Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Sampling and DNA Extraction
2.2. Genotyping and Data Quality Filtering
2.3. Population Structure, Gene Flow, and Admixture Analyses
2.4. Genetic Diversity Indices
2.5. Genetic Differentiation
2.6. Runs of Homozygosity and Inbreeding Levels
2.7. Linkage Disequilibrium and Effective Population Sizes
3. Results
3.1. SNP Quality Control
3.2. Genetic Structure and Historical Gene Flow Patterns Compared to Foreign Breeds
3.3. Population Structure, Genetic Differentiation, and Admixture for Greek Breeds
3.4. Within Breed Genetic Diversity and Inbreeding Levels
3.5. Linkage Disequilibrium and Effective Population Size
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic acid |
FIS | Wright’s inbreeding coefficient—Individual within Subpopulation |
FST | Wright’s inbreeding coefficient—Subpopulation within Total population |
HWE | Hardy-Weinberg Equilibrium |
K2EDTA | Potassium ethylenediaminetetraacetic acid |
kb | Kilobase |
LD | Linkage Disequilibrium |
MAF | Minor Allele Frequency |
Mb | Megabase |
Ne | Effective population size |
PCA | Principal Component Analysis |
ROH | Runs of homozygosity |
SNP | Single Nucleotide Polymorphism |
QTLs | Quantitative Trait Loci |
References
- Ciani, E.; Mastrangelo, S.; Da Silva, A.; Marroni, F.; Ferenčaković, M.; Ajmone-Marsan, P.; Baird, H.; Barbato, M.; Colli, L.; Delvento, C.; et al. On the Origin of European Sheep as Revealed by the Diversity of the Balkan Breeds and by Optimizing Population-Genetic Analysis Tools. Genet. Sel. Evol. 2020, 52, 25. [Google Scholar] [CrossRef] [PubMed]
- Machová, K.; Málková, A.; Vostrý, L. Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes 2022, 13, 613. [Google Scholar] [CrossRef]
- Balasse, M.; Tresset, A.; Bălăşescu, A.; Blaise, E.; Tornero, C.; Gandois, H.; Fiorillo, D.; Nyerges, É.Á.; Frémondeau, D.; Banffy, E.; et al. Animal Board Invited Review: Sheep Birth Distribution in Past Herds: A Review for Prehistoric Europe (6th to 3rd Millennia BC). Animal 2017, 11, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.-H.; Wang, D.-F.; Zhao, S.-Y.; Lv, X.-Y.; Sun, W.; Nielsen, R.; Li, M.-H. Deep Ancestral Introgressions between Ovine Species Shape Sheep Genomes via Argali-Mediated Gene Flow. Mol. Biol. Evol. 2024, 41, msae212. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, Z.; Wen, J.; Lenstra, J.A.; Heller, R.; Cai, Y.; Guo, Y.; Li, M.; Li, R.; Li, W.; et al. Long Divergent Haplotypes Introgressed from Wild Sheep Are Associated with Distinct Morphological and Adaptive Characteristics in Domestic Sheep. PLoS Genet. 2023, 19, e1010615. [Google Scholar] [CrossRef]
- Hatziminaoglou, I. Sheep and Goats in Greece and Worldwide, 2nd ed.; Yahoudi-Yapouli Press: Thessaloniki, Greece, 2001; pp. 57–58. [Google Scholar]
- Food and Agriculture Organization of the United Nations. In Vivo Conservation of Animal Genetic Resources; FAO: Rome, Italy, 2013. [Google Scholar]
- International Union for Conservation of Nature. Guidelines for Application of IUCN Red List Criteria at Regional Levels; IUCN Species Survival Commission; IUCN: Gland, Switzerland; Cambridge, UK, 2003; p. 26. [Google Scholar]
- Rare Breeds Survival Trust. Available online: www.rbst.org.uk/our-mission (accessed on 8 April 2025).
- European Union. Regulation (EU) 2016/1012 of the European Parliament and of the Council of 8 June 2016 on the Authorisation of Genetic Resources, Etc. Off. J. Eur. Union 2016, L171, 66–143. [Google Scholar]
- Hoban, S.M.; Hauffe, H.C.; Pérez-Espona, S.; Arntzen, J.W.; Bertorelle, G.; Bryja, J.; Frith, K.; Gaggiotti, O.E.; Galbusera, P.; Godoy, J.A.; et al. Bringing Genetic Diversity to the Forefront of Conservation Policy and Management. Conserv. Genet. Resour. 2013, 5, 593–598. [Google Scholar] [CrossRef]
- Michailidou, S.; Tsangaris, G.; Fthenakis, G.C.; Tzora, A.; Skoufos, I.; Karkabounas, S.C.; Banos, G.; Argiriou, A.; Arsenos, G. Genomic Diversity and Population Structure of Three Autochthonous Greek Sheep Breeds Assessed with Genome-Wide DNA Arrays. Mol. Genet. Genom. 2018, 293, 753–768. [Google Scholar] [CrossRef]
- Kominakis, A.; Tarsani, E.; Hager-Theodorides, A.L.; Mastranestasis, I.; Hadjigeorgiou, I. Clustering Patterns Mirror the Geographical Distribution and Genetic History of Lemnos and Lesvos Sheep Populations. PLoS ONE 2021, 16, e0247787. [Google Scholar] [CrossRef]
- SAVE Foundation. Rare Breeds and Varieties of Greece Atlas. Available online: https://save-foundation.net/wp-content/uploads/2023/05/griechenland-3-1.pdf (accessed on 3 July 2025).
- Karasavvidis, K. Grazing Behavior of Thraki Sheep Breed in the Pastures of Rodopi Regional Unit. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2013. [Google Scholar]
- Mastranestasis, I.; Ligda, C.; Theodorou, K.; Ekateriniadou, L.V. Genetic Structure and Diversity among Three Greek Sheep Breeds Using Random Amplified Polymorphic DNA-PCR. J. Hell. Vet. Med. Soc. 2011, 62, 301–313. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Valergakis, G.E.; Fortomaris, P.; Arsenos, G. Farm Conditions and Production Methods in Chios Sheep Flocks. J. Hell. Vet. Med. Soc. 2010, 61, 111–119. [Google Scholar] [CrossRef]
- Ministry of Rural Development and Food. Indigenous Breeds of Farm Animals—Indigenous Sheep and Goat Breeds. Available online: www.minagric.gr/for-farmer-2/animal-production/genetiki-veltiosi-agrotikon-zoon/491-genet-zoon/727-Aftoxthones-fyles-agrotikon-zoon/1075-autofilesaigoprobaton (accessed on 8 April 2025).
- Kominakis, A.; Tarsani, E.; Hager-Theodorides, A.L.; Mastranestasis, I.; Gkelia, D.; Hadjigeorgiou, I. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation. PLoS ONE 2021, 16, e0257461. [Google Scholar] [CrossRef] [PubMed]
- Tsartsianidou, V.; Sánchez-Molano, E.; Kapsona, V.V.; Basdagianni, Z.; Chatziplis, D.; Arsenos, G.; Triantafyllidis, A.; Banos, G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet. Sel. Evol. 2021, 53, 90. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenis, A.P. Comparative Performance of Purebred and Crossbred Sheep in Three Different Production Systems. In Data Collection and Definition of Objectives in Sheep and Goat Breeding Programmes: New Prospects; Gabiña, D., Bodin, L., Eds.; Options Méditerranéennes: Série A. Séminaires Méditerranéens, No 33; CIHEAM: Zaragoza, Spain, 1997; pp. 181–185. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to Study Runs of Homozygosity Using PLINK? A Guide for Analyzing Medium Density SNP Data in Livestock and Pet Species. BMC Genom. 2020, 21, 94. [Google Scholar] [CrossRef]
- Ciani, E.; Lasagna, E.; D’Andrea, M.; Alloggio, I.; Marroni, F.; Ceccobelli, S.; Delgado Bermejo, J.V.; Sarti, F.M.; Kijas, J.; Lenstra, J.A.; et al. Merino and Merino-Derived Sheep Breeds: A Genome-Wide Intercontinental Study. Genet. Sel. Evol. 2015, 47, 64. [Google Scholar] [CrossRef]
- Lenstra, J.A.; Ciani, E.; Mastrangelo, S.; Marroni, F.; da Silva, A.B.; Ferenčaković, M.; Colli, L.; Delvento, C.; Dovenski, T.; Gorjanc, G. 50K SNP Genotypes of Southeast European Sheep; Utrecht University: Utrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Beynon, S.E.; Slavov, G.T.; Farré, M.; Sunduimijid, B.; Waddams, K.; Davies, B.; Haresign, W.; Kijas, J.; MacLeod, I.M.; Newbold, C.J.; et al. Population Structure and History of the Welsh Sheep Breeds Determined by Whole Genome Genotyping. BMC Genet. 2015, 16, 65. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, E.; Liu, Z.; Kijas, J.; Zhu, C.; Hu, S.; Ma, H.; Zhang, L.; Du, L.; Wang, H.H.; et al. Selection Signature Analysis Reveals Genes Associated with Tail Type in Chinese Indigenous Sheep. Anim. Genet. 2016, 48, 55–66. [Google Scholar] [CrossRef]
- Deniskova, T.; Dotsev, A.; Lushihina, E.; Shakhin, A.; Kunz, E.; Reyer, H.; Wimmers, K.; Khayatzadeh, N.; Sölkner, J.; Sermyagin, A.; et al. Population Structure and Genetic Diversity of Sheep Breeds in the Kyrgyzstan. Front. Genet. 2019, 10, 1311. [Google Scholar] [CrossRef]
- Belabdi, I.; Ouhrouch, A.; Lafri, M.; Gaouar, S.B.S.; Ciani, E.; Benali, A.R.; Ould Ouelhadj, H.; Haddioui, A.; Pompanon, F.; Blanquet, V.; et al. Genetic Homogenization of Indigenous Sheep Breeds in Northwest Africa. Sci. Rep. 2019, 9, 7920. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Slowikowski, K. Ggrepel: Automatically Position Non-Overlapping Text Labels with “Ggplot2”. 2024. Available online: https://github.com/slowkow/ggrepel (accessed on 2 February 2025).
- Pickrell, J.K.; Pritchard, J.K. Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [PubMed]
- Dahms, C. TreeMix Pipeline. Available online: https://github.com/carolindahms/TreeMix (accessed on 1 April 2025).
- Felsenstein, J. PHYLIP (Phylogeny Inference Package); Version 3.6; Distributed by the Author; Department of Genome Sciences, University of Washington: Seattle, WA, USA, 2005. [Google Scholar]
- Fitak, R.R. OptM: Estimating the Optimal Number of Migration Edges on Population Trees Using Treemix. Biol. Methods Protoc. 2021, 6, bpab017. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, M.; Capomaccio, S.; Vajana, E.; Bomba, L.; Garcia, J.F.; Ajmone-Marsan, P.; Colli, L. BITE: An R Package for Biodiversity Analyses. bioRxiv 2017. [Google Scholar] [CrossRef]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE Algorithm for Individual Ancestry Estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Colli, L.; Milanesi, M.; Talenti, A.; Bertolini, F.; Chen, M.; Crisà, A.; Daly, K.G.; Del Corvo, M.; Guldbrandtsen, B.; Lenstra, J.A.; et al. Genome-Wide SNP Profiling of Worldwide Goat Populations Reveals Strong Partitioning of Diversity and Highlights Post-Domestication Migration Routes. Genet. Sel. Evol. 2018, 50, 58. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of Homozygosity in European Populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef]
- Barbato, M.; Orozco-terWengel, P.; Tapio, M.; Bruford, M.W. SNeP: A Tool to Estimate Trends in Recent Effective Population Size Trajectories Using Genome-Wide SNP Data. Front. Genet. 2015, 6, 109. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Y.; Zhang, X.; Chen, W.; Chen, Y.; Wei, L.; Zhu, Q.; Khan, M.Z.; Wang, C. Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock. Animals 2025, 15, 748. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H. Microsatellite Evolution: A Battle between Replication Slippage and Point Mutation. Trends Genet. 2002, 18, 70. [Google Scholar] [CrossRef]
- Laoun, A.; Harkat, S.; Lafri, M.; Gaouar, S.B.S.; Belabdi, I.; Ciani, E.; De Groot, M.; Blanquet, V.; Leroy, G.; Rognon, X.; et al. Inference of Breed Structure in Farm Animals: Empirical Comparison between SNP and Microsatellite Performance. Genes 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Tsoureki, A.; Tsiolas, G.; Kyritsi, M.; Pavlou, E.; Argiriou, A.; Michailidou, S. First Whole Genome Sequencing Data of Six Greek Sheep Breeds. Data 2025, 10, 75. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Rischkowsky, B., Pilling, D., Eds.; FAO: Rome, Italy, 2007. [Google Scholar]
- Franklin, I.R. Evolutionary Change in Small Populations. In Conservation Biology: An Evolutionary-Ecological Perspective; Soulé, M.E., Wilcox, B.A., Eds.; Sinauer: Sunderland, MA, USA, 1980. [Google Scholar]
- Jamieson, I.G.; Allendorf, F.W. How Does the 50/500 Rule Apply to MVPs? Trends Ecol. Evol. 2012, 27, 578–584. [Google Scholar] [CrossRef]
- Frankham, R.; Bradshaw, C.J.A.; Brook, B.W. Genetics in Conservation Management: Revised Recommendations for the 50/500 Rules, Red List Criteria and Population Viability Analyses. Biol. Conserv. 2014, 170, 56–63. [Google Scholar] [CrossRef]
- Qanbari, S. On the Extent of Linkage Disequilibrium in the Genome of Farm Animals. Front. Genet. 2020, 10, 1304. [Google Scholar] [CrossRef]
- Slatkin, M. Linkage Disequilibrium--Understanding the Evolutionary Past and Mapping the Medical Future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Braga, L.G.; Watanabe, R.N.; Schenkel, F.S.; Berry, D.P.; Buzanskas, M.E.; Munari, D.P. Genetic Diversity and Selection Signatures in Sheep Breeds. J. Appl. Genet. 2025; 1–13, online ahead of print. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.-L.; Tait, R.G.; Bauck, S.; Thomas, D.L.; Murphy, T.W.; Rosa, G.J.M. Genome-wide Association Study of Milk Production Traits in a Crossbred Dairy Sheep Population Using Three Statistical Models. Anim. Genet. 2020, 51, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of Homozygosity: Current Knowledge and Applications in Livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Inbreeding and Runs of Homozygosity: A Possible Solution to an Old Problem. Genomics Appl. Livest. Prod. 2014, 166, 26–34. [Google Scholar] [CrossRef]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of Homozygosity and Population History in Cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Z.; Zhao, W.; Guo, L.; Sun, H.; Zhu, K.; Liu, G.; Shen, X.; Zhao, X.; Wang, Q.; et al. Genome-Wide Selection Signatures Detection in Shanghai Holstein Cattle Population Identified Genes Related to Adaption, Health and Reproduction Traits. BMC Genom. 2021, 22, 747. [Google Scholar] [CrossRef]
- Stoffel, M.A.; Johnston, S.E.; Pilkington, J.G.; Pemberton, J.M. Genetic Architecture and Lifetime Dynamics of Inbreeding Depression in a Wild Mammal. Nat. Commun. 2021, 12, 2972. [Google Scholar] [CrossRef]
- Cesarani, A.; Mastrangelo, S.; Congiu, M.; Portolano, B.; Gaspa, G.; Tolone, M.; Macciotta, N.P.P. Relationship between Inbreeding and Milk Production Traits in Two Italian Dairy Sheep Breeds. J. Anim. Breed. Genet. 2023, 140, 28–38. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Ciani, E.; Sardina, M.T.; Sottile, G.; Pilla, F.; Portolano, B.; the Bi.Ov.Ita Consortium. Runs of Homozygosity Reveal Genome-Wide Autozygosity in Italian Sheep Breeds. Anim. Genet. 2018, 49, 71–81. [Google Scholar] [CrossRef]
- Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The Distribution of Runs of Homozygosity and Selection Signatures in Six Commercial Meat Sheep Breeds. PLoS ONE 2017, 12, e0176780. [Google Scholar] [CrossRef]
- Hall, S.J.G. Genetic Differentiation among Livestock Breeds-Values for FST. Animals 2022, 12, 1115. [Google Scholar] [CrossRef]
- Berner, D. Allele Frequency Difference AFD–An Intuitive Alternative to FST for Quantifying Genetic Population Differentiation. Genes 2019, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, R. Breed Characters and Different Productions in the Sakiz Sheep (Chios Schafe) of Turkey. Z. Für Tierz. Zücht. 1962, 78, 281–286. [Google Scholar] [CrossRef]
- McLaughlin, J.F.; Winker, K. An Empirical Examination of Sample Size Effects on Population Demographic Estimates in Birds Using Single Nucleotide Polymorphism (SNP) Data. PeerJ 2020, 8, e9939. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, S.; Tsangaris, G.T.; Tzora, A.; Skoufos, I.; Banos, G.; Argiriou, A.; Arsenos, G. Analysis of Genome-Wide DNA Arrays Reveals the Genomic Population Structure and Diversity in Autochthonous Greek Goat Breeds. PLoS ONE 2019, 14, e0226179. [Google Scholar] [CrossRef]
- Amalthia—CHIOS. Available online: https://www.amalthia.org/en/breeds/sheep/178-chios/187-chios (accessed on 3 June 2025).
Breed | Boutsko | Chios | Kalarritiko | Karagouniko | Katsika | Lesvos | Pelagonia | Serres |
---|---|---|---|---|---|---|---|---|
Chios | 0.157 | |||||||
Kalarritiko | 0.070 | 0.120 | ||||||
Karagouniko | 0.095 | 0.095 | 0.060 | |||||
Katsika | 0.109 | 0.127 | 0.074 | 0.071 | ||||
Lesvos | 0.100 | 0.089 | 0.067 | 0.060 | 0.079 | |||
Pelagonia | 0.128 | 0.139 | 0.093 | 0.090 | 0.108 | 0.096 | ||
Serres | 0.086 | 0.089 | 0.055 | 0.050 | 0.068 | 0.055 | 0.084 | |
Thraki | 0.108 | 0.119 | 0.073 | 0.071 | 0.087 | 0.072 | 0.106 | 0.063 |
Breed | NP% | Ho | He | π |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Boutsko | 94.19% | 0.352 ± 0.167 | 0.353 ± 0.143 | 0.338 ± 0.162 |
Chios | 93.17% | 0.326 ± 0.164 | 0.344 ± 0.146 | 0.327 ± 0.157 |
Kalarritiko | 97.89% | 0.366 ± 0.147 | 0.367 ± 0.134 | 0.363 ± 0.173 |
Karagouniko | 97.73% | 0.379 ± 0.155 | 0.373 ± 0.130 | 0.371 ± 0.178 |
Katsika | 95.02% | 0.353 ± 0.162 | 0.363 ± 0.136 | 0.353 ± 0.171 |
Lesvos | 98.03% | 0.369 ± 0.151 | 0.366 ± 0.134 | 0.363 ± 0.173 |
Pelagonia | 94.82% | 0.348 ± 0.159 | 0.355 ± 0.141 | 0.341 ± 0.163 |
Serres | 98.81% | 0.357 ± 0.142 | 0.370 ± 0.131 | 0.369 ± 0.176 |
Thraki | 95.82% | 0.357 ± 0.152 | 0.366 ± 0.134 | 0.357 ± 0.171 |
Breed | FIS | FGRM | FROH |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
Boutsko | 0.082 ± 0.068 | 0.068 ± 0.067 | 0.059 ± 0.048 |
Chios | 0.148 ± 0.035 | 0.126 ± 0.036 | 0.082 ± 0.027 |
Kalarritiko | 0.043 ± 0.042 | 0.040 ± 0.041 | 0.030 ± 0.031 |
Karagouniko | 0.011 ± 0.050 | 0.036 ± 0.052 | 0.019 ± 0.036 |
Katsika | 0.077 ± 0.038 | 0.083 ± 0.040 | 0.062 ± 0.031 |
Lesvos | 0.037 ± 0.041 | 0.038 ± 0.037 | 0.026 ± 0.031 |
Pelagonia | 0.090 ± 0.042 | 0.079 ± 0.042 | 0.068 ± 0.030 |
Serres | 0.068 ± 0.061 | 0.072 ± 0.056 | 0.056 ± 0.046 |
Thraki | 0.066 ± 0.060 | 0.072 ± 0.059 | 0.056 ± 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidou, S.; Kyritsi, M.; Pavlou, E.; Tsoureki, A.; Argiriou, A. Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds. Biology 2025, 14, 845. https://doi.org/10.3390/biology14070845
Michailidou S, Kyritsi M, Pavlou E, Tsoureki A, Argiriou A. Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds. Biology. 2025; 14(7):845. https://doi.org/10.3390/biology14070845
Chicago/Turabian StyleMichailidou, Sofia, Maria Kyritsi, Eleftherios Pavlou, Antiopi Tsoureki, and Anagnostis Argiriou. 2025. "Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds" Biology 14, no. 7: 845. https://doi.org/10.3390/biology14070845
APA StyleMichailidou, S., Kyritsi, M., Pavlou, E., Tsoureki, A., & Argiriou, A. (2025). Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds. Biology, 14(7), 845. https://doi.org/10.3390/biology14070845