Phytochemical Composition, Bioactive Compounds, and Antidiabetic Potential of Four Medicinal Plants Native to the UAE: Capparis spinosa, Citrullus colocynthis, Morus alba, and Rhazya stricta
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction
3. Phytochemical Profiles of the Selected Plants
3.1. Capparis spinosa
3.2. Citrullus colocynthis
3.3. Morus alba
3.4. Rhazya stricta
Plant Name | Family | Native Habitat | Flowering Period | Traditional Uses | Bioactive Compounds | Pharmacological Properties | Key References |
Caper | Capparaceae | UAE, mountains, rocky terrains, limestone formations, wadis, and roadsides | February to April | Treating numerous diseases, including diabetes, microbial infections, inflammation, and liver disorders | Flavonoids (quercetin and kaempferol), glucocapparin, rutin, alkaloids, phenolic acids, and volatile oils | Antioxidant, antidiabetic, hepatoprotective, anti-inflammatory, and organ-protective | [18,19,20,24,57] |
Bitter apple | Cucurbitaceae | UAE, desert regions, sandy and gravelly soils | May to October | Treating diabetes, respiratory conditions, gastrointestinal disorders, and infections | Cucurbitacin E, colocynthoside A, flavonoids, alkaloids, glycosides, and phenolic acids | Hypoglycemic, β-cell regenerative, antioxidant, and lipid-lowering | [21,32,33] |
White mulberry | Moraceae | UAE, private farms | March to June | Treating rheumatism, diabetes, and hypertension; improving eyesight; strengthening joints | DNJ, chlorogenic acid, rutin, isoquercitrin, gentisic acid, flavonoids, and stilbenoids | α-glucosidase inhibition, insulin sensitizer, antioxidant, anti-inflammatory, and hypoglycemic | [22,29,44,45,58,59] |
Harmal-e-shami | Apocynaceae | UAE, sandy gravelly soils, rocky terrains, wadi beds | February to June | Treating diabetes mellitus, syphilis, parasitic infections, hyperglycemia, rheumatism, and fever | Rhazimine, rhazinilam, alkaloids, triterpenes, glycosides, and flavonoids | DPP-IV inhibition, GLP-1 enhancement, insulin sensitivity, hypoglycemic, and antihyperlipidemic | [30,51,52,53,60] |
4. Overview of Antidiabetic Properties of Medicinal Plants in the UAE
4.1. Capparis spinosa
4.2. Citrullus colocynthis
4.3. Morus alba
4.4. Rhazya stricta
5. Additional Pharmacological Activities of the Reviewed Medicinal Plants
5.1. Capparis spinosa
5.2. Citrullus colocynthis
5.3. Morus alba
5.4. Rhazya stricta
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vahid, H.; Bonakdaran, S.; Khorasani, Z.M.; Jarahi, L.; Rakhshandeh, H.; Ghorbani, A.; Zarghi, N.; Yousefi, M. Effect of Capparis spinosa Extract on Metabolic Parameters in Patients with Type-2 Diabetes: A Randomized Controlled Trial. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 100–107. [Google Scholar] [CrossRef]
- Al-Thani, H.; El-Menyar, A.; Consunji, R.; Mekkodathil, A.; Peralta, R.; Allen, K.A.; Hyder, A.A. Epidemiology of Occupational Injuries by Nationality in Qatar: Evidence for Focused Occupational Safety Programmes. Injury 2015, 46, 1806–1813. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th edition scientific committee. In IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Zhang, Z.; Qiao, D.; Zhang, Y.; Chen, Q.; Chen, Y.; Tang, Y.; Que, R.; Chen, Y.; Zheng, L.; Dai, Y.; et al. Portulaca oleracea L. Extract Ameliorates Intestinal Inflammation by Regulating Endoplasmic Reticulum Stress and Autophagy. Mol. Nutr. Food Res. 2022, 66, 2100791. [Google Scholar] [CrossRef]
- Kalantari, H.; Foruozandeh, H.; Khodayar, M.J.; Siahpoosh, A.; Saki, N.; Kheradmand, P. Antioxidant and Hepatoprotective Effects of Capparis spinosa L. Fractions and Quercetin on Tert-Butyl Hydroperoxide- Induced Acute Liver Damage in Mice. J. Tradit. Complement. Med. 2018, 8, 120–127. [Google Scholar] [CrossRef]
- Peña-Jorquera, H.; Cid-Jofré, V.; Landaeta-Díaz, L.; Petermann-Rocha, F.; Martorell, M.; Zbinden-Foncea, H.; Ferrari, G.; Jorquera-Aguilera, C.; Cristi-Montero, C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome—A Comprehensive Review. Nutrients 2023, 15, 3244. [Google Scholar] [CrossRef]
- Vodovotz, Y.; Barnard, N.; Hu, F.B.; Jakicic, J.; Lianov, L.; Loveland, D.; Buysse, D.; Szigethy, E.; Finkel, T.; Sowa, G.; et al. Prioritized Research for the Prevention, Treatment, and Reversal of Chronic Disease: Recommendations From the Lifestyle Medicine Research Summit. Front. Med. 2020, 7, 585744. [Google Scholar] [CrossRef] [PubMed]
- Leonti, M.; Casu, L. Traditional Medicines and Globalization: Current and Future Perspectives in Ethnopharmacology. Front. Pharmacol. 2013, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Samanta, S.K. Medicinal Plants, Human Health and Biodiversity: A Broad Review. In Biotechnological Applications of Biodiversity; Mukherjee, J., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 147, pp. 59–110. ISBN 978-3-662-45096-3. [Google Scholar]
- Hussein, E.; Daoud, S.; Alrabaiah, H.; Badawi, R. Exploring Undergraduate Students’ Attitudes towards Emergency Online Learning during COVID-19: A Case from the UAE. Child. Youth Serv. Rev. 2020, 119, 105699. [Google Scholar] [CrossRef]
- Eddouks, M.; Lemhadri, A.; Hebi, M.; EL Hidani, A.; Zeggwagh, N.A.; EL Bouhali, B.; Hajji, L.; Burcelin, R. Capparis spinosa L. Aqueous Extract Evokes Antidiabetic Effect in Streptozotocin-Induced Diabetic Mice. Avicenna J. Phytomedicine 2017, 7, 191–198. [Google Scholar]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A Review on Bioactive Phytochemicals and Ethnopharmacological Potential of Purslane (Portulaca oleracea L.). Heliyon 2022, 8, e08669. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of Taxol Biosynthesis by Aspergillus terreus, Endophyte of Podocarpus gracilior Pilger, upon Intimate Interaction with the Plant Endogenous Microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- Sakkir, S. Medicinal Plants Diversity and Their Conservation Status in the United Arab Emirates (UAE). J. Med. Plants Res. 2012, 6, 1304–1322. [Google Scholar] [CrossRef]
- EL-Kamali, H.H.; Khalid, S. The Most Common Herbal Remedies in Dongola Province, Northern Sudan. Fitoterapia 1998, 69, 118–121. [Google Scholar]
- Shahin, S.M.; Jaleel, A.; Alyafei, M.A.M. The Essential Oil-Bearing Plants in the United Arab Emirates (UAE): An Overview. Molecules 2021, 26, 6486. [Google Scholar] [CrossRef]
- Al Raish, S.M.; Almasri, R.S.; Bedir, A.S. Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera). Biology 2025, 14, 695. [Google Scholar] [CrossRef]
- Assadi, S.; Shafiee, S.M.; Erfani, M.; Akmali, M. Antioxidative and Antidiabetic Effects of Capparis spinosa Fruit Extract on High-Fat Diet and Low-Dose Streptozotocin-Induced Type 2 Diabetic Rats. Biomed. Pharmacother. 2021, 138, 111391. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, T.; Wang, C. Capparis spinosa L. as a Potential Source of Nutrition and Its Health Benefits in Foods: A Comprehensive Review of Its Phytochemistry, Bioactivities, Safety, and Application. Food Chem. 2023, 409, 135258. [Google Scholar] [CrossRef]
- Annaz, H.; Sane, Y.; Bitchagno, G.T.M.; Ben Bakrim, W.; Drissi, B.; Mahdi, I.; El Bouhssini, M.; Sobeh, M. Caper (Capparis spinosa L.): An Updated Review on Its Phytochemistry, Nutritional Value, Traditional Uses, and Therapeutic Potential. Front. Pharmacol. 2022, 13, 878749. [Google Scholar] [CrossRef]
- Cheng, X.; Qin, M.; Chen, R.; Jia, Y.; Zhu, Q.; Chen, G.; Wang, A.; Ling, B.; Rong, W. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules 2023, 28, 6221. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.I.; Jang, S.; Kim, K.H. Morus alba L. for Blood Sugar Management: A Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2022, 2022, 9282154. [Google Scholar] [CrossRef] [PubMed]
- UAE Flora. Available online: https://www.uaeflora.ae/ (accessed on 2 December 2024).
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amorós, A.; Carbonell-Barrachina, Á.A.; Hernández, F. Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Maggi, F.; Daglia, M.; Habtemariam, S.; Rastrelli, L.; Nabavi, S.M. Pharmacological Effects of Capparis spinosa L. Phytother. Res. 2016, 30, 1733–1744. [Google Scholar] [CrossRef]
- Lo Bosco, F.; Guarrasi, V.; Moschetti, M.; Germanà, M.A.; Butera, D.; Corana, F.; Papetti, A. Nutraceutical Value of Pantelleria Capers (Capparis Spinosa L.). J. Food Sci. 2019, 84, 2337–2346. [Google Scholar] [CrossRef]
- Aksay, O.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS-Based Assessment of the Bioactive Compounds in Fresh and Fermented Caper (Capparis spinosa ) Buds and Berries. Food Chem. 2021, 337, 127959. [Google Scholar] [CrossRef] [PubMed]
- Maldini, M.; Foddai, M.; Natella, F.; Addis, R.; Chessa, M.; Petretto, G.L.; Tuberoso, C.I.G.; Pintore, G. Metabolomic Study of Wild and Cultivated Caper (Capparis spinosa L.) from Different Areas of Sardinia and Their Comparative Evaluation. J. Mass Spectrom. 2016, 51, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Jan, B.; Zahiruddin, S.; Basist, P.; Irfan, M.; Abass, S.; Ahmad, S. Metabolomic Profiling and Identification of Antioxidant and Antidiabetic Compounds from Leaves of Different Varieties of Morus alba Linn Grown in Kashmir. ACS Omega 2022, 7, 24317–24328. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Kayani, W.K.; Ahmed, T.; Malik, F.; Hussain, S.; Ashfaq, M.; Ali, H.; Rubnawaz, S.; Green, B.D.; Calderwood, D.; et al. Assessment of Antidiabetic Potential and Phytochemical Profiling of Rhazya stricta Root Extracts. BMC Complement. Med. Ther. 2020, 20, 293. [Google Scholar] [CrossRef]
- Encyclopedia of Medicine Plant of UAE. Available online: https://medicinalplants.doh.gov.ae/Encyclopedia-of-medicine-plant-of-UAE (accessed on 10 December 2024).
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.A.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): A Review of Its Phytochemistry, Pharmacology, Traditional Uses and Nutritional Potential. J. Ethnopharmacol. 2014, 155, 54–66. [Google Scholar] [CrossRef]
- Rahimi, R.; Amin, G.; Ardekani, M.R.S. A Review on Citrullus colocynthis Schrad.: From Traditional Iranian Medicine to Modern Phytotherapy. J. Altern. Complement. Med. 2012, 18, 551–554. [Google Scholar] [CrossRef]
- Najafi, S.; Sanadgol, N.; Nejad, B.S.; Beiragi, M.A.; Sanadgol, E. Phytochemical Screening and Antibacterial Activity of Citrullus colocynthis (Linn.) Schrad against Staphylococcus aureus. J. Med. Plants Res. 2010, 4, 2321–2325. [Google Scholar]
- Rajangam, J.; Shivakumar, A.; Anitha, T.; Joshi, V.D.; Palei, N.N. Antidiabetic Effect of Petroleum Ether Extract of Citrullus colocynthis Fruits Against Streptozotocin-Induced Hyperglycemic Rats. Available online: https://www.researchgate.net/publication/288633824_Antidiabetic_effect_of_petroleum_ether_extract_of_Citrullus_colocynthis_fruits_against_streptozotocin-induced_hyperglycemic_rats (accessed on 10 December 2024).
- Salama, S.A.; Al-Faifi, Z.E.; El-Amier, Y.A. Chemical Composition of Reichardia tingitana Methanolic Extract and Its Potential Antioxidant, Antimicrobial, Cytotoxic and Larvicidal Activity. Plants 2022, 11, 2028. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Munawar, M.; Saeed, M.; Shen, J.-Q.; Khan, M.S.; Noreen, S.; Alagawany, M.; Naveed, M.; Madni, A.; Li, C.-X. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising Traditional Uses, Pharmacological Effects, Aspects, and Potential Applications. Front. Pharmacol. 2022, 12, 791049. [Google Scholar] [CrossRef]
- Zheng, M.-S.; Liu, Y.-S.; Yuan, T.; Liu, L.-Y.; Li, Z.-Y.; Huang, X.-L. Research progress on chemical constituents of Citrullus colocynthis and their pharmacological effects. Zhongguo Zhong Yao Za Zhi 2020, 45, 816–824. [Google Scholar] [CrossRef]
- Parveen, R.; Khan, N.; Zahiruddin, S.; Ibrahim, M.; Anjum, V.; Parveen, B.; Khan, M.A. TLC-Bioautographic Evaluation for High-Throughput Screening and Identification of Free Radical Scavenging and Antidiabetic Compounds from Traditional Unani Medicinal Plant: Citrullus colocynthis Schrad. J. AOAC Int. 2020, 103, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Saqban, L.H.; Abdul Alamir Mezher, Z.; Hussain Ali, I. Cytotoxic Effect of the Crude Alcoholic Extract of the Fruits of Citrullus colocynthis on Human Hepatocyte Carcinoma (Hep-G2). Arch. Razi Inst. 2022, 77, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Lost Crops of Africa: Volume II: Vegetables; National Academies Press: Washington, DC, USA, 2006; ISBN 978-0-309-10333-6. [Google Scholar]
- Ghauri, A.O.; Ahmad, S.; Rehman, T. In Vitro and in Vivo Anti-Diabetic Activity of Citrullus colocynthis Pulpy Flesh with Seeds Hydro-Ethanolic Extract. J. Complement. Integr. Med. 2020, 17, 20180228. [Google Scholar] [CrossRef] [PubMed]
- Huseini, H.F.; Darvishzadeh, F.; Heshmat, R.; Jafariazar, Z.; Raza, M.; Larijani, B. The Clinical Investigation of Citrullus colocynthis (L.) Schrad Fruit in Treatment of Type II Diabetic Patients: A Randomized, Double Blind, Placebo-controlled Clinical Trial. Phytother. Res. 2009, 23, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Teibo, J.O.; Shaheen, H.M.; Babalola, B.A.; Teibo, T.K.A.; Al-kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; Papadakis, M. Therapeutic Potential of Lawsonia inermis Linn: A Comprehensive Overview. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 3525–3540. [Google Scholar] [CrossRef]
- Lim, S.H.; Yu, J.S.; Lee, H.S.; Choi, C.-I.; Kim, K.H. Antidiabetic Flavonoids from Fruits of Morus alba Promoting Insulin-Stimulated Glucose Uptake via Akt and AMP-Activated Protein Kinase Activation in 3T3-L1 Adipocytes. Pharmaceutics 2021, 13, 526. [Google Scholar] [CrossRef]
- Chan, E.W.-C.; Lye, P.-Y.; Wong, S.-K. Phytochemistry, Pharmacology, and Clinical Trials of Morus Alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar] [CrossRef]
- Chen, C.; Mohamad Razali, U.H.; Saikim, F.H.; Mahyudin, A.; Mohd Noor, N.Q.I. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Wong, S.K.; Tangah, J.; Inoue, T.; Chan, H.T. Phenolic Constituents and Anticancer Properties of Morus alba (White Mulberry) Leaves. J. Integr. Med. 2020, 18, 189–195. [Google Scholar] [CrossRef]
- Morales Ramos, J.G.; Esteves Pairazamán, A.T.; Mocarro Willis, M.E.S.; Collantes Santisteban, S.; Caldas Herrera, E. Medicinal Properties of Morus alba for the Control of Type 2 Diabetes Mellitus: A Systematic Review. F1000Research 2021, 10, 1022. [Google Scholar] [CrossRef]
- Albeshri, A.; Baeshen, N.A.; Bouback, T.A.; Aljaddawi, A.A. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. Plants 2021, 10, 2508. [Google Scholar] [CrossRef]
- Aziz, A.T.; Alshehri, M.A.; Alanazi, N.A.; Panneerselvam, C.; Trivedi, S.; Maggi, F.; Sut, S.; Dall’Acqua, S. Phytochemical Analysis of Rhazya stricta Extract and Its Use in Fabrication of Silver Nanoparticles Effective against Mosquito Vectors and Microbial Pathogens. Sci. Total Environ. 2020, 700, 134443. [Google Scholar] [CrossRef]
- Bukhari, N.A.; Al-Otaibi, R.A.; Ibhrahim, M.M. Phytochemical and Taxonomic Evaluation of Rhazya stricta in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, N.A.; Lari, S.A.; Al Doghaither, H.A.R.; Ramadan, H.A.I. Effect of Rhazya stricta Extract on Rat Adiponectin Gene and Insulin Resistance. J. Am. Sci. 2010, 6, 1237–1245. [Google Scholar]
- Nagmoti, D.M.; Kothavade, P.S.; Bulani, V.D.; Gawali, N.B.; Juvekar, A.R. Antidiabetic and Antihyperlipidemic Activity of Pithecellobium dulce (Roxb.) Benth Seeds Extract in Streptozotocin-Induced Diabetic Rats. Eur. J. Integr. Med. 2015, 7, 263–273. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Fallah Huseini, H.; Hasani-Rnjbar, S.; Nayebi, N.; Heshmat, R.; Sigaroodi, F.K.; Ahvazi, M.; Alaei, B.A.; Kianbakht, S. Capparis spinosa L. (Caper) Fruit Extract in Treatment of Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2013, 21, 447–452. [Google Scholar] [CrossRef]
- Hunyadi, A.; Martins, A.; Hsieh, T.-J.; Seres, A.; Zupkó, I. Chlorogenic Acid and Rutin Play a Major Role in the In Vivo Anti-Diabetic Activity of Morus alba Leaf Extract on Type II Diabetic Rats. PLoS ONE 2012, 7, e50619. [Google Scholar] [CrossRef]
- Tang, C.; Bao, T.; Zhang, Q.; Qi, H.; Huang, Y.; Zhang, B.; Zhao, L.; Tong, X. Clinical Potential and Mechanistic Insights of Mulberry (Morus alba L.) Leaves in Managing Type 2 Diabetes Mellitus: Focusing on Gut Microbiota, Inflammation, and Metabolism. J. Ethnopharmacol. 2023, 306, 116143. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Asad, M.J.; Ahmad, M.S.; Qureshi, R.; Shah, S.I.; Gul, H.; Gulfraz, M. Antidiabetic and Hypolipidemic Potential of Rhazya stricta Decne Extract and Its Fractions. Int. Curr. Pharm. J. 2015, 4, 353–361. [Google Scholar] [CrossRef]
- Jalali, M.T.; Mohammadtaghvaei, N.; Larky, D.A. Investigating the Effects of Capparis spinosa on Hepatic Gluconeogenesis and Lipid Content in Streptozotocin-Induced Diabetic Rats. Biomed. Pharmacother. 2016, 84, 1243–1248. [Google Scholar] [CrossRef]
- Kazemian, M.; Abad, M.; Haeri, M.R.; Ebrahimi, M.; Heidari, R. Anti-Diabetic Effect of Capparis spinosa L. Root Extract in Diabetic Rats. Avicenna J. Phytomedicine 2015, 5, 325–332. [Google Scholar]
- Yoshikawa, M.; Morikawa, T.; Kobayashi, H.; Nakamura, A.; Matsuhira, K.; Nakamura, S.; Matsuda, H. Bioactive Saponins and Glycosides. XXVII. Structures of New Cucurbitane-Type Triterpene Glycosides and Antiallergic Constituents from Citrullus colocynthis. Chem. Pharm. Bull. 2007, 55, 428–434. [Google Scholar] [CrossRef]
- Adam, S.E.I.; Al-Yahya, M.A.; Al-Farhan, A.H. Response of Najdi Sheep to Oral Administration of Citrullus colocynthis Fruits, Nerium oleander Leaves or Their Mixture. Small Rumin. Res. 2001, 40, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-H.; Lee, H.-S. Biofunctional Constituent Isolated from Citrullus colocynthis Fruits and Structure–Activity Relationships of Its Analogues Show Acaricidal and Insecticidal Efficacy. J. Agric. Food Chem. 2014, 62, 8663–8667. [Google Scholar] [CrossRef]
- Karimabad, M.N.; Niknia, S.; Golnabadi, M.B.; Poor, S.F.; Hajizadeh, M.R.; Mahmoodi, M. Effect of Citrullus colocynthis Extract on Glycated Hemoglobin Formation (In Vitro). Eurasian J. Med. 2020, 52, 47–51. [Google Scholar] [CrossRef]
- Benariba, N.; Djaziri, R.; Zerriouh, B.H.; Bellakhdar, W.; Hupkens, E.; Boucherit, Z.; Malaisse, W.J. Short- and Long-Term Effects of Various Citrullus colocynthis Seed Extracts in Normal and Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Med. 2012, 30, 1528–1536. [Google Scholar] [CrossRef]
- Nmila, R.; Gross, R.; Rchid, H.; Roye, M.; Manteghetti, M.; Petit, P.; Tijane, M.; Ribes, G.; Sauvaire, Y. Insulinotropic Effect of Citrullus colocynthis Fruit Extracts. Planta Medica 2000, 66, 418–423. [Google Scholar] [CrossRef]
- Ostovar, M.; Akbari, A.; Anbardar, M.H.; Iraji, A.; Salmanpour, M.; Hafez Ghoran, S.; Heydari, M.; Shams, M. Effects of Citrullus colocynthis L. in a Rat Model of Diabetic Neuropathy. J. Integr. Med. 2020, 18, 59–67. [Google Scholar] [CrossRef]
- Rajizadeh, M.A.; Aminizadeh, A.H.; Esmaeilpour, K.; Bejeshk, M.A.; Sadeghi, A.; Salimi, F. Investigating the Effects of Citrullus colocynthis on Cognitive Performance and Anxiety-like Behaviors in STZ-Induced Diabetic Rats. Int. J. Neurosci. 2023, 133, 343–355. [Google Scholar] [CrossRef]
- Sebbagh, N.; Cruciani-Guglielmacci, C.; Ouali, F.; Berthault, M.-F.; Rouch, C.; Sari, D.C.; Magnan, C. Comparative Effects of Citrullus colocynthis, Sunflower and Olive Oil-Enriched Diet in Streptozotocin-Induced Diabetes in Rats. Diabetes Metab. 2009, 35, 178–184. [Google Scholar] [CrossRef]
- Tehseen, I.; Haq, T.U.; Ilahi, I.; Khan, A.A.; Attaullah, M.; Zamani, G.Y.; Zaman, S.; Ismail, I. Antidiabetic and Hepato-Renal Protective Effects of Medicinal Plants in STZ Induced Diabetic Rats. Braz. J. Biol. 2022, 84, e260189. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-D.; Fang, P.-F.; Xiang, D.-X.; Yang, Y.-Y. Topical Treatments for Diabetic Neuropathic Pain (Review). Exp. Ther. Med. 2019, 17, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Ahangarpour, A.; Belali, R.; Bineshfar, F.; Javadzadeh, S.; Yazdanpanah, L. Evaluation of Skin Absorption of the Citrullus colocynthis in Treatment of Type II Diabetic Patients. J. Diabetes Metab. Disord. 2020, 19, 305–309. [Google Scholar] [CrossRef]
- Barghamdi, B.; Ghorat, F.; Asadollahi, K.; Sayehmiri, K.; Peyghambari, R.; Abangah, G. Therapeutic Effects of Citrullus colocynthis Fruit in Patients with Type II Diabetes: A Clinical Trial Study. J. Pharm. Bioallied Sci. 2016, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zu, Y.; Fu, Y.; Efferth, T. In Vitro Antioxidant and Antimicrobial Activity of Extracts from Morus alba L. Leaves, Stems and Fruits. Am. J. Chin. Med. 2012, 40, 349–356. [Google Scholar] [CrossRef]
- Natić, M.M.; Dabić, D.Č.; Papetti, A.; Fotirić Akšić, M.M.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž.L. Analysis and Characterisation of Phytochemicals in Mulberry (Morus alba L.) Fruits Grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and Quantification of Phenolic Acids and Flavonol Glycosides in Tunisian Morus Species by HPLC-DAD and HPLC–MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A Meta-Analysis of Efficacy of Morus alba Linn. to Improve Blood Glucose and Lipid Profile. Eur. J. Nutr. 2017, 56, 1509–1521. [Google Scholar] [CrossRef]
- Lei, L.; Huan, Y.; Liu, Q.; Li, C.; Cao, H.; Ji, W.; Gao, X.; Fu, Y.; Li, P.; Zhang, R.; et al. Morus alba L. (Sangzhi) Alkaloids Promote Insulin Secretion, Restore Diabetic β-Cell Function by Preventing Dedifferentiation and Apoptosis. Front. Pharmacol. 2022, 13, 841981. [Google Scholar] [CrossRef]
- Asma Ahmed, A.A.; Gulfraz, M.; Asad, M.J.; Qureshi, R.; Bibi, S.; Shah, S.I. Hypoglycemic and Hypocholesterolemic Activity of Leave of Few Medicinal Plants against Steptozotocin Induced Hyperglycemia. Pak. J. Pharm. Sci. 2016, 29, 2065–2070. [Google Scholar] [PubMed]
- Bacchetti, T.; Campagna, R.; Sartini, D.; Cecati, M.; Morresi, C.; Bellachioma, L.; Martinelli, E.; Rocchetti, G.; Lucini, L.; Ferretti, G.; et al. C. spinosa L. subsp. rupestris Phytochemical Profile and Effect on Oxidative Stress in Normal and Cancer Cells. Molecules 2022, 27, 6488. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.F. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- HosseiniRavesh, F.; Ghalibaf, A.M.; Askari, V.R.; Fayedeh, F.; Rahimi, V.B.; Etemad, L.; Taherzadeh, Z. Therapeutic Potential of Capparis spinosa in Experimental Model of Acute Acetic Acid-Induced Colitis: Anti-Inflammatory and Antioxidant Effects. Heliyon 2024, 10, e32836. [Google Scholar] [CrossRef]
- Liu, X.; Aimaier, A.; Wang, W.; Dong, Y.; Han, P.; He, J.; Mu, L.; Wang, X.; Li, J. Quality Variation and Biosynthesis of Anti-Inflammatory Compounds for Capparis spinosa Based on the Metabolome and Transcriptome Analysis. Front. Plant Sci. 2023, 14, 1224073. [Google Scholar] [CrossRef]
- Merlino, M.; Condurso, C.; Cincotta, F.; Nalbone, L.; Ziino, G.; Verzera, A. Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative. Antioxidants 2024, 13, 718. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, A.S.; Zeshan, B.; Riaz, M.; Ejaz, U.; Saleem, A.; Zaineb, R.; Sindhu, H.A.; Yean, C.Y.; Ahmed, N. Characterization of Bioactive Compounds and Novel Proteins Derived from Promising Source Citrullus colocynthis along with In-Vitro and In-Vivo Activities. Molecules 2023, 28, 1743. [Google Scholar] [CrossRef]
- Khan, M.; Khan, M.; Al-hamoud, K.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z. Diversity of Citrullus colocynthis (L.) Schrad Seeds Extracts: Detailed Chemical Profiling and Evaluation of Their Medicinal Properties. Plants 2023, 12, 567. [Google Scholar] [CrossRef]
- Stein, C.; Voigts, J.; Niederreiter, L.; Kowarschik, S.; Huber, R.; Lüth, V.M. Antiproliferative and Immunomodulative Potential of Citrullus colocynthis and Its Bioactive Compounds in Human Lymphocytes and Lung Cells. J. Ethnopharmacol. 2024, 328, 118053. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sajid, A.R.; Javeed, A.; Aslam, M.; Ahsan, T.; Hussain, D.; Mateen, A.; Li, X.; Qin, P.; Ji, M. Antioxidant, Antifungal, and Aphicidal Activity of the Triterpenoids Spinasterol and 22,23-Dihydrospinasterol from Leaves of Citrullus colocynthis L. Sci. Rep. 2022, 12, 4910. [Google Scholar] [CrossRef]
- Marzouk, B.; Refifà, M.; Montalbano, S.; Buschini, A.; Negri, S.; Commisso, M.; Degola, F. In Vitro Sprouted Plantlets of Citrullus colocynthis (L.) Schrad Shown to Possess Interesting Levels of Cucurbitacins and Other Bioactives against Pathogenic Fungi. Plants 2022, 11, 2711. [Google Scholar] [CrossRef]
- Chen, Y.; Sa, Y.; Wang, G.; Pan, X.; Zhen, Y.; Cheng, X.; Zhang, K.; Fu, L.; Wang, H.; Liu, B. The Protective Effects of Citrullus colocynthis on Inhibiting Oxidative Damage and Autophagy-Associated Cell Death in Parkinson’s Disease. J. Taiwan Inst. Chem. Eng. 2019, 100, 18–25. [Google Scholar] [CrossRef]
- Chang, B.-Y.; Koo, B.-S.; Kim, S.-Y. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021, 10, 1966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ai, Q.; Gu, M.; Guan, H.; Yang, W.; Zhang, M.; Mao, J.; Lin, Z.; Liu, Q.; Liu, J. Comprehensive Overview of Different Medicinal Parts from Morus alba L.: Chemical Compositions and Pharmacological Activities. Front. Pharmacol. 2024, 15, 1364948. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.A.; Dhanavade, M.J.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Liao, Y.; Wan, J.; Shah Syed Bukhari, J.; Ouyang, Z. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry (Morus alba): Current Paradigms and Future Challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Yang, C.-S.; Chen, J.-J. Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants 2022, 11, 2222. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Liu, F.; Mo, M.; Farooq, M.; Li, J.; Yao, C.; Wei, W. Antiviral Activity of Morus alba L. Extract against Pseudorabies Virus. J. Ethnopharmacol. 2025, 336, 118719. [Google Scholar] [CrossRef] [PubMed]
- Al-Zharani, M.; Nasr, F.A.; Abutaha, N.; Alqahtani, A.S.; Noman, O.M.; Mubarak, M.; Wadaan, M.A. Apoptotic Induction and Anti-Migratory Effects of Rhazya stricta Fruit Extracts on a Human Breast Cancer Cell Line. Molecules 2019, 24, 3968. [Google Scholar] [CrossRef] [PubMed]
- Hajrah, N.H.; Abdul, W.M.; Abdul-Hameed, Z.H.; Alarif, W.M.; Al-Abbas, N.S.A.; Ayyad, S.-E.N.; Omer, A.M.S.; Mutawakil, M.Z.; Hall, N.; Obaid, A.Y.; et al. Gene Expression Profiling to Delineate the Anticancer Potential of a New Alkaloid Isopicrinine From Rhazya stricta. Integr. Cancer Ther. 2020, 19, 1534735420920711. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Fatima, I.; Wang, Y.; Tong, J.; Noor, F.; Qasim, M.; Peng, Y.; Liao, M. Unveiling the Multi-Target Compounds of Rhazya stricta: Discovery and Inhibition of Novel Target Genes for the Treatment of Clear Cell Renal Cell Carcinoma. Comput. Biol. Med. 2023, 165, 107424. [Google Scholar] [CrossRef]
- Gilani, S.A.; Kikuchi, A.; Shinwari, Z.K.; Khattak, Z.I.; Watanabe, K.N. Phytochemical, Pharmacological and Ethnobotanical Studies of Rhazya stricta Decne. Phytother. Res. 2007, 21, 301–307. [Google Scholar] [CrossRef]
Plant Name | Bioactive Compounds | Antidiabetic Properties | Key References |
Caper | Flavonoids, phenolic acids, alkaloids, volatile oils, fatty acids, and polysaccharides | Improves glucose metabolism, enhances insulin sensitivity, reduces fasting blood glucose, ↓ fasting glucose and HbA1c (400 mg/day in humans), and improved insulin sensitivity (20–400 mg/kg in animal models) | [11,18,20,57,61] |
Bitter apple | Cucurbitacins, alkaloids, flavonoids, and phenolic acids | Reduces glycated hemoglobin, improves pancreatic β-cell function, lowers glucose levels, regeneration of β-cells, ↓ glucose (100–300 mg/kg in animals), and ↓ HbA1c in patients (300 mg/day for 2 months) | [21,42,80] |
White mulberry | Chlorogenic acid, gentisic acid, flavonoids (rutin and quercetin), and DNJ | Enhances glucose uptake, improves insulin secretion, reduces oxidative stress, ↓ postprandial glucose (1.2 g/day), inhibits α-glucosidase, and enhances insulin sensitivity and glucose uptake | [22,29,38] |
Harmal-e-shami | Alkaloids and heterocyclic compounds | Variable outcomes regarding its effects on glucose homeostasis, adiponectin hormone, and insulin regulation; DPP-IV inhibition (up to 61%); ↑ GLP-1 secretion; and ↓ blood glucose and HbA1c (ethyl acetate and methanolic extracts) | [30,51,52,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Raish, S.M.; Almasri, R.S.; Bedir, A.S.; Elkahwagy, A.A. Phytochemical Composition, Bioactive Compounds, and Antidiabetic Potential of Four Medicinal Plants Native to the UAE: Capparis spinosa, Citrullus colocynthis, Morus alba, and Rhazya stricta. Biology 2025, 14, 1146. https://doi.org/10.3390/biology14091146
Al Raish SM, Almasri RS, Bedir AS, Elkahwagy AA. Phytochemical Composition, Bioactive Compounds, and Antidiabetic Potential of Four Medicinal Plants Native to the UAE: Capparis spinosa, Citrullus colocynthis, Morus alba, and Rhazya stricta. Biology. 2025; 14(9):1146. https://doi.org/10.3390/biology14091146
Chicago/Turabian StyleAl Raish, Seham M., Razan S. Almasri, Alaa S. Bedir, and Aya A. Elkahwagy. 2025. "Phytochemical Composition, Bioactive Compounds, and Antidiabetic Potential of Four Medicinal Plants Native to the UAE: Capparis spinosa, Citrullus colocynthis, Morus alba, and Rhazya stricta" Biology 14, no. 9: 1146. https://doi.org/10.3390/biology14091146
APA StyleAl Raish, S. M., Almasri, R. S., Bedir, A. S., & Elkahwagy, A. A. (2025). Phytochemical Composition, Bioactive Compounds, and Antidiabetic Potential of Four Medicinal Plants Native to the UAE: Capparis spinosa, Citrullus colocynthis, Morus alba, and Rhazya stricta. Biology, 14(9), 1146. https://doi.org/10.3390/biology14091146