 10 | 3.571 | KPI 2 | 3.489 |
KPI 2 | 3.118 | KPI 16 | 3.571 | KPI 7 | 3.548 | KPI 7 | 3.489 |
KPI 1 | 3.029 | KPI 12 | 3.381 | KPI 12 | 3.357 | KPI 12 | 3.213 |
KPI 12 | 2.941 | KPI 1 | 3.238 | KPI 1 | 3.238 | KPI 1 | 3.149 |
Hypothesis | Path | Literatures |
---|---|---|
1 | F1 → K1 (+) | [104] |
2 | F2 → K3 (+) | [105,106] |
3 | F2 → K4 (+) | [107,108] |
4 | F3 → K2 (+) | [109,110,111] |
5 | F4 → K1 (+) | [70,102] |
6 | F4 → K2 (+) | [70,102] |
7 | F4 → K5 (+) | [70,102] |
8 | F5 → K4 (+) | [103,110,112,113] |
9 | F5 → K5 (+) | [51,111,114] |
Path | Coefficient | p-Value |
---|---|---|
F1 → K1 | 0.24 | 0.04 * |
F2 → K3 | 0.66 | 0.00 ** |
F2 → K4 | 0.49 | 0.00 ** |
F3 → K2 | 0.21 | 0.02 * |
F4 → K1 | 0.14 | 0.11 |
F4 → K2 | 0.30 | 0.00 ** |
F4 → K5 | 0.35 | 0.00 ** |
F5 → K4 | 0.17 | 0.03 * |
F5 → K5 | 0.27 | 0.01 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.-S.; Liu, M.-X.; Xue, J.; Jian, I.Y.; Xu, Q.; Wang, Q.-C. Post-COVID-19 Recovery: An Integrated Framework of Construction Project Performance Evaluation in China. Systems 2023, 11, 359. https://doi.org/10.3390/systems11070359
Guo H-S, Liu M-X, Xue J, Jian IY, Xu Q, Wang Q-C. Post-COVID-19 Recovery: An Integrated Framework of Construction Project Performance Evaluation in China. Systems. 2023; 11(7):359. https://doi.org/10.3390/systems11070359
Chicago/Turabian StyleGuo, Han-Sen, Ming-Xin Liu, Jin Xue, Izzy Yi Jian, Qian Xu, and Qian-Cheng Wang. 2023. "Post-COVID-19 Recovery: An Integrated Framework of Construction Project Performance Evaluation in China" Systems 11, no. 7: 359. https://doi.org/10.3390/systems11070359