Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications
Simple Summary
Abstract
1. Introduction
2. Diversity and Composition of Molluscan Microbiomes
2.1. Gastropods
2.2. Bivalves
2.3. Cephalopods
2.4. Tissue-Specific Microbiomes
2.5. Core Microbiota and Host Specificity
3. Environmental and Host-Related Drivers of Microbiome Structure
3.1. Temperature, Oxygen, and pH
3.2. Host’s Diet and Development
3.3. Habitat and Microhabitat Differences
3.4. Genetic and Species-Level Filters
4. Functional Contributions of the Molluscan Microbiome
4.1. Taxon-Specific Functional Roles in Molluscan Metabolism
4.2. Digestion, Metabolism, and Nutrient Cycling
4.3. Immune Modulation and Pathogen Defense
4.4. Sulfur/Nitrogen Cycling and Toxin Handling
4.5. Functional Redundancy and Stability
5. Applications in Aquaculture, Conservation, and Environmental Monitoring
5.1. Health Monitoring and Bioindicators
5.2. ARGs, Food Safety, and Microbiome Manipulation
5.3. Probiotics, Biomarkers, and Sustainable Aquaculture
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, D.; Hong, J.; Sanogo, B.; Du, S.; Xiang, S.; Hui, J.H.-L.; Ding, T.; Wu, Z.; Sun, X. Core gut microbes Cloacibacterium and Aeromonas associated with different gastropod species could be persistently transmitted across multiple generations. Microbiome 2023, 11, 267. [Google Scholar] [CrossRef]
- Kang, W.; Kim, P.S.; Tak, E.J.; Sung, H.; Shin, N.-R.; Hyun, D.-W.; Whon, T.W.; Kim, H.S.; Lee, J.-Y.; Yun, J.-H.; et al. Host phylogeny, habitat, and diet are main drivers of the cephalopod and mollusk gut microbiome. Anim. Microbiome 2022, 4, 30. [Google Scholar] [CrossRef]
- Masanja, F.; Yang, K.; Xu, Y.; He, G.; Liu, X.; Xu, X.; Jiang, X.; Luo, X.; Mkuye, R.; Deng, Y.; et al. Bivalves and microbes: A mini-review of their relationship and potential implications for human health in a rapidly warming ocean. Front. Mar. Sci. 2023, 10, 1182438. [Google Scholar] [CrossRef]
- Khan, F.U.; Shang, Y.; Chang, X.; Kong, H.; Zuberi, A.; Fang, J.K.; Liu, W.; Peng, J.; Zhang, X.; Hu, M.; et al. Effects of ocean acidification, hypoxia, and warming on the gut microbiota of the thick shell mussel Mytilus coruscus through 16S rRNA gene sequencing. Front. Mar. Sci. 2021, 8, 736338. [Google Scholar] [CrossRef]
- Black, E.M.; Chimenti, M.S.; Just, C.L. Metagenomic analysis of nitrogen-cycling genes in Upper Mississippi River sediment with mussel assemblages. Microbiologyopen 2018, 8, e739. [Google Scholar] [CrossRef] [PubMed]
- Cutarelli, A.; Carella, F.; Falco, F.D.; Cuccaro, B.; Nocera, F.D.; Nava, D.; Vico, G.D.; Roperto, S. Detection and quantification of Nocardia crassostreae, an emerging pathogen, in Mytilus galloprovincialis in the Mediterranean Sea using droplet digital PCR. Pathogens 2023, 12, 994. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bossche, T.; Armengaud, J.; Benndorf, D.; Blakeley-Ruiz, J.A.; Brauer, M.; Cheng, K.; Creskey, M.; Figeys, D.; Grenga, L.; Griffin, T.J. The microbiologist’s guide to metaproteomics. iMeta 2025, 4, e70031. [Google Scholar] [CrossRef] [PubMed]
- Hampel, J.J.; Moseley, R.D.; Hamdan, L.J. Microbiomes respond predictably to built habitats on the seafloor. Mol. Ecol. 2022, 32, 6686–6695. [Google Scholar] [CrossRef]
- Li, P.; Hong, J.; Wu, M.; Yuan, Z.; Li, D.; Wu, Z.; Sun, X.; Lin, D. Metagenomic analysis reveals variations in gut microbiomes of the Schistosoma mansoni-transmitting snails Biomphalaria straminea and Biomphalaria glabrata. Microorganisms 2023, 11, 2419. [Google Scholar] [CrossRef]
- Hu, Z.; Tong, Q.; Chang, J.; Xu, J.; Wu, B.; Han, Y.; Yu, J.; Niu, H. Host species of freshwater snails within the same freshwater ecosystem shapes the intestinal microbiome. Front. Ecol. Evol. 2024, 12, 1341359. [Google Scholar] [CrossRef]
- Sehnal, L.; Brammer-Robbins, E.; Wormington, A.M.; Blaha, L.; Bisesi, J.; Larkin, I.; Martyniuk, C.J.; Simonin, M.; Adamovsky, O. Microbiome composition and function in aquatic vertebrates: Small organisms making big impacts on aquatic animal health. Front. Microbiol. 2021, 12, 567408. [Google Scholar] [CrossRef]
- Apostolou, K.; Radea, C.; Meziti, A.; Kormas, K. Bacterial diversity associated with terrestrial and aquatic snails. Microorganisms 2024, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Han, Q. Macrobenthic indicator species: From concept to practical applications in marine ecology. Glob. Ecol. Conserv. 2024, 55, e03262. [Google Scholar] [CrossRef]
- Perveen, N.; Cabezas-Cruz, A.; Iliashevich, D.; Abuin-Denis, L.; Sparagano, O.; Willingham, A.L. Microbiome of Hyalomma dromedarii (Ixodida: Ixodidae) ticks: Variation in community structure with regard to sex and host habitat. Insects 2024, 16, 11. [Google Scholar] [CrossRef]
- Darrigran, G.; Belz, C.E.; Carranza, A.; Collado, G.A.; Correoso, M.; Fabres, A.A.; Gregoric, D.E.G.; Lodeiros, C.; Pastorino, G.; Penchaszadeh, P.E.; et al. What do we know about non-native, invasive, and transplanted aquatic mollusks in South America? Biology 2025, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Higgins, E.; Parr, T.B.; Vaughn, C.C. Mussels and local conditions interact to influence microbial communities in mussel beds. Front. Microbiol. 2022, 12, 790554. [Google Scholar] [CrossRef]
- Joynson, R.; Pritchard, L.; Osemwekha, E.; Ferry, N. Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes. Front. Microbiol. 2017, 8, 2181. [Google Scholar] [CrossRef]
- Li, P.; Hong, J.; Yuan, Z.; Huang, Y.; Wu, M.; Ding, T.; Wu, Z.; Sun, X.; Lin, D. Gut microbiota in parasite-transmitting gastropods. Infect. Dis. Poverty 2023, 12, 89. [Google Scholar] [CrossRef]
- Chalifour, B.; Li, J.; Elder, L.E. Gut microbiome of century-old snail specimens stable across time in preservation. Microbiome 2022, 10, 99. [Google Scholar] [CrossRef]
- Olu, K.; Decker, C.; Pastor, L.C.; Caprais, J.C.; Khripounoff, A.; Morineaux, M.; Baziz, M.A.; Menot, L.; Rabouille, C. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 142, 180–196. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Chen, C.; Zhou, Y.; Van Dover, C.L.; Wang, C.; Qiu, J.W.; Qian, P.Y. Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail. Anim. Microbiome 2022, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Palladino, G.; Rampelli, S.; Scicchitano, D.; Musella, M.; Quero, G.M.; Prada, F.; Mancuso, A.; Seyfarth, A.M.; Turroni, S.; Candela, M.; et al. Impact of marine aquaculture on the microbiome associated with nearby holobionts: The case of Patella caerulea living in proximity of sea bream aquaculture cages. Microorganisms 2021, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Louvado, A.; Galhano, V.; Lima, F.B.d.; Cleary, D.F.R.; Lopes, I.; Gomes, N.C.M.; Francisco, J.R.C.C. Effects of reduced seawater pH and oil contamination on bacterial communities and biochemical markers of estuarine animal hosts. Environments 2024, 11, 37. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Zając, K.; Bartoszek, K.; Madanecki, P.; Kur, J.; Zając, T. 16S rRNA gene-based metagenomic analysis of the gut microbial community associated with the DUI species Unio crassus (Bivalvia: Unionidae). J. Zool. Syst. Evol. Res. 2020, 58, 615–623. [Google Scholar] [CrossRef]
- Gignoux-Wolfsohn, S.; Ruiz, M.G.; Barron, D.P.; Ruiz, G.M.; Lohan, K.M.P. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024, 12, e18082. [Google Scholar] [CrossRef]
- Neu, A.T.; Hughes, I.V.; Allen, E.E.; Roy, K. Decade-scale stability and change in a marine bivalve microbiome. Mol. Ecol. 2021, 30, 1237–1250. [Google Scholar] [CrossRef]
- Hines, I.S.; Madanick, J.M.; Smith, S.A.; Kuhn, D.D.; Stevens, A.M. Analysis of the core bacterial community associated with consumer-ready eastern oysters (Crassostrea virginica). PLoS ONE 2023, 18, e0281747. [Google Scholar] [CrossRef]
- Pimentel, Z.T.; Dufault-Thompson, K.; Russo, K.T.; Scro, A.K.; Smolowitz, R.; Gomez-Chiarri, M.; Zhang, Y. Microbiome analysis reveals diversity and function of Mollicutes associated with the eastern oyster, Crassostrea virginica. mSphere 2021, 6, e00227-21. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xu, J.; Ding, W.-Y.; Shao, A.; Zhu, Y.-T.; Wang, C.; Liang, X.; Yang, J.-L. Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus. Sci. Rep. 2019, 9, 16684. [Google Scholar] [CrossRef]
- Unzueta-Martínez, A.; Downey-Wall, A.M.; Cameron, L.P.; Ries, J.B.; Lotterhos, K.E.; Bowen, J.L. Ocean acidification alters the diversity and structure of oyster-associated microbial communities. Limnol. Oceanogr. Lett. 2021, 6, 348–359. [Google Scholar] [CrossRef]
- Cheikh, Y.B.; Massol, F.; Giusti-Petrucciani, N.; Travers, M.A. Impact of epizootics on mussel farms: Insights into microbiota composition of Mytilus species. Microbiol. Res. 2024, 280, 127593. [Google Scholar]
- Vijayan, N.; McAnulty, S.J.; Sánchez, G.; Jolly, J.; Ikeda, Y.; Nishiguchi, M.K.; Réveillac, É.; Gestal, C.; Spady, B.L.; Li, D.H.; et al. Evolutionary history influences the microbiomes of a female symbiotic reproductive organ in cephalopods. Appl. Environ. Microbiol. 2024, e00990-23. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Barreto, D.; Sanz-González, J.C.; Martín, M.V.; Arrieta, J.M.; Almansa, E. Sex-specific bacterial microbiome variation in Octopus vulgaris skin. Front. Microbiol. 2024, 14, 1233661. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, Z.A.; Prowse, T.A.A.; Arkhipkin, A.I.; Pierce, G.J.; Semmens, J.M.; Steer, M.; Leporati, S.C.; Lourenço, S.; Quetglas, A.; Sauer, W.H.H.; et al. Global proliferation of cephalopods. Curr. Biol. 2016, 26, R406–R407. [Google Scholar] [CrossRef]
- Merten, V.; Bayer, T.; Reusch, T.B.H.; Puebla, O.; Fuß, J.; Stefanschitz, J.; Lischka, A.; Hauss, H.; Neitzel, P.; Piatkowski, U.; et al. An integrative assessment combining deep-sea net sampling, in situ observations and environmental DNA analysis identifies Cabo Verde as a cephalopod biodiversity hotspot in the Atlantic Ocean. Front. Mar. Sci. 2021, 8, 760108. [Google Scholar] [CrossRef]
- Minakata, H. Oxytocin/vasopressin and gonadotropin-releasing hormone from cephalopods to vertebrates. Ann. N. Y. Acad. Sci. 2010, 1200, 33–42. [Google Scholar] [CrossRef]
- Valdes, A.M.; Louca, P.; Visconti, A.; Asnicar, F.; Bermingham, K.; Nogal, A.; Wong, K.E.; Michelotti, G.; Wolf, J.; Segata, N.; et al. Vitamin A carotenoids, but not retinoids, mediate the impact of a healthy diet on gut microbial diversity. BMC Med. 2024, 22, 343. [Google Scholar] [CrossRef]
- Lokmer, A.; Wegner, K.M. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 2015, 9, 670–682. [Google Scholar] [CrossRef]
- Climent, E.; Martínez-Blanch, J.F.; Llobregat, L.; Ruzafa-Costas, B.; Carrión-Gutiérrez, M.A.; Ramírez-Boscá, A.; Prieto-Merino, D.; Genovés, S.; Codoñer, F.M.; Ramón, D.; et al. Changes in gut microbiota correlate with response to treatment with probiotics in patients with atopic dermatitis: A post hoc analysis of a clinical trial. Microorganisms 2021, 9, 854. [Google Scholar] [CrossRef]
- Neave, M.J.; Michell, C.T.; Apprill, A.; Voolstra, C.R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 2017, 7, 40579. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Cram, J.A.; Needham, D.M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 2015, 13, 133–146. [Google Scholar] [CrossRef]
- Lutz, H.L.; Ramírez-Puebla, S.T.; Abbo, L.; Durand, A.; Schlundt, C.; Gottel, N.; Sjaarda, A.; Hanlon, R.T.; Gilbert, J.A.; Welch, J.L.M. A simple microbiome in the European common cuttlefish, Sepia officinalis. mSystems 2019, 4, e00177-19. [Google Scholar] [CrossRef]
- Speers-Roesch, B.; Callaghan, N.I.; MacCormack, T.J.; Lamarre, S.G.; Sykes, A.V.; Driedzic, W.R. Enzymatic capacities of metabolic fuel use in cuttlefish (Sepia officinalis) and responses to food deprivation: Insight into the metabolic organization and starvation survival strategy of cephalopods. J. Comp. Physiol. B 2016, 186, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.S.; Kwon, J.Y.; Son, K.T.; Choi, W.S.; Shim, K.B.; Lee, T.S.; Kim, J.H. Distribution of heavy metals in muscles and internal organs of Korean cephalopods and crustaceans: Risk assessment for human health. J. Food Prot. 2014, 77, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Rjeibi, M.; Métian, M.; Hajji, T.; Guyot, T.; Chaouacha-Chekir, R.B.; Bustamante, P. Seasonal survey of contaminants (Cd and Hg) and micronutrients (Cu and Zn) in edible tissues of cephalopods from Tunisia: Assessment of risk and nutritional benefits. J. Food Sci. 2014, 80, T1120–T1130. [Google Scholar] [CrossRef]
- Rossbach, S.; Cardenas, A.; Perna, G.; Duarte, C.M.; Voolstra, C.R. Tissue-specific microbiomes of the Red Sea giant clam Tridacna maxima highlight differential abundance of Endozoicomonadaceae. Front. Microbiol. 2019, 10, 2661. [Google Scholar] [CrossRef]
- Ruiz, A.; Sanahuja, I.; Torrecillas, S.; Gisbert, E. Anatomical site and environmental exposure differentially shape the microbiota across mucosal tissues in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2025, 15, 25653. [Google Scholar] [CrossRef]
- Xie, C.; Han, Y.; Dong, M.; Zhang, Y.; Song, H.; Huang, H.; Zhang, H.; Liu, Y.; Wei, L.; Wang, X. Analysis of microbial communities on the coloured mantle surface of three common bivalves. Aquac. Rep. 2024, 37, 102220. [Google Scholar] [CrossRef]
- Ernest, N.; Russell, L.M. Diversity and predicted function of gut microbes from two species of viviparid snails. Freshw. Mollusk Biol. Conserv. 2021, 24, 104–113. [Google Scholar] [CrossRef]
- Costas-Imbernón, D.; Costas-Prado, C.; Sequeiro, T.; Touriñán, P.; Garcia-Fernandez, P.; Tur, R.; Chavarrías, D.; Saura, M.; Rotllant, J. The skin microbiome as a new potential biomarker in the domestication and welfare of Octopus vulgaris. Front. Mar. Sci. 2024, 11, 1435217. [Google Scholar] [CrossRef]
- Griffin, T.W.; Darsan, M.A.; Collins, H.I.; Holohan, B.A.; Pierce, M.L.; Ward, J.E. A multi-study analysis of gut microbiome data from the blue mussel (Mytilus edulis) emphasises the impact of depuration on biological interpretation. Environ. Microbiol. 2023, 25, 3435–3449. [Google Scholar] [CrossRef]
- Britt, A.; Bernini, M.; McSweeney, B.; Dalapati, S.; Duchin, S.; Cavanna, K.; Santos, N.; Donovan, G.; O’Byrne, K.; Noyes, S.; et al. The effects of atrazine on the microbiome of the eastern oyster: Crassostrea virginica. Sci. Rep. 2020, 10, 10716. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, H.; Gao, J.; Wan, L.; Jiao, Y.; Wang, H.; Liao, M.; Cuthbert, R.N. Nanoplastics elicit stage-specific physiological, biochemical, and gut microbiome responses in a freshwater mussel. Toxics 2025, 13, 374. [Google Scholar] [CrossRef]
- Akter, S.; Wos-Oxley, M.L.; Catalano, S.R.; Hassan, M.M.; Li, X.; Qin, J.G.; Oxley, A.P.A. Host species and environment shape the gut microbiota of cohabiting marine bivalves. Microb. Ecol. 2023, 86, 1755–1772. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jiang, Q.; Xue, Q.; Lin, Z.H.; Dai, W. Effect of alternating salinity stress on the gut microbiota of razor clam Sinonovacula constricta. Front. Mar. Sci. 2024, 11, 1500347. [Google Scholar] [CrossRef]
- McCauley, M.; Chiarello, M.; Atkinson, C.L.; Jackson, C.R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 2021, 9, 411. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, E.A.; Atkinson, C.L.; Jackson, C.R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 2019, 14, e0224796. [Google Scholar] [CrossRef]
- Musella, M.; Wathsala, R.; Tavella, T.; Rampelli, S.; Barone, M.; Palladino, G.; Biagi, E.; Brigidi, P.; Turroni, S.; Franzellitti, S.; et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 2020, 717, 137209. [Google Scholar] [CrossRef]
- Baharuddin, N.; Satyanarayana, B. Diversity and abundance of mangrove gastropods in Setiu Wetlands and Matang Mangrove Forest Reserve, Peninsular Malaysia. Ilmu Kelaut. Indones. J. Mar. Sci. 2024, 2, 425–432. [Google Scholar] [CrossRef]
- Henderson, B.; Glamore, W. Mangrove extent reflects estuarine typology and lifecycle events. Estuar. Coast. Shelf Sci. 2024, 304, 108813. [Google Scholar] [CrossRef]
- Clemente, S.; Ingole, B. Recruitment of mud clam Polymesoda erosa (Solander, 1876) in a mangrove habitat of Chorao Island, Goa. Braz. J. Oceanogr. 2011, 59, 153–162. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, F.; Chen, Q.; Chen, Y.; Zhang, J.; Guo, J.; Zhang, S.; Zhang, C. More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front. Microbiol. 2024, 15, 1394463. [Google Scholar] [CrossRef] [PubMed]
- Scanes, E.; Parker, L.M.; Seymour, J.R.; Siboni, N.; King, W.L.; Danckert, N.P.; Wegner, K.M.; Dove, M.C.; O’Connor, W.A.; Ross, P.M. Climate change alters the haemolymph microbiome of oysters. Mar. Pollut. Bull. 2021, 164, 111991. [Google Scholar] [CrossRef] [PubMed]
- Kong, N.; Han, S.; Fu, Q.; Yu, Z.; Wang, L.; Song, L. Impact of ocean acidification on the intestinal microflora of the Pacific oyster Crassostrea gigas. Aquaculture 2022, 546, 737365. [Google Scholar] [CrossRef]
- McCann, P.; McFarland, C.; Megaw, J.; Siu-Ting, K.; Cantacessi, C.; Rinaldi, G.; Gobert, G. Assessing the microbiota of the snail intermediate host of trematodes, Galba truncatula. Parasites Vectors 2024, 17, 181. [Google Scholar] [CrossRef]
- Li, Y.; Yang, N.; Liang, X.; Yoshida, A.; Osatomi, K.; Power, D.M.; Batista, F.M.; Yang, J.-L. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front. Physiol. 2018, 9, 839. [Google Scholar] [CrossRef]
- Bewick, S.; Camper, B.T. Phylogenetic measures of the core microbiome. bioRxiv, 2024; submitted. [Google Scholar] [CrossRef]
- Ruff, S.E.; de Angelis, I.H.; Mullis, M.M.; Payet, J.P.; Magnabosco, C.; Lloyd, K.G.; Sheik, C.S.; Steen, A.D.; Shipunova, A.; Morozov, A.; et al. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. Sci. Adv. 2024, 10, eadq0645. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.; Zhou, H.; Zhou, X.; Xia, Y.; Dong, X.; Zhong, W.; Tang, S.; Wang, L.; Wen, S.; et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front. Microbiol. 2018, 9, 530. [Google Scholar] [CrossRef]
- Guo-feng, D.; Li, L. Deciphering the mechanism of jujube vinegar on hyperlipoidemia through gut microbiome based on 16S rRNA, BugBase analysis, and the STAMP analysis of KEGG. Front. Nutr. 2023, 10, 1160069. [Google Scholar]
- Rocca, J.D.; Simonin, M.; Blaszczak, J.R.; Ernakovich, J.G.; Gibbons, S.M.; Midani, F.S.; Washburne, A. The Microbiome Stress Project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 2019, 9, 3272. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Hasinika, K.A.H.G.; Hjort, C.K.; Ponton, F.; Encinas-Viso, F.; Paulsen, I.T.; Dudaniec, R.Y. Landscape-wide metabarcoding of the invasive bumblebee (Bombus terrestris) shows interactions among the gut microbiome and pollenbiome. bioRxiv, 2024; submitted. [Google Scholar] [CrossRef]
- Wietz, M.; Bienhold, C.; Metfies, K.; Torres-Valdés, S.; van Appen, W.J.; Salter, I.; Boëtius, A. The polar night shift: Seasonal dynamics and drivers of Arctic Ocean microbiomes revealed by autonomous sampling. ISME Commun. 2021, 1, 74. [Google Scholar] [CrossRef]
- Li, L.; Ma, Z. Species sorting and neutral theory analyses reveal archaeal and bacterial communities are assembled differently in hot springs. Front. Bioeng. Biotechnol. 2020, 8, 464. [Google Scholar] [CrossRef]
- Stevick, R.J.; Post, A.F.; Gomez-Chiarri, M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim. Microbiome 2021, 3, 5. [Google Scholar] [CrossRef]
- Michl, S.C.; Ratten, J.-M.; Beyer, M.; Hasler, M.; LaRoche, J.; Schulz, C. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLoS ONE 2017, 12, e0177735. [Google Scholar] [CrossRef]
- Shoji, M.; Sasaki, Y.; Abe, Y.; Nishise, S.; Yaoita, T.; Yagi, M.; Mizumoto, N.; Kon, T.; Onozato, Y.; Sakai, T.; et al. Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH Open 2021, 5, 498–507. [Google Scholar] [CrossRef]
- Brennan, P.A.; Dunlop, A.L.; Smith, A.K.; Kramer, M.R.; Mullé, J.G.; Corwin, E.J. Protocol for the Emory University African American Maternal Stress and Infant Gut Microbiome Cohort Study. BMC Pediatr. 2019, 19, 354. [Google Scholar] [CrossRef]
- Mathai, P.P.; Bertram, J.H.; Padhi, S.K.; Singh, V.; Tolo, I.E.; Primus, A.; Mor, S.K.; Phelps, N.B.D.; Sadowsky, M.J. Influence of environmental stressors on the microbiota of zebra mussels (Dreissena polymorpha). Microb. Ecol. 2020, 81, 1042–1053. [Google Scholar] [CrossRef]
- Zupičić, I.G.; Oraić, D.; Arzul, I.; Canier, L.; Noyer, M.; Chollet, B.; Zrnčić, S. Detection of Minchinia mytili DNA in mussels (Mytilus galloprovincialis) after a mass mortality event in the Adriatic Sea. Vet. Stanica 2023, 55, 345–356. [Google Scholar] [CrossRef]
- Weigel, B.L.; Erwin, P.M. Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila. Sci. Rep. 2017, 7, 43247. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Zhang, S.; Lyu, Y.; Zou, Y.; Li, J. DNA enrichment methods for microbial symbionts in marine bivalves. Microorganisms 2022, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Prestes, J.G.; Carneiro, L.; Miiller, N.O.R.; Neundorf, A.K.A.; Pedroso, C.R.; Braga, R.R.; Sousa, R.; Vitule, J.R.S. A systematic review of invasive non-native freshwater bivalves. Biol. Rev. 2024, 99, 2082–2107. [Google Scholar] [CrossRef] [PubMed]
- Lücker, S. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in Upper Mississippi River sediment. PeerJ 2017, 5, e3536. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, J.; Chen, Y.; Ding, W.-Y.; Shao, A.; Liang, X.; Zhu, Y.-T.; Yang, J.-L. Characterization of gut microbiome in the mussel Mytilus galloprovincialis in response to thermal stress. Front. Physiol. 2019, 10, 1086. [Google Scholar] [CrossRef]
- De Lorgeril, J.; Lucasson, A.; Petton, B.; Toulza, E.; Montagnani, C.; Clerissi, C.; Vidal-Dupiol, J.; Chaparro, C.; Galinier, R.; Escoubas, J.-M. Immune suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nat. Commun. 2018, 9, 4215. [Google Scholar] [CrossRef]
- Lynch, J.; Tang, K.; Priya, S.; Sands, J.; Sands, M.; Tang, E.; Mukherjee, S.; Knights, D.; Blekhman, R. HOMINID: A framework for identifying associations between host genetic variation and microbiome composition. GigaScience 2017, 6, gix107. [Google Scholar] [CrossRef]
- Sutherland, J.; Bell, T.H.; Bonos, S.A.; Tkach, C.; Hansen, J.; Crawford, R.; Carlson, J.E.; Lasky, J.R. Bacterial assembly in the switchgrass rhizosphere is shaped by phylogeny, host genotype, and growing site. Phytobiomes J. 2025. [CrossRef]
- Dvergedal, H.; Sandve, S.R.; Angell, I.L.; Klemetsdal, G.; Rudi, K. Association of gut microbiota with metabolism in juvenile Atlantic salmon. Microbiome 2020, 8, 99. [Google Scholar] [CrossRef]
- Sales, N.G.; Kaizer, M.d.C.; Browett, S.D.; Gabriel, S.I.; McDevitt, A.D. Assessing the gut microbiome and the influence of host genetics on a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus). Environ. DNA 2024, 6, e559. [Google Scholar] [CrossRef]
- Ahern, O.M.; Whittaker, K.; Williams, T.C.; Hunt, D.E.; Rynearson, T.A. Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc. Natl. Acad. Sci. USA 2021, 118, e2105207118. [Google Scholar] [CrossRef]
- Lopez-Anido, R.N.; Batzel, G.; Ramírez, G.; Goodheart, J.A.; Wang, Y.; Neal, S.; Lyons, D.C. Spatial-temporal expression analysis of lineage-restricted shell matrix proteins reveals shell field regionalization and distinct cell populations in the slipper snail Crepidula atrasolea. bioRxiv, 2023; submitted. [Google Scholar]
- Bai, Y.; Liu, S.; Hu, Y.; Yu, H.; Kong, L.; Xu, C.; Li, Q. Multi-omic insights into the formation and evolution of a novel shell microstructure in oysters. BMC Biol. 2023, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Huan, P.; Wang, Q.; Tan, S.; Liu, B. Dorsoventral decoupling of Hox gene expression underpins the diversification of molluscs. Proc. Natl. Acad. Sci. USA 2019, 117, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Wollesen, T.; Monje, S.V.R.; Oliveira, A.L.d.; Wanninger, A. Staggered Hox expression is more widespread among molluscs than previously appreciated. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181513. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.H.; Adema, C.M. Comparative immunogenomics of molluscs. Dev. Comp. Immunol. 2017, 75, 3–15. [Google Scholar] [CrossRef]
- Liu, H.; Ling, W.; Hua, X.; Moon, J.Y.; Williams-Nguyen, J.S.; Zhan, X.; Plantinga, A.M.; Zhao, N.; Zhang, A.; Knight, R.; et al. Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity. Microbiome 2023, 11, 80. [Google Scholar] [CrossRef]
- Liu, G.; Huan, P.; Liu, B. A GATA2/3 gene potentially involved in larval shell formation of the Pacific oyster Crassostrea gigas. Dev. Genes Evol. 2015, 225, 253–257. [Google Scholar] [CrossRef]
- Jackson, D.J.; Reim, L.; Randow, C.; Cerveau, N.; Degnan, B.M.; Fleck, C. Variation in orthologous shell-forming proteins contribute to molluscan shell diversity. Mol. Biol. Evol. 2017, 34, 2959–2969. [Google Scholar] [CrossRef]
- Takeuchi, T. Molluscan genomics: Implications for biology and aquaculture. Curr. Mol. Biol. Rep. 2017, 3, 297–305. [Google Scholar] [CrossRef]
- Montgomery, T.L.; Künstner, A.; Kennedy, J.J.; Fang, Q.; Asarian, L.; Culp-Hill, R.; D’Alessandro, A.; Teuscher, C.; Busch, H.; Krementsov, D.N. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc. Natl. Acad. Sci. USA 2020, 117, 27516–27527. [Google Scholar] [CrossRef]
- Petersen, C.; Hamerich, I.K.; Adair, K.L.; Griem-Krey, H.; Oliva, M.T.; Hoeppner, M.P.; Bohannan, B.J.M.; Schulenburg, H. Host and microbiome jointly contribute to environmental adaptation. ISME J. 2023, 17, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Caddell, D.; Xu, G.; Dahlen, L.; Washington, L.J.; Yang, J.; Coleman-Derr, D. Genome-wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021, 15, 3181–3194. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Aiyegoro, O.A.; Adeleke, M.A. Association between host genetics of sheep and the rumen microbial composition. Trop. Anim. Health Prod. 2022, 54, 274. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.C.M.; Jarquín-Díaz, V.H.; Planillo, A.; Ďureje, Ľ.; Martincová, I.; Kramer-Schadt, S.; Forslund, S.K.; Heitlinger, E. Subspecies divergence, hybridisation and the spatial environment shape phylosymbiosis in the microbiome of house mice. bioRxiv, 2023; submitted. [Google Scholar] [CrossRef]
- Seibel, B.A. On the depth and scale of metabolic rate variation: Scaling of oxygen consumption rates and enzymatic activity in the class Cephalopoda (Mollusca). J. Exp. Biol. 2007, 210, 1–11. [Google Scholar] [CrossRef]
- Strotz, L.C.; Saupe, E.E.; Kimmig, J.; Lieberman, B.S. Metabolic rates, climate and macroevolution: A case study using Neogene molluscs. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181292. [Google Scholar] [CrossRef]
- Orita, R.; Taniguchi, Y.; Tsuge, K.; Yamaguchi, K. Metabolic characteristics involved in the tolerance of bivalves to marine hypoxia: Verification by inter- and intraspecific comparisons of species with different hypoxia tolerance. Mar. Pollut. Bull. 2025, 211, 117486. [Google Scholar] [CrossRef]
- Saulsbury, J.; Moss, D.; Ivany, L.; Kowalewski, M.; Lindberg, D.; Gillooly, J.; Heim, N.; McClain, C.; Payne, J.; Roopnarine, P.; et al. Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology 2019, 45, 405–420. [Google Scholar] [CrossRef]
- Ballantyne, J.S. Mitochondria: Aerobic and anaerobic design—Lessons from molluscs and fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 461–467. [Google Scholar] [CrossRef]
- Sajjadi, N. Chemical ecology of biocompounds in molluscs. In Biological Resources of Water; Ray, S., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Lazo-Andrade, J.; Guzmán-Rivas, F.A.; Espinoza, P.; García-Huidobro, M.R.; Aldana, M.; Pulgar, J.; Urzúa, Á. Temporal variations in the bioenergetic reserves of Concholepas concholepas (Gastropoda: Muricidae) in contrasting coastal environments from the Humboldt Current System. J. Sea Res. 2021, 167, 101970. [Google Scholar] [CrossRef]
- Fortunato, H. Mollusks: Tools in environmental and climate research. Am. Malacol. Bull. 2015, 33, 310–324. [Google Scholar] [CrossRef]
- Liu, G.; Huang, L.; Shi, W. A brief summary of what we know and what we don’t know about the toxicological impacts of emerging pollutants on marine bivalve mollusk. In Marine Bivalve Mollusks and Emerging Pollutants; Liu, G., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 193–203. [Google Scholar]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A.; Pörtner, H.O.; Scanes, E.; Wright, J.M. Predicting the response of molluscs to the impact of ocean acidification. Biology 2013, 2, 651–692. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shang, Y.; Khan, F.U.; Wang, Y. Limitations and outlook of research in ecophysiology and ocean acidification in marine mollusks. In Ecophysiology and Ocean Acidification in Marine Mollusks; Wang, Y., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 265–298. [Google Scholar]
- Molina, J.M. Energy metabolism and aerobic scope in Australoheros facetus (Teleostei: Cichlidae). J. Ichthyol. 2025, 65, 358–367. [Google Scholar] [CrossRef]
- Cho, S.; Lee, S.S.; Kim, C.-H.; Ryu, K.-S.; Park, H.-J.; Myong, H.; Choi, N.J. Optimum enzyme mixture of cellulase, hemicellulase, and xylanase for production of water-soluble carbohydrates from rice straw. J. Life Sci. 2012, 22, 74–79. [Google Scholar] [CrossRef]
- Currie, M.A.; Adams, J.; Ali, S.; Smith, S.P.; Jia, Z. Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin–dockerin interactions from the cellulosome of Clostridium thermocellum. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 327–329. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Cohen, Y.; Borenstein, E. The microbiome’s fiber degradation profile and its relationship with the host diet. BMC Biol. 2022, 20, 151. [Google Scholar] [CrossRef]
- Agamennone, V.; Le, N.G.; van Straalen, N.M.; Brouwer, A.; Roelofs, D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci. Rep. 2019, 9, 7886. [Google Scholar] [CrossRef]
- Burns, A.R.; Miller, E.T.; Agarwal, M.; Rolig, A.S.; Milligan-Myhre, K.; Seredick, S.; Guillemin, K.; Bohannan, B.J.M. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl. Acad. Sci. USA 2017, 114, 11181–11186. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Qin, Y.; Zou, G.; Li, Z.; Yan, X.; Wei, X.; Chen, M.; Chen, L.; Zheng, K.; et al. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci. Rep. 2013, 3, 1569. [Google Scholar] [CrossRef] [PubMed]
- Mondot, S.; Poirier, P.; Abou-Bacar, A.; Greigert, V.; Brunet, J.; Nourrisson, C.; Randrianarivelojosia, M.; Razafindrakoto, J.-L.; Morel, E.; Rakotomalala, R.S.; et al. Parasites and diet as main drivers of the Malagasy gut microbiome richness and function. Sci. Rep. 2021, 11, 16807. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.G. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus. World J. Microbiol. Biotechnol. 2016, 32, 121. [Google Scholar] [CrossRef] [PubMed]
- Vos, M. Accessory microbiomes. Microbiology 2023, 169, 001332. [Google Scholar] [CrossRef]
- Waidele, L.; Korb, J.; Voolstra, C.R.; Künzel, S.; Dedeine, F.; Staubach, F. Differential ecological specificity of protist and bacterial microbiomes across a set of termite species. Front. Microbiol. 2017, 8, 2518. [Google Scholar] [CrossRef]
- Yang, C.; Peng, C.; Jin, H.; You, L.; Wang, J.; Xu, H.; Sun, Z. Comparison of the composition and function of the gut microbiome in herdsmen from two pasture regions, Hongyuan and Xilingol. Food Sci. Nutr. 2021, 9, 3258–3268. [Google Scholar] [CrossRef]
- Allam, B.; Espinosa, E.P. Bivalve immunity and response to infections: Are we looking at the right place? Fish Shellfish Immunol. 2016, 53, 4–12. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A. Immune response of molluscs. In Invertebrate Immunity; IntechOpen: London, UK, 2019. [Google Scholar]
- Khan, S.A.; Kojour, M.A.M.; Han, Y.S. Recent trends in insect gut immunity. Front. Immunol. 2023, 14, 1272143. [Google Scholar] [CrossRef]
- Liao, W.; Lv, Z.; Mo, Y.; Yu, S.; Zhao, Y.; Zhang, S.; Liu, F.; Li, Z.; Yang, Z. Battle between gut bacteria, immune system, and Cry1Ac toxin in Plutella xylostella. J. Agric. Food Chem. 2025, 73, 10896–10906. [Google Scholar] [CrossRef]
- Xie, J.; Cai, Z.; Zheng, W.; Zhang, H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. Insect Sci. 2022, 30, 443–458. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.; Sun, C.; Xiong, K.; Yao, T.; Su, Y.; Fang, H. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microb. Cell Fact. 2020, 19, 98. [Google Scholar] [CrossRef]
- Zeng, T.; Jaffar, S.; Xu, Y.; Qi, Y.X. The intestinal immune defense system in insects. Int. J. Mol. Sci. 2022, 23, 15132. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S. Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Front. Immunol. 2022, 13, 1075192. [Google Scholar] [CrossRef] [PubMed]
- Troitsky, T.S.; Laine, V.N.; Lilley, T.M. When the host’s away, the pathogen will play: The protective role of the skin microbiome during hibernation. Anim. Microbiome 2023, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.; Srygley, R.B.; Healy, F.; Swaminath, K.; Mueller, U.G. Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Front. Microbiol. 2017, 8, 801. [Google Scholar] [CrossRef]
- Kästner, J.; Knorre, D.V.; Himanshu, H.; Erb, M.; Baldwin, I.T.; Meldau, S. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore. PLoS ONE 2014, 9, e86500. [Google Scholar] [CrossRef]
- Ellison, S.; Rovito, S.M.; Parra-Olea, G.; Vásquez-Almazán, C.R.; Flechas, S.V.; Bi, K.; Vredenburg, V.T. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 2018, 78, 257–267. [Google Scholar] [CrossRef]
- Jani, A.J.; Briggs, C.J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 2014, 111, E5049–E5058. [Google Scholar] [CrossRef]
- Ye, B.; Gu, Z.; Zhang, X.; Yang, Y.; Wang, A.; Liu, C. Comparative Effects of Microalgal Species on Growth, Feeding, and Metabolism of Pearl Oysters, Pinctada fucata martensii and Pinctada maxima. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Berg, M.; Koskella, B. Nutrient-and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 2018, 28, 2487-2492.e2483. [Google Scholar] [CrossRef]
- Gillikin, D.P.; Lorrain, A.; Jolivet, A.; Kelemen, Z.; Chauvaud, L.; Bouillon, S. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics. Geochim. Cosmochim. Acta 2017, 200, 55–66. [Google Scholar] [CrossRef]
- Rossignoli, A.E.; Lamas, J.P.; Mariño, C.; Martín, H.; Blanco, J. Enzymatic biotransformation of 13-desmethyl spirolide C by two infaunal mollusk species: The limpet Patella vulgata and the cockle Cerastoderma edule. Toxins 2022, 14, 848. [Google Scholar] [CrossRef]
- Zan, J.; Li, Z.; Tianero, M.D.B.; Davis, J.; Hill, R.T.; Donia, M.S. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 2019, 364, eaaw6732. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Lamas, J.P.; Arévalo, F.; Correa, J.; Rodríguez, T.; Moroño, Á. Paralytic shellfish toxins in mollusks from Galicia analyzed by a fast refined AOAC 2005.06 method: Toxicity, toxin profile, and inter-specific, spatial, and seasonal variations. Toxins 2024, 16, 230. [Google Scholar] [CrossRef] [PubMed]
- Valdiglesias, V.; Prego-Faraldo, M.V.; Pásaro, E.; Méndez, J.; Laffón, B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar] [CrossRef] [PubMed]
- Bacchiocchi, S.; Campacci, D.; Siracusa, M.; Dubbini, A.; Leoni, F.; Tavoloni, T.; Accoroni, S.; Gorbi, S.; Giuliani, M.; Stramenga, A.; et al. Tetrodotoxins (TTXs) and Vibrio alginolyticus in mussels from Central Adriatic Sea (Italy): Are they closely related? Mar. Drugs 2021, 19, 304. [Google Scholar] [CrossRef]
- Blanco, J.; Álvarez, G.; Rengel, J.; Díaz-González, R.; Mariño, C.; Martín, H.; Uribe, E. Accumulation and biotransformation of Dinophysis toxins by the surf clam Mesodesma donacium. Toxins 2018, 10, 314. [Google Scholar] [CrossRef]
- Tarnecki, A.M.; Guttman, L. Editorial: Microbial diversity as a prerequisite for resilience and resistance in sustainable aquaculture. Front. Mar. Sci. 2023, 10, 1227795. [Google Scholar] [CrossRef]
- Zannella, C.; Mosca, F.; Mariani, F.; Franci, G.; Folliero, V.; Tiscar, P.G.; Galdiero, M. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 2017, 15, 182. [Google Scholar] [CrossRef]
- Hernández-Agreda, A.; Leggat, W.; Bongaerts, P.; Herrera, C.; Ainsworth, T.D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. mBio 2018, 9, e00812-18. [Google Scholar] [CrossRef]
- Szabó, E.; Liébana, R.; Hermansson, M.; Modin, O.; Persson, F.; Wilén, B.M. Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates. Front. Microbiol. 2017, 8, 770. [Google Scholar] [CrossRef]
- Jacobson, D.; Honap, T.P.; Monroe, C.; Lund, J.; Houk, B.A.; Novotny, A.; Robin, C.; Marini, E.; Lewis, C.M. Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus. Philos. Trans. R. Soc. B 2020, 375, 20190586. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.W.; Stephens, W.Z.; Mohammed, A.D.; Round, J.L.; Kubinak, J.L. Does MHC heterozygosity influence microbiota form and function? PLoS ONE 2019, 14, e0215946. [Google Scholar] [CrossRef] [PubMed]
- Tanca, A.; Palomba, A.; Pisanu, S.; Deligios, M.; Fraumene, C.; Manghina, V.; Pagnozzi, D.; Addis, M.F.; Uzzau, S. A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 2014, 2, 49. [Google Scholar] [CrossRef] [PubMed]
- Hohagen, J.; Jackson, D.J. An ancient process in a modern mollusc: Early development of the shell in Lymnaea stagnalis. BMC Dev. Biol. 2013, 13, 27. [Google Scholar] [CrossRef]
- Ribes, M.; Calvo, E.; Movilla, J.; Logares, R.; Coma, R.; Pelejero, C. Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environ. Microbiol. Rep. 2016, 8, 536–544. [Google Scholar] [CrossRef]
- France, M.; Chaudry, I.; Rutt, L.; Quain, M.D.; Shirtliff, B.; McComb, E.N.; Maros, A.; Alizadeh, M.; Hussain, F.A.; Elovitz, M.A.; et al. VIRGO2: Unveiling the functional and ecological complexity of the vaginal microbiome with an enhanced non-redundant gene catalog. bioRxiv 2025. [Google Scholar] [CrossRef]
- Li, C.; Jin, L.; Zhang, C.; Li, S.; Zhou, T.; Hua, Z.; Wang, L.; Ji, S.; Wang, Y.; Gan, Y.; et al. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress. iMeta 2023, 2, e79. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Ning, Z.; Zhang, X.; Butcher, J.; Serrana, J.M.; Simopoulos, C.M.A.; Mayne, J.; Stintzi, A.; Mack, D.R.; et al. Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics. Nat. Commun. 2023, 14, 3679. [Google Scholar] [CrossRef]
- Wen, X.; Zuccarello, G.C.; Klochkova, T.A.; Kim, G.H. Oomycete pathogens, red algal defense mechanisms and control measures. Algae 2023, 38, 203–215. [Google Scholar] [CrossRef]
- Green, T.J.; Siboni, N.; King, W.L.; Labbate, M.; Seymour, J.R.; Raftos, D.A. Simulated marine heat wave alters abundance and structure of Vibrio populations associated with the Pacific oyster resulting in a mass mortality event. Microb. Ecol. 2018, 77, 736–747. [Google Scholar] [CrossRef]
- Clols-Fuentes, J.; Nguinkal, J.A.; Unger, P.; Kreikemeyer, B.; Palm, H.W. Bacterial communities from two freshwater aquaculture systems in Northern Germany. Environ. Microbiol. Rep. 2024, 16, e70062. [Google Scholar] [CrossRef]
- Su, H.; Xu, W.; Hu, X.-J.; Xu, Y.; Wen, G.; Cao, Y. Diversity and prevalence of antibiotic resistance genes, virulence factors, and the microbiome in aquaculture in Southern China revealed by metagenomic sequencing. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Xavier, R.; Severino, R.; Silva, S.M. Signatures of dysbiosis in fish microbiomes in the context of aquaculture. Rev. Aquac. 2023, 16, 706–731. [Google Scholar] [CrossRef]
- Abbas, M.A.; Kim, H.; Lee, G.-Y.; Cho, H.-Y.; Sayem, S.A.J.; Lee, E.B.; Lee, S.J.; Park, S.C. Development and application of Lactobacillus plantarum PSCPL13 probiotics in olive flounder (Paralichthys olivaceus) farming. Microorganisms 2025, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Yajima, D.; Fujita, H.; Hayashi, I.; Shima, G.; Suzuki, K.; Toju, H. Core species and interactions prominent in fish-associated microbiome dynamics. Microbiome 2023, 11, 147. [Google Scholar] [CrossRef]
- Bruno, A.; Sandionigi, A.; Panio, A.; Rimoldi, S.; Orizio, F.; Agostinetto, G.; Hasan, I.; Gasco, L.; Terova, G.; Labra, M. Aquaculture ecosystem microbiome at the water–fish interface: The case-study of rainbow trout fed with Tenebrio molitor novel diets. BMC Microbiol. 2023, 23, 242. [Google Scholar] [CrossRef]
- Naquin, E.; Boopathy, R. Presence of multidrug resistant bacteria in Hurricane Ida overtop sediments in Southeast Louisiana, USA. Environ. Qual. Manag. 2022, 32, 171–178. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Ma, K.; Wang, G.; Tang, M.; Wang, R.; Xia, Z.; Xu, Z.; Sun, M.; Bao, X.; et al. Lactobacillus plantarum Lp3a improves functional constipation: Evidence from a human randomized clinical trial and animal model. Ann. Transl. Med. 2022, 10, 316. [Google Scholar] [CrossRef]
- Zhang, Y.; Lü, J.; Wu, J.; Wang, J.H.; Lin, Y. Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. Sci. Total Environ. 2020, 720, 137712. [Google Scholar] [CrossRef]
- Zhang, K.; Li, K.; Liu, Z.; Li, Q.; Li, W.; Chen, Q.; Xia, Y.; Hu, F.; Yang, F. The sources and potential hosts identification of antibiotic resistance genes in the Yellow River, revealed by metagenomic analysis. Int. J. Environ. Res. Public Health 2022, 19, 10420. [Google Scholar] [CrossRef]
- Koczura, R.; Mokracka, J.; Taraszewska, A.; Łopacinska, N. Abundance of class 1 integron-integrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microb. Ecol. 2016, 72, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Ying, G.G.; Tao, R.; Zhang, R.; Fogarty, L.R.; Kolpin, D.W. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. J. Environ. Monit. 2011, 13, 3229–3236. [Google Scholar] [CrossRef]
- Salgueiro, H.S.; Ferreira, A.C.; Duarte, A.S.R.; Botelho, A. Source attribution of antibiotic resistance genes in estuarine aquaculture: A machine learning approach. Antibiotics 2024, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Hendarti, R.; Linggarjati, J.; Kurnia, J.C.; Fadhilah, F.; Rabbani, H. Green urban aquaculture: Key environmental impacts and conservation strategies—A case study of Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2025, 1441, 012006. [Google Scholar] [CrossRef]
- Aung, T.; Razak, R.A.; Nor, A.M. Artificial intelligence methods used in various aquaculture applications: A systematic literature review. J. World Aquac. Soc. 2024, 56, e13107. [Google Scholar] [CrossRef]
- Benedicenti, O.; Amundsen, M.; Mohammad, S.N.; Vrålstad, T.; Strand, D.; Weli, S.C.; Patel, S.; Sindre, H. A refinement to eRNA and eDNA-based detection methods for reliable and cost-efficient screening of pathogens in Atlantic salmon aquaculture. PLoS ONE 2024, 19, e0312337. [Google Scholar] [CrossRef]
- Baek, E.-Y.; So, A. Prediction of changes in laver (gim) aquaculture based on IPCC projected scenarios on climate change: A case in the Republic of Korea. Preprints 2024, 2024051495. [Google Scholar]
- Gomes, M.; Correia, A.; Pinto, L.G.; Sá, C.; Brotas, V.; Mateus, M. Coastal water quality in an Atlantic sea bass farm site (Sines, Portugal): A first assessment. Front. Mar. Sci. 2020, 7, 175. [Google Scholar] [CrossRef]
- Wang, H.; Fang, X.; Wu, H.; Cai, X.; Xiao, H. Effects of plant cultivars on the structure of bacterial and fungal communities associated with ginseng. Res. Sq. 2020, rs-50235. [Google Scholar] [CrossRef]
- Sayes, C.; Leyton, Y.; Riquelme, C. Probiotic bacteria as a healthy alternative for fish aquaculture. In Antibiotic Use in Animals; Savić, S., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Wei, C.; Luo, K.; Wang, M.; Li, Y.; Pan, M.; Xie, Y.; Qin, G.; Liu, Y.; Li, L.; Liu, Q.; et al. Evaluation of potential probiotic properties of a strain of Lactobacillus plantarum for shrimp farming: From beneficial functions to safety assessment. Front. Microbiol. 2022, 13, 854131. [Google Scholar] [CrossRef]
- Mahmoodian, S.; Meimandipour, A.; Faeed, M.; Shamsara, M.; Roohi, J.D.; Fatemi, S.S.-A.; Ghasemi, M.; Chaharmahali, M. Dietary probiotic prototypes and their effects on growth performance, immune function, and gut microbiota of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci. 2025, 193, 105808. [Google Scholar] [CrossRef]
- Fachri, M.; Amoah, K.; Huang, Y.; Cai, J.; Alfatat, A.; Ndandala, C.B.; Shija, V.M.; Jin, X.; Bissih, F.; Chen, H. Probiotics and paraprobiotics in aquaculture: A sustainable strategy for enhancing fish growth, health and disease prevention—A review. Front. Mar. Sci. 2024, 11, 1499228. [Google Scholar] [CrossRef]
- Bennett, M.; March, A.; Failler, P. Blue farming potentials: Sustainable ocean farming strategies in the light of climate change adaptation and mitigation. Green Low-Carbon Econ. 2023, 2, 71–86. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhang, Y.; Zhao, Y. Enhanced Mask R-CNN incorporating CBAM and Soft-NMS for identification and monitoring of offshore aquaculture areas. Sensors 2025, 25, 2792. [Google Scholar] [CrossRef] [PubMed]
- Fadum, J.M.; Ross, M.; Tenorio, E.A.; Barby, C.A.; Hall, E.K. Nutrient loading from a sustainably certified aquaculture operation dwarfs annual nutrient inputs from a large multi-use watershed, Lake Yojoa, Honduras. Earth Future 2025, 13, e2024EF004807. [Google Scholar] [CrossRef]
- Nujaira, H.; Prasad, K.A.; Kumar, P.; Yunus, A.P.; Kharrazi, A.; Gupta, L.N.; Kurniawan, T.A.; Sajjad, H.; Avtar, R. Quantifying spatio-temporal variation in aquaculture production areas in Satkhira, Bangladesh using geospatial and social survey. PLoS ONE 2022, 17, e0278042. [Google Scholar] [CrossRef]
- Ellison, A.; Webster, T.M.U.; Rodríguez-Barreto, D.; de Leániz, C.G.; Consuegra, S.; Orozco-terWengel, P.; Cable, J. Comparative transcriptomics reveal conserved impacts of rearing density on immune response of two important aquaculture species. Fish Shellfish Immunol. 2020, 104, 192–201. [Google Scholar] [CrossRef]
- Jayaraj, K.; Saravanan, P.; Bhowmick, G.D. Performance evaluation of aquaponics-waste-based biochar as a cathode catalyst in sediment microbial fuel cells for integrated multitrophic aquaculture systems. Energies 2023, 16, 5922. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, C.; Yamano, R.; Koike, S.; Sakai, Y.; Mino, S.; Sawabe, T. Unveiling the early life core microbiome of the sea cucumber Apostichopus japonicus and the unexpected abundance of the growth-promoting Sulfitobacter. Anim. Microbiome 2023, 5, 42. [Google Scholar] [CrossRef]
- Yang, J.; Choi, H.J.; Park, J.S.; Cha, Y.; Hwang, J.-A.; Oh, S.Y. Biofloc technology significantly reshapes water microbiome and improves survival rates in Japanese eel (Anguilla japonica). Microbiol. Spectr. 2025, 13, e02206-24. [Google Scholar] [CrossRef]
- Villamil, S.I.; Huerlimann, R.; Jerry, D.R. Microbiome diversity and dysbiosis in aquaculture. Rev. Aquac. 2020, 13, 1077–1096. [Google Scholar] [CrossRef]
- Ellison, A.; Wilcockson, D.; Cable, J. Circadian dynamics of the teleost skin immune–microbiome interface. Microbiome 2021, 9, 151. [Google Scholar] [CrossRef]
- Shan, X.; Li, K.; Stadler, P.; Borbor, M.; Reyes, G.; Solórzano, R.; Chamorro, E.; Bayot, B.; Cordero, O.X. Microbiome determinants of productivity in aquaculture of whiteleg shrimp. Appl. Environ. Microbiol. 2025, 91, e02420-24. [Google Scholar] [CrossRef]
Host Species | Tissue Type | Dominant Taxa (Genus/Family) | Putative Functional Role | Environmental Sensitivity | Reference |
---|---|---|---|---|---|
M. galloprovincialis | Gut, gills | Vibrio (Vibrionaceae) | Chitin degradation, carbohydrate metabolism | Temperature-sensitive | [29] |
A. fulica | Gut | Lactobacillus (Lactobacillaceae) | Lactic acid fermentation, pathogen suppression | pH-sensitive | [4] |
O. vulgaris | Skin, gut | Mycoplasma (Mycoplasmataceae) | Immune modulation, amino acid biosynthesis | Sensitive to salinity and stress | [37] |
Crassostrea gigas (Thunberg, 1793) | Gills, mantle | Pseudoalteromonas (Alteromonadaceae) | Antimicrobial production, biofilm regulation | Pollution-tolerant | [38] |
Ruditapes philippinarum (Adams & Reeve, 1850) | Gut | Pseudomonas (Pseudomonadaceae) | Iron metabolism, detoxification | Oxygen-sensitive | [39] |
Haliotis discus hannai (Ino, 1953) | Digestive gland | Endozoicomonas (Hahellaceae) | Host–symbiont communication, vitamin synthesis | Temperature-sensitive | [40] |
Lottia gigantea (Gmelin, 1791) | Foot tissue | Roseobacter (Rhodobacteraceae) | Sulfur cycling, biofilm formation | Sensitive to metal stress | [41] |
Feature | Description | Examples from Studies | References |
---|---|---|---|
Host Species Influence | Different mollusk species harbor unique microbial communities. | Studies comparing gut microbiota of different mussel species show significant differences in community structure. | [56,57,58] |
Phylogeny | The host’s phylogeny is a major factor shaping the gut microbiome. | Cephalopods have distinct gut microbial communities compared to other mollusks, linking evolutionary history and microbiota. | [2,32] |
Habitat | Different habitats lead to variations in microbial composition. | Differences between mangrove and island populations of same mollusk species highlight habitat’s role. | [59,60,61] |
Diet | Their diet influences the microbial makeup of mollusks. | Freshwater gastropods share core gut microbes like Aeromonas and Cloacibacterium, suggesting adaptation to food sources. | [1,62] |
Environmental Factors | Environmental conditions such as ocean acidification alter microbial diversity within species. | Ocean acidification decreases gut microbial diversity and immunity in oysters, showing environmental impacts on microbiomes. | [63,64] |
Functional Significance | Distinct microbial signatures associated with phenotypes or disease resistance. | Differences in beta diversity between infected and uninfected snails suggest microbiome’s involvement in disease susceptibility. | [64,65] |
Mollusk Group/Habitat | Dominant Taxa (Genus/Family) | Conditions/Influences | Reported or Inferred Functional Role(s) | References |
---|---|---|---|---|
M. galloprovincialis (marine) | Vibrio, Mycoplasma, Pseudomonas | Environmental salinity, pollutants | Immune modulation, digestion | [66] |
A. fulica (terrestrial) | Enterobacteriaceae, Bacillus | Host’s diet, urbanization | Cellulose degradation, vitamin production | [54] |
S. officinalis (gut) | Photobacterium, Mycoplasma | Starvation, dietary shifts | Nutritional plasticity, energy acquisition | [4,85] |
O. vulgaris (skin) | Pseudomonas, Alteromonas | Sex-specific variation, ink secretion | Pathogen defense, skin barrier integrity | [37,39] |
C. gigas (estuaries) | Arcobacter, Vibrio | Temperature stress, metal pollution | Community shifts under stress, disease susceptibility | [86] |
Octopus mimus Gould, 1852 (reproductive tissues) | Mycoplasma | Environmental toxins, low diversity | Reproductive success, vertical transmission | [68,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makwarela, T.G.; Seoraj-Pillai, N.; Nangammbi, T.C. Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications. Biology 2025, 14, 1086. https://doi.org/10.3390/biology14081086
Makwarela TG, Seoraj-Pillai N, Nangammbi TC. Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications. Biology. 2025; 14(8):1086. https://doi.org/10.3390/biology14081086
Chicago/Turabian StyleMakwarela, Tsireledzo Goodwill, Nimmi Seoraj-Pillai, and Tshifhiwa Constance Nangammbi. 2025. "Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications" Biology 14, no. 8: 1086. https://doi.org/10.3390/biology14081086
APA StyleMakwarela, T. G., Seoraj-Pillai, N., & Nangammbi, T. C. (2025). Exploring the Molluscan Microbiome: Diversity, Function, and Ecological Implications. Biology, 14(8), 1086. https://doi.org/10.3390/biology14081086