Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Selection Criteria
2.1.1. Data Collection
2.1.2. Inclusion Criteria
2.1.3. Exclusion Criteria
3. Medicinal Plants in the UAE Overview
3.1. Taxonomy and Botanical Classification of Allium cepa and Allium sativum
- ○
- Kingdom: Plantae
- ○
- Clade: Angiosperms
- ○
- Clade: Monocots
- ○
- Order: Asparagales
- ○
- Family: Amaryllidaceae
- ○
- Subfamily: Allioideae
- ○
- Genus: Allium L.
- ○
- Species:
- ▪
- Allium cepa L. (common onion)
- ▪
- Allium sativum L. (garlic)
3.2. Allium cepa
3.3. Allium sativum
4. Overview of Antidiabetic Properties of Medicinal Plants in the UAE
4.1. Allium cepa
4.2. Allium sativum
5. Overview of Cardioprotective Properties of Medicinal Plants in the UAE
5.1. Allium cepa
5.2. Allium sativum
6. Overview of Antibacterial Properties of Medicinal Plants in the UAE
6.1. Allium cepa
6.2. Allium sativum
6.3. Comparative Perspectives on Geographic and Seasonal Variation
7. Sustainability in Pharmaceutical Sciences
8. Enhancement Strategies
8.1. Advanced Extraction and Processing Techniques
8.2. Nanotechnology-Based Approaches
9. Conclusions
10. Future Perspectives
11. Limitations of Existing Studies
- Lack of Large-Scale Human Clinical Trials
- b.
- Standardization Challenges
- c.
- Mechanistic and Pharmacokinetic Gaps
- d.
- Safety and Regulatory Hurdles
Author Contributions
Funding
Conflicts of Interest
References
- Eddouks, M.; Lemhadri, A.; Hebi, M.; EL Hidani, A.; Zeggwagh, N.A.; EL Bouhali, B.; Hajji, L.; Burcelin, R. Capparis Spinosa L. Aqueous Extract Evokes Antidiabetic Effect in Streptozotocin-Induced Diabetic Mice. Avicenna J. Phytomed. 2017, 7, 191–198. [Google Scholar]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A Review on Bioactive Phytochemicals and Ethnopharmacological Potential of Purslane (Portulaca oleracea L.). Heliyon 2022, 8, e08669. [Google Scholar] [CrossRef]
- Al Raish, S.M.; Sourani, O.M.; Abu-Elsaoud, A.M. Plant Growth-Promoting Microorganisms as Biocontrol Agents: Mechanisms, Challenges, and Future Prospects. Appl. Microbiol. 2025, 5, 44. [Google Scholar] [CrossRef]
- EL-Kamali, H.H.; Khalid, S. The Most Common Herbal Remedies in Dongola Province, Northern Sudan. Fitoterapia 1998, 69, 118–121. [Google Scholar]
- Al-Thani, H.; El-Menyar, A.; Consunji, R.; Mekkodathil, A.; Peralta, R.; Allen, K.A.; Hyder, A.A. Epidemiology of Occupational Injuries by Nationality in Qatar: Evidence for Focused Occupational Safety Programmes. Injury 2015, 46, 1806–1813. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Almasri, R.S.; Bedir, A.S.; Ranneh, Y.K.; El-Tarabily, K.A.; Al Raish, S.M. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024, 16, 3848. [Google Scholar] [CrossRef]
- Bisht, R.; Katiyar, A.; Singh, R.; Mittal, P. Antibiotic resistance–A global issue of concern. Asian J. Pharm. Clin. Res. 2009, 2, 34–39. [Google Scholar]
- Hammami, I.; Farjot, G.; Naveau, M.; Rousseaud, A.; Prangé, T.; Katz, I.; Colloc’h, N. Method for the Identification of Potentially Bioactive Argon Binding Sites in Protein Families. J. Chem. Inf. Model. 2022, 62, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- AlBraik, F.A.; Rutter, P.M.; Brown, D. A Cross-Sectional Survey of Herbal Remedy Taking by United Arab Emirate (UAE) Citizens in Abu Dhabi. Pharmacoepidemiol. Drug Saf. 2008, 17, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef] [PubMed]
- Mazrouei, N.A.; Meslamani, A.Z.A.; Alajeel, R.; Alghadban, G.; Ansari, N.; Kaabi, M.A.; Sadeq, A.; Ibrahim, R.; Ibrahim, O.M. The Patterns of Herbal Medicine Use in the United Arab Emirates; A National Study. Pharm. Pract. 2022, 20, 2698. [Google Scholar] [CrossRef]
- Shahid, M.; Singh, R.K.; Thushar, S. Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates. Molecules 2023, 28, 1504. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of Taxol Biosynthesis by Aspergillus terreus, Endophyte of Podocarpus gracilior Pilger, upon Intimate Interaction with the Plant Endogenous Microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- Hussein, E.; Daoud, S.; Alrabaiah, H.; Badawi, R. Exploring Undergraduate Students’ Attitudes towards Emergency Online Learning during COVID-19: A Case from the UAE. Child. Youth Serv. Rev. 2020, 119, 105699. [Google Scholar] [CrossRef]
- Teotia, D.; Agrawal, A.; Goyal, H.; Jain, P.; Singh, V.; Verma, Y.; Perveen, K.; Bukhari, N.A.; Chandra, A.; Malik, V. Pharmacophylogeny of Genus Allium L. J. King Saud Univ.-Sci. 2024, 36, 103330. [Google Scholar] [CrossRef]
- Hassan, M.; Mir, T.A.; Jan, M.; Amjad, M.S.; Aziz, M.A.; Pieroni, A.; Vitasović-Kosić, I.; Bussmann, R.W. Foraging for the Future: Traditional Culinary Uses of Wild Plants in the Western Himalayas–Kashmir Valley (India). J. Ethnobiol. Ethnomedicine 2024, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.K. Fundamentals Of Botany: Vol 2; McGraw-Hill Education (India) Pvt Limited: Columbus, OH, USA, 2010; ISBN 978-0-07-068177-4. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums; CABI: Wallingford, UK, 2008; ISBN 978-1-84593-399-9. [Google Scholar]
- Rabinowitch, H.D.; Thomas, B. Edible Alliums: Botany, Production and Uses; CABI: Wallingford, UK, 2022; ISBN 978-1-78924-997-2. [Google Scholar]
- United Arab Emirates Ministry of Climate Change and Environment Dates for Planting Vegetables & Fruits in the United Arab Emirates 2024. Available online: https://www.moccae.gov.ae/assets/download/56f7a89b/agriculture_calender_page_en.pdf.aspx (accessed on 23 January 2025).
- Chakraborty, A.J.; Uddin, T.M.; Matin Zidan, B.M.R.; Mitra, S.; Das, R.; Nainu, F.; Dhama, K.; Roy, A.; Hossain, M.d.J.; Khusro, A.; et al. Allium cepa: A Treasure of Bioactive Phytochemicals with Prospective Health Benefits. Evid.-Based Complement. Altern. Med. 2022, 2022, 4586318. [Google Scholar] [CrossRef]
- Kumari, N.; Kumar, M.; Radha; Lorenzo, J.M.; Sharma, D.; Puri, S.; Pundir, A.; Dhumal, S.; Bhuyan, D.J.; Jayanthy, G.; et al. Onion and Garlic Polysaccharides: A Review on Extraction, Characterization, Bioactivity, and Modifications. Int. J. Biol. Macromol. 2022, 219, 1047–1061. [Google Scholar] [CrossRef]
- Kianian, F.; Marefati, N.; Boskabady, M.; Ghasemi, S.Z.; Boskabady, M.H. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. Iran. J. Pharm. Res. IJPR 2021, 20, 107. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Samota, M.K.; Sharma, M.; Kaur, K.; Sarita; Yadav, D.K.; Pandey, A.K.; Tak, Y.; Rawat, M.; Thakur, J.; Rani, H. Onion Anthocyanins: Extraction, Stability, Bioavailability, Dietary Effect, and Health Implications. Front. Nutr. 2022, 9, 917617. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Zhao, X.-X.; Lin, F.-J.; Li, H.; Li, H.-B.; Wu, D.-T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.-H.; Gan, R.-Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Ayaz, E.; Alpsoy, H.C. Garlic (Allium sativum) and traditional medicine. Turk. Parazitol. Derg. 2007, 31, 145–149. [Google Scholar]
- Rahman, M.S. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. Int. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Al-Jaber, N.A.; Awaad, A.S.; Moses, J.E. Review on Some Antioxidant Plants Growing in Arab World. J. Saudi Chem. Soc. 2011, 15, 293–307. [Google Scholar] [CrossRef]
- Badal, D.S.; Dwivedi, A.K.; Kumar, V.; Singh, S.; Prakash, A.; Verma, S.; Kumar, J. Effect of Organic Manures and Inorganic Fertilizers on Growth, Yield and Its Attributing Traits in Garlic (Allium sativum L.). J Pharmacogn. Phytochem. 2019, 8, 587–590. [Google Scholar]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Pérez-Rubio, K.G.; Méndez-del Villar, M.; Cortez-Navarrete, M. The Role of Garlic in Metabolic Diseases: A Review. J. Med. Food 2022, 25, 683–694. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, D.D. Investigations on the Biological Activity of Allium sativum Agglutinin (ASA) Isolated from Garlic. Protein Pept. Lett. 2022, 29, 555–566. [Google Scholar] [CrossRef]
- Sanie-Jahromi, F.; Zia, Z.; Afarid, M. A Review on the Effect of Garlic on Diabetes, BDNF, and VEGF as a Potential Treatment for Diabetic Retinopathy. Chin. Med. 2023, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.S.; Lim, J.H.; Kim, M.Y.; Chung, S.; Shin, S.J.; Choi, B.S.; Kim, H.W.; Hwang, S.Y.; Kim, S.W.; Park, C.W.; et al. Anthocyanin-Rich Seoritae Extract Ameliorates Renal Lipotoxicity via Activation of AMP-Activated Protein Kinase in Diabetic Mice. J. Transl. Med. 2015, 13, 203. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, M.; Zhai, X.; Huang, Y.; Khalid, A.; Malik, A.; Shah, P.; Karim, S.; Azhar, S.; Hou, X. Effect of-Gymnema Sylvestre, Citrullus Colocynthis and Artemisia Absinthium on Blood Glucose and Lipid Profile in Diabetic Human. Acta Pol. Pharm. 2015, 72, 981–985. [Google Scholar] [PubMed]
- Refat, M.S.; Hamza, R.Z.; Adam, A.M.A.; Saad, H.A.; Gobouri, A.A.; Al-Harbi, F.S.; Al-Salmi, F.A.; Altalhi, T.; El-Megharbel, S.M. Quercetin/Zinc Complex and Stem Cells: A New Drug Therapy to Ameliorate Glycometabolic Control and Pulmonary Dysfunction in Diabetes Mellitus: Structural Characterization and Genetic Studies. PLoS ONE 2021, 16, e0246265. [Google Scholar] [CrossRef]
- Zu, G.; Sun, K.; Li, L.; Zu, X.; Han, T.; Huang, H. Mechanism of Quercetin Therapeutic Targets for Alzheimer Disease and Type 2 Diabetes Mellitus. Sci. Rep. 2021, 11, 22959. [Google Scholar] [CrossRef] [PubMed]
- Tjokroprawiro, A.; Pikir, B.S.; Budhiarta, A.a.G.; Pranawa; Soewondo, H.; Donosepoetro, M.; Budhianto, F.X.; Wibowo, J.A.; Tanuwidjaja, S.J.; Pangemanan, M.; et al. Metabolic Effects of Onion and Green Beans on Diabetic Patients. Tohoku J. Exp. Med. 1983, 141, 671–676. [Google Scholar] [CrossRef]
- Yedjou, C.G.; Grigsby, J.; Mbemi, A.; Nelson, D.; Mildort, B.; Latinwo, L.; Tchounwou, P.B. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int. J. Mol. Sci. 2023, 24, 9085. [Google Scholar] [CrossRef]
- Kumar, R.; Chhatwal, S.; Arora, S.; Sharma, S.; Singh, J.; Singh, N.; Bhandari, V.; Khurana, A. Antihyperglycemic, Antihyperlipidemic, Anti-Inflammatory and Adenosine Deaminase–Lowering Effects of Garlic in Patients with Type 2 Diabetes Mellitus with Obesity. Diabetes Metab. Syndr. Obes. 2013, 6, 49–56. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Lan, H.; Wang, W. Effect of Garlic Supplement in the Management of Type 2 Diabetes Mellitus (T2DM): A Meta-Analysis of Randomized Controlled Trials. Food Nutr. Res. 2017, 61, 1377571. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, T.; Xia, H.; Yang, Y.; Wang, S. Effects of Garlic on Glucose Parameters and Lipid Profile: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Nutrients 2024, 16, 1692. [Google Scholar] [CrossRef]
- Rohani; Febrina, E.; Wahyuni, I.S.; Levita, J. Pharmacological and Clinical Studies of Medicinal Plants That Inhibit Dipeptidyl Peptidase-IV. Drug Des. Dev. Ther. 2023, 17, 3473–3491. [Google Scholar] [CrossRef]
- Ansari, P.; Samia, J.F.; Khan, J.T.; Rafi, M.R.; Rahman, M.S.; Rahman, A.B.; Abdel-Wahab, Y.H.A.; Seidel, V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023, 15, 3266. [Google Scholar] [CrossRef]
- Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Phytochemicals in Garlic Extract Inhibit Therapeutic Enzyme DPP-4 and Induce Skeletal Muscle Cell Proliferation: A Possible Mechanism of Action to Benefit the Treatment of Diabetes Mellitus. Biomolecules 2020, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Jini, D.; Sharmila, S.; Anitha, A.; Pandian, M.; Rajapaksha, R.M.H. In Vitro and in Silico Studies of Silver Nanoparticles (AgNPs) from Allium sativum against Diabetes. Sci. Rep. 2022, 12, 22109. [Google Scholar] [CrossRef]
- Goldman, I.L.; Kopelberg, M.; Debaene, J.E.; Schwartz, B.S. Antiplatelet Activity in Onion (Allium cepa) Is Sulfur Dependent. Thromb. Haemost. 1996, 76, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Kothari, D.; Lee, W.-D.; Kim, S.-K. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Valookaran, A.F.; Bouchard, J.; Aloud, B.M.; Thandapilly, S.J.; Netticadan, T. Therapeutic Potential of Select Dietary Compounds in the Management of Hypertension and Its Cardiovascular Complications. Molecules 2022, 27, 7222. [Google Scholar] [CrossRef]
- Kharadi, G.; Patel, K.; Purohit, B.; Baxi, S.; Tripathi, C. Evaluation of Cardioprotective Effect of Aqueous Extract of Allium cepa Linn. Bulb on Isoprenaline-Induced Myocardial Injury in Wistar Albino Rats. Res. Pharma. Sci. 2016, 11, 419–427. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Meng, X.; Li, Y.; Zhao, C.-N.; Liu, Q.; Li, H.-B. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017, 9, 857. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Korma, S.A.; Salem, H.M.; Abd El-Mageed, T.A.; Alkafaas, S.S.; Elsalahaty, M.I.; Elkafas, S.S.; Mosa, W.F.A.; Ahmed, A.E.; et al. Garlic Bioactive Substances and Their Therapeutic Applications for Improving Human Health: A Comprehensive Review. Front. Immunol. 2024, 15, 1277074. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Qin, G.; Liang, S.; Yin, J.; Jiang, H.; Liu, M.; Li, X. Therapeutic Potentials of Allicin in Cardiovascular Disease: Advances and Future Directions. Chin. Med. 2024, 19, 93. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; Masciulli, F.; Fraschetti, C.; Filippi, A.; Cesa, S.; Cairone, F.; Gorica, E.; De Leo, M.; Braca, A.; et al. Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart. Nutrients 2021, 13, 2332. [Google Scholar] [CrossRef]
- Karagodin, P.; Sobenin, A.; Orekhov, N. Antiatherosclerotic and Cardioprotective Effects of Time-Released Garlic Powder Pills. Curr. Pharm. Des. 2015, 22, 196–213. [Google Scholar] [CrossRef]
- Bradley, J.M.; Organ, C.L.; Lefer, D.J. Garlic-Derived Organic Polysulfides and Myocardial Protection123. J. Nutr. 2016, 146, 403S–409S. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-Alk(En)Yl Cysteine Sulfoxide Metabolites in the Genus Allium: The Chemistry of Potential Therapeutic Agents. Nat. Prod. Rep. 2005, 22, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Lee, Y.R. Systematic Study on Active Compounds as Antibacterial and Antibiofilm Agent in Aging Onions. J. Food Drug Anal. 2018, 26, 518–528. [Google Scholar] [CrossRef]
- Guillamón, E.; Andreo-Martínez, P.; Mut-Salud, N.; Fonollá, J.; Baños, A. Beneficial Effects of Organosulfur Compounds from Allium cepa on Gut Health: A Systematic Review. Foods 2021, 10, 1680. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.F.; Gheena, S.; Ramani, P.; Rajeshkumar, S.; Ramalingam, K.; Ramasubramanian, A. Assessment of Antimicrobial Activity and Cytotoxic Effect of Nigella Sativa, Syzygium Aromaticum, and Allium cepa Formulation for Use As Antimicrobial Gel or Mouthwash. Cureus 2023, 15, e48549. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, S.; Yong, H.I.; Bae, Y.S.; Kang, S.N.; Kim, I.S.; Jo, C. Improvement of Microbiological Safety and Sensorial Quality of Pork Jerky by Electron Beam Irradiation and by Addition of Onion Peel Extract and Barbecue Flavor. Radiat. Phys. Chem. 2014, 98, 22–28. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium Sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Abidullah, M.; Jadhav, P.; Sujan, S.S.; Shrimanikandan, A.G.; Reddy, C.R.; Wasan, R.K. Potential Antibacterial Efficacy of Garlic Extract on Staphylococcus Aureus, Escherichia Coli, and Klebsiella Pneumoniae: An In Vitro Study. J. Pharm. Bioallied Sci. 2021, 13, S590–S594. [Google Scholar] [CrossRef] [PubMed]
- Ankri, S.; Mirelman, D. Antimicrobial Properties of Allicin from Garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Rajendrasozhan, S. Antioxidant, Antibacterial and Antiviral Effects of the Combination of Ginger and Garlic Extracts. Bioinformation 2024, 20, 11–17. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; Yousef, M.I.; El-Naga, N.I.A. Biochemical Study on the Hypoglycemic Effects of Onion and Garlic in Alloxan-Induced Diabetic Rats. Food Chem. Toxicol. 2005, 43, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Eldin, I.M.T.; Ahmed, E.M.; Abd, E.H.M. Preliminary Study of the Clinical Hypoglycemic Effects of Allium cepa (Red Onion) in Type 1 and Type 2 Diabetic Patients. Environ. Health Insights 2020, 4, EHI.S5540–7. [Google Scholar] [CrossRef] [PubMed]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Ethnopharmacological Review of Medicinal Plants Used to Manage Diabetes in Mo-rocco. Clin. Phytoscience 2020, 6, 18. [Google Scholar] [CrossRef]
- Saleem, S.; Anwar, H.; Iftikhar, A.; Mukhtar, I. Cardioprotective Role of Allium cepa L. Bulb Oil in Isoproterenol-Induced Heart Failure in a Pre-clinical Trial. Nat. Prod. Commun. 2025, 20. [Google Scholar] [CrossRef]
- Nam, H.I.; Fauziah, A.N.; Kim, H.; Jeong, G.; Oh, M.; Jung, S.K.; Kim, J.Y.; Kim, Y.J.; Lee, H.J.; Byun, S. Allium cepa L. (onion) peel alleviates collagen and epinephrine-induced thrombosis in rats. Food Sci. Biotechnol. 2025, 1–8. [Google Scholar] [CrossRef]
- Forooz, R.; Sabokroo, M.; Firouzi, A.; Mahalik, G.; Bouyahya, A.; Amiri-Ardekani, E. Systematic Reviews in Phar-macy | Open Access Journals. Systematic Reviews in Pharmacy 2023, 14, 77–81. [Google Scholar] [CrossRef]
- Saikat, A.S.M.; Hossain, R.; Mina, F.B.; Das, S.; Khan, I.N.; Mubarak, M.S.; Islam, M.T. Antidiabetic Effect of Garlic. Rev. Bras. Farm. 2021, 32, 1–11. [Google Scholar] [CrossRef]
- Sakina, M.Y.; Ahmed, I.Y. Traditional medicinal plants used for the treatment of diabetes in the Sudan: A review. Afr. J. Pharm. Pharmacol. 2018, 12, 27–40. [Google Scholar] [CrossRef]
- García-Villalón, A.; Amor, S.; Monge, L.; Fernández, N.; Prodanov, M.; Muñoz, M.; Inarejos-García, A.; Granado, M. In vitro studies of an aged black garlic extract enriched in S-allylcysteine and polyphenols with cardioprotective effects. J. Funct. Foods 2016, 27, 189–200. [Google Scholar] [CrossRef]
- Oyawoye, O.M.; Olotu, T.M.; Nzekwe, S.C.; Idowu, J.A.; Abdullahi, T.A.; Babatunde, S.O.; Ridwan, I.A.; Batiha, G.E.; Idowu, N.; Alorabi, M.; et al. Antioxidant potential and antibacterial activities of Allium cepa (onion) and Allium sativum (garlic) against the multidrug resistance bacteria. Bull. Natl. Res. Cent. 2022, 46, 1–7. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Nguanchoo, V.; Balslev, H.; Sadgrove, N.J.; Phumthum, M. Medicinal Plants Used by Rural Thai People to Treat Non-Communicable Diseases and Related Symptoms. Heliyon 2023, 9, e12758. [Google Scholar] [CrossRef]
- Elnady, R.E.; Abdon, M.S.; Shaheen, H.R.; Eladawy, R.M.; Azar, Y.O.; Al Raish, S.M. The Future of Alopecia Treatment: Plant Extracts, Nanocarriers, and 3D Bioprinting in Focus. Pharmaceutics 2025, 17, 584. [Google Scholar] [CrossRef]
- Almasri, R.S.; Bedir, A.S.; Al Raish, S.M. Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Nutrients 2025, 17, 411. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Pirintsos, S.; Panagiotopoulos, A.; Bariotakis, M.; Daskalakis, V.; Lionis, C.; Sourvinos, G.; Karakasiliotis, I.; Kampa, M.; Castanas, E. From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules 2022, 27, 4060. [Google Scholar] [CrossRef]
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-Derived Natural Products for Drug Discovery: Current Approaches and Prospects. Nucleus 2022, 65, 399–411. [Google Scholar] [CrossRef]
- Alqaydi, T.K.; Bedir, A.S.; Abu-Elsaoud, A.M.; El-Tarabily, K.A.; Al Raish, S.M. An Assessment of the Knowledge, Attitude, and Practice of Probiotics and Prebiotics among the Population of the United Arab Emirates. Foods 2024, 13, 2219. [Google Scholar] [CrossRef]
- Ranneh, Y.; Bedir, A.S.; Abu-Elsaoud, A.M.; Al Raish, S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024, 16, 4150. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Irianto, I.; Suharmiati, S.; Zaini, A.S.; Zaini, M.A.A.; Airlanngga, B.; Putra, N.R. Sustainable Innovations in Garlic Extraction: A Comprehensive Review and Bibliometric Analysis of Green Extraction Methods. Green Process. Synth. 2025, 14, 20240201. [Google Scholar] [CrossRef]
- Matrix Science Pharma. Available online: https://journals.lww.com/mtsp/fulltext/2023/07030/a_step_toward_sustainability__a_review_of.1.aspx?context=latestarticles (accessed on 9 May 2025).
- Verma, T.; Aggarwal, A.; Dey, P.; Chauhan, A.K.; Rashid, S.; Chen, K.-T.; Sharma, R. Medicinal and Therapeutic Properties of Garlic, Garlic Essential Oil, and Garlic-Based Snack Food: An Updated Review. Front. Nutr. 2023, 10, 1120377. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; AL-Huqail, A.A.; Ali, E.; Alkhalifah, T.; Alturise, F.; Ali, H.E. Green Synthesis of Fe3O4 Nanoparticles Using Alliaceae Waste (Allium sativum) for a Sustainable Landscape Enhancement Using Support Vector Regression. Chemosphere 2023, 334, 138638. [Google Scholar] [CrossRef] [PubMed]
- Krstin, S.; Sobeh, M.; Braun, M.S.; Wink, M. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. Brucei Leishmania Tarentolae. Med. 2018, 5, 37. [Google Scholar] [CrossRef]
- Marefati, N.; Ghorani, V.; Shakeri, F.; Boskabady, M.; Kianian, F.; Rezaee, R.; Boskabady, M.H. A Review of Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects of Allium cepa and Its Main Constituents. Pharm. Biol. 2021, 59, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Mesmar, A.K.; Albedwawi, S.T.; Alsalami, A.K.; Alshemeili, A.R.; Abu-Elsaoud, A.M.; El-Tarabily, K.A.; Al Raish, S.M. The Effect of Recycled Spent Coffee Grounds Fertilizer, Vermicompost, and Chemical Fertilizers on the Growth and Soil Quality of Red Radish (Raphanus sativus) in the United Arab Emirates: A Sustainability Perspective. Foods 2024, 13, 1997. [Google Scholar] [CrossRef] [PubMed]
- Almaramah, S.B.; Abu-Elsaoud, A.M.; Alteneiji, W.A.; Albedwawi, S.T.; El-Tarabily, K.A.; Al Raish, S.M. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods 2024, 13, 1608. [Google Scholar] [CrossRef]
- Ismil, R.; Ali Besar, N. Therapeutic, Cosmetic, and Agricultural Applications of Allium sativum L. (Garlic) and Allium cepa L. (Onion): A Review. Egypt. J. Bot. 2025, 65, 303–310. [Google Scholar] [CrossRef]
- Pączka, G.; Mazur-Pączka, A.; Garczyńska, M.; Kostecka, J.; Butt, K.R. Garlic (Allium sativum L.) Cultivation Using Vermicompost-Amended Soil as an Aspect of Sustainable Plant Production. Sustainability 2021, 13, 13557. [Google Scholar] [CrossRef]
- Suarda, A.; Kamaluddin, A.; Astati; Quriawan, A. The Sustainability Analysis of Allium cepa Conventional Farming Using Multi-Dimensional Scaling in Jeneponto, South Sulawesi, Indonesia. EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/gcd:179390130?sid=ebsco:plink:crawler&id=ebsco:gcd:179390130 (accessed on 9 May 2025).
- Ochar, K.; Kim, S.-H. Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants 2023, 12, 3294. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Lim, J.W.; Rawindran, H.; Ho, Y.C.; Tan, I.S.; Kansedo, J.; Lim, S.; Cheng, Y.W.; Raza Naqvi, S. Enhancing High-Density Microalgae Cultivation via Exogenous Supplementation of Biostimulant Derived from Onion Peel Waste for Sustainable Biodiesel Production. J. Environ. Manag. 2024, 359, 120988. [Google Scholar] [CrossRef] [PubMed]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Carrera, C.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Flavonol Composition and Antioxidant Activity of Onions (Allium cepa L.) Based Dev. New Anal. Ultrasound Assist. Extr. Methods. Antioxid. 2021, 10, 273. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Liang, J.-Y.; Jiang, S.-Y.; Zhao, P.; Tao, F.; Li, J.; Li, X.-X.; Zhao, D.-S. Garlic Polysaccharides: A Review on Their Extraction, Isolation, Structural Characteristics, and Bioactivities. Carbohydr. Res. 2022, 518, 108599. [Google Scholar] [CrossRef]
- Krstić, M.; Teslić, N.; Bošković, P.; Obradović, D.; Zeković, Z.; Milić, A.; Pavlić, B. Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction. Molecules 2023, 28, 369. [Google Scholar] [CrossRef]
- Višnjevec, A.M.; Barp, L.; Lucci, P.; Moret, S. Pressurized Liquid Extraction for the Determination of Bioactive Compounds in Plants with Emphasis on Phenolics. TrAC Trends Anal. Chem. 2024, 173, 117620. [Google Scholar] [CrossRef]
- Jiménez-Amezcua, I.; Soria, A.C.; Díez-Municio, M.; Sanz, M.L.; Ruiz-Matute, A.I. Evaluation of Advanced Extraction Techniques to Obtain Bioactive Enriched Extracts from Garlic (Allium sativum L.) by-Products. J. Agric. Food Res. 2025, 20, 101782. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Extraction of Antioxidant Compounds from Onion Bulb (Allium cepa L.) Using Individual and Simultaneous Microwave-Assisted Extraction Methods. Antioxidants 2022, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Samad, N.A.; Alitheen, N.B. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int. J. Nanomed. 2020, 15, 2439–2483. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, A.R.; Borse, S.L. A Comprehensive Review on Garlic Oil as an Anti-Inflammatory Nanoemulsion. Available online: http://www.eurekaselect.com (accessed on 23 January 2025).
- El-Demerdash, A.S.; Orady, R.M.; Matter, A.A.; Ebrahem, A.F. An Alternative Approach Using Nano-Garlic Emulsion and Its Synergy with Antibiotics for Controlling Biofilm-Producing Multidrug-Resistant Salmonella in Chicken. Indian J. Microbiol. 2023, 63, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Chen, Z.; Pang, L.; Wang, L.; Jiang, H.; Chen, Y.; Zhang, Z.; Fu, C.; Ren, B.; Zhang, J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int. J. Nanomed. 2020, 15, 10215–10240. [Google Scholar] [CrossRef]
- Chowdhury, M.A.S.; Islam, M.M.; Jamal, M. Green Synthesis of Nickel Oxide Nanoparticles Using Allium cepa Stalks and Investigation of Their Antibacterial Activity. Results Chem. 2025, 16, 102328. [Google Scholar] [CrossRef]
- Razaq, A.S.A.; Ahmed, S.H. A Study of the Effect of Using a Water-Alcoholic and Nano-Based Onion Extract Against Some Pathogenic Microbes That Cause Food Spoilage. J. Nanostruct. 2024, 14, 1280–1286. [Google Scholar]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N.; et al. Onion (Allium cepa L.) Peel: A Review on the Extraction of Bioactive Compounds, Its Antioxidant Potential, and Its Application as a Functional Food Ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef]
- Cai, R.; Chen, C.; Li, Y.; Sun, K.; Zhou, F.; Chen, K.; Jia, H. Improved Soluble Bacterial Expression and Properties of the Recombinant Flavonoid Glucosyltransferase UGT73G1 from Allium cepa. J. Biotechnol. 2017, 255, 9–15. [Google Scholar] [CrossRef]
- Haghi, A.; Azimi, H.; Rahimi, R.A. Comprehensive Review on Pharmacotherapeutics of Three Phytochemicals, Curcumin, Quercetin, and Allicin, in the Treatment of Gastric Cancer. J. Gastrointest. Canc. 2017, 48, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Chauthe, S.K.; Rajyaguru, S.; Puranik, A.; Yadao, N.; Rathod, K. Quality Challenge in Regulatory Approval of Medicinal Products Containing Combinations of Herbal Substances. In Formulating Pharma-, Nutra-, and Cosmeceutical Products from Herbal Substances; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2025; pp. 677–702. ISBN 978-1-119-76948-4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedir, A.S.; Almasri, R.S.; Azar, Y.O.; Elnady, R.E.; Al Raish, S.M. Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization. Biology 2025, 14, 1088. https://doi.org/10.3390/biology14081088
Bedir AS, Almasri RS, Azar YO, Elnady RE, Al Raish SM. Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization. Biology. 2025; 14(8):1088. https://doi.org/10.3390/biology14081088
Chicago/Turabian StyleBedir, Alaa S., Razan S. Almasri, Yasmena O. Azar, Rana E. Elnady, and Seham M. Al Raish. 2025. "Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization" Biology 14, no. 8: 1088. https://doi.org/10.3390/biology14081088
APA StyleBedir, A. S., Almasri, R. S., Azar, Y. O., Elnady, R. E., & Al Raish, S. M. (2025). Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization. Biology, 14(8), 1088. https://doi.org/10.3390/biology14081088