The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception
Simple Summary
Abstract
1. Introduction
2. Self-Motion Perception Involving Visual–Vestibular Integration
3. Bayesian Optimal Computational Model of Visual–Vestibular Integration
4. Behavioral Research on Visual–Vestibular Integration
5. Visual–Vestibular Integration Neural Network
5.1. Brain Regions Involved in Visual–Vestibular Integration
5.2. Computational Implementation and Neural Mechanisms of Visual–Vestibular Integration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004, 27, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Beck, J.M.; Latham, P.E.; Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 2006, 9, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Angelaki, D.E.; DeAngelis, G.C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 2008, 11, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, C.R.; Turner, A.H.; DeAngelis, G.C.; Angelaki, D.E. Dynamic Reweighting of Visual and Vestibular Cues During Self-Motion Perception. J. Neurosci. 2009, 29, 15601–15612. [Google Scholar] [CrossRef]
- Oman, C.M. Motion sickness: A synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 1990, 68, 294–303. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Golding, J.F.; Gresty, M.A. Visual Vertigo, Motion Sickness, and Disorientation in Vehicles. Semin. Neurol. 2020, 40, 116–129. [Google Scholar] [CrossRef]
- Schmal, F. Neuronal mechanisms and the treatment of motion sickness. Pharmacology 2013, 91, 229–241. [Google Scholar] [CrossRef]
- Noel, J.P.; Shivkumar, S.; Dokka, K.; Haefner, R.M.; Angelaki, D.E. Aberrant causal inference and presence of a compensatory mechanism in autism spectrum disorder. eLife 2022, 11, e71866. [Google Scholar] [CrossRef]
- Zaidel, A.; Goin-Kochel, R.P.; Angelaki, D.E. Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses. Proc. Natl. Acad. Sci. USA 2015, 112, 6461–6466. [Google Scholar] [CrossRef]
- Pellicano, E.; Burr, D. When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends Cogn. Sci. 2012, 16, 504–510. [Google Scholar] [CrossRef]
- Salomon, R.; Kannape, O.A.; Debarba, H.G.; Kaliuzhna, M.; Schneider, M.; Faivre, N.; Eliez, S.; Blanke, O. Agency Deficits in a Human Genetic Model of Schizophrenia: Insights from 22q11DS Patients. Schizophr. Bull. 2022, 48, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Yakubovich, S.; Israeli-Korn, S.; Halperin, O.; Yahalom, G.; Hassin-Baer, S.; Zaidel, A. Visual self-motion cues are impaired yet overweighted during visual-vestibular integration in Parkinson’s disease. Brain Commun. 2020, 2, fcaa035. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, J.; Brandt, T. Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control. In Perception; Handbook of Sensory Physiology; Springer: Berlin/Heidelberg, Germany, 1978; Volume 8, pp. 755–804. [Google Scholar]
- Gibson, J.J. The Perception of the Visual World; Houghton Mifflin Harcourt: Boston, MA, USA, 1950. [Google Scholar]
- Royden, C.S.; Banks, M.S.; Crowell, J.A. The perception of heading during eye movements. Nature 1992, 360, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Royden, C.S.; Crowell, J.A.; Banks, M.S. Estimating heading during eye movements. Vis. Res. 1994, 34, 3197–3214. [Google Scholar] [CrossRef]
- Warren, W.H., Jr.; Hannon, D.J. Eye movements and optical flow. J. Opt. Soc. Am. A 1990, 7, 160–169. [Google Scholar] [CrossRef]
- Lappe, M.; Bremmer, F.; van den Berg, A.V. Perception of self-motion from visual flow. Trends Cogn. Sci. 1999, 3, 329–336. [Google Scholar] [CrossRef]
- Fernandez, C.; Goldberg, J.M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 1971, 34, 661–675. [Google Scholar] [CrossRef]
- Fernandez, C.; Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J. Neurophysiol. 1976, 39, 970–984. [Google Scholar] [CrossRef]
- Fernandez, C.; Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J. Neurophysiol. 1976, 39, 985–995. [Google Scholar] [CrossRef]
- Fernandez, C.; Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 1976, 39, 996–1008. [Google Scholar] [CrossRef]
- Goldberg, J.M.; Fernandez, C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 1971, 34, 635–660. [Google Scholar] [CrossRef] [PubMed]
- Telford, L.; Howard, I.; Ohmi, M. Heading judgments during active and passive self-motion. Exp. Brain Res. 1995, 104, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; DeAngelis, G.C.; Angelaki, D.E. A functional link between area MSTd and heading perception based on vestibular signals. Nat. Neurosci. 2007, 10, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Angelaki, D.E. Vestibular Signals in Macaque Extrastriate Visual Cortex Are Functionally Appropriate for Heading Perception. J. Neurosci. 2009, 29, 8936–8945. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Cullen, K.E. Vestibular system: The many facets of a multimodal sense. Annu. Rev. Neurosci. 2008, 31, 125–150. [Google Scholar] [CrossRef]
- Cullen, K.E. Vestibular processing during natural self-motion: Implications for perception and action. Nat. Rev. Neurosci. 2019, 20, 346–363. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res. 1995, 5, 67–107. [Google Scholar] [CrossRef]
- Hitier, M.; Besnard, S.; Smith, P.F. Vestibular pathways involved in cognition. Front. Integr. Neurosci. 2014, 8, 59. [Google Scholar] [CrossRef]
- Banks, M.S.; Ehrlich, S.M.; Backus, B.T.; Crowell, J.A. Estimating heading during real and simulated eye movements. Vis. Res. 1996, 36, 431–443. [Google Scholar] [CrossRef]
- Crowell, J.A.; Banks, M.S.; Shenoy, K.V.; Andersen, R.A. Visual self-motion perception during head turns. Nat. Neurosci. 1998, 1, 732–737. [Google Scholar] [CrossRef]
- Royden, C.S.; Hildreth, E.C. Human heading judgments in the presence of moving objects. Percept. Psychophys. 1996, 58, 836–856. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.H., Jr.; Saunders, J.A. Perceiving heading in the presence of moving objects. Perception 1995, 24, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Angelaki, D.E. Eyes on Target: What Neurons Must do for the Vestibuloocular Reflex During Linear Motion. J. Neurophysiol. 2004, 92, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Angelaki, D.E.; McHenry, M.Q.; Dickman, J.D.; Newlands, S.D.; Hess, B.J. Computation of inertial motion: Neural strategies to resolve ambiguous otolith information. J. Neurosci. 1999, 19, 316–327. [Google Scholar] [CrossRef]
- Merfeld, D.M.; Zupan, L.; Peterka, R.J. Humans use internal models to estimate gravity and linear acceleration. Nature 1999, 398, 615–618. [Google Scholar] [CrossRef]
- Laurens, J.; Meng, H.; Angelaki, D.E. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 2013, 80, 1508–1518. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Shaikh, A.G.; Green, A.M.; Dickman, J.D. Neurons compute internal models of the physical laws of motion. Nature 2004, 430, 560–564. [Google Scholar] [CrossRef]
- Butler, J.S.; Smith, S.T.; Campos, J.L.; Bulthoff, H.H. Bayesian integration of visual and vestibular signals for heading. J. Vis. 2010, 10, 23. [Google Scholar] [CrossRef]
- De Winkel, K.N.; Weesie, J.; Werkhoven, P.J.; Groen, E.L. Integration of visual and inertial cues in perceived heading of self-motion. J. Vis. 2010, 10, 1. [Google Scholar] [CrossRef]
- Bertin, R.J.; Berthoz, A. Visuo-vestibular interaction in the reconstruction of travelled trajectories. Exp. Brain Res. 2004, 154, 11–21. [Google Scholar] [CrossRef]
- Butler, J.S.; Campos, J.L.; Bulthoff, H.H. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles. Exp. Brain Res. 2015, 233, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Ohmi, M. Egocentric perception through interaction among many sensory systems. Cogn. Brain Res. 1996, 5, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.H.; Hannon, D.J. Direction of self-motion is perceived from optical flow. Nature 1988, 336, 162–163. [Google Scholar] [CrossRef]
- Knill, D.C.; Richards, W. Perception as Bayesian Inference; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Ma, W.J. Bayesian Decision Models: A Primer. Neuron 2019, 104, 164–175. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Klier, E.M.; Snyder, L.H. A vestibular sensation: Probabilistic approaches to spatial perception. Neuron 2009, 64, 448–461. [Google Scholar] [CrossRef]
- MacNeilage, P.R.; Banks, M.S.; Berger, D.R.; Bulthoff, H.H. A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp. Brain Res. 2007, 179, 263–290. [Google Scholar] [CrossRef]
- Tolhurst, D.J.; Movshon, J.A.; Dean, A.F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 1983, 23, 775–785. [Google Scholar] [CrossRef]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429–433. [Google Scholar] [CrossRef]
- Landy, M.; Banks, M.; Knill, D. Ideal-Observer Models of Cue Integration. In Sensory Cue Integration; Trommershäuser, J., Konrad, K., Landy, M.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 5–29. [Google Scholar]
- Van Beers, R.J.; Wolpert, D.M.; Haggard, P. When feeling is more important than seeing in sensorimotor adaptation. Curr. Biol. 2002, 12, 834–837. [Google Scholar] [CrossRef]
- Alais, D.; Burr, D. The Ventriloquist Effect Results from Near-Optimal Bimodal Integration. Curr. Biol. 2004, 14, 257–262. [Google Scholar] [CrossRef]
- Hillis, J.M.; Ernst, M.O.; Banks, M.S.; Landy, M.S. Combining Sensory Information: Mandatory Fusion Within, but Not Between, Senses. Science 2002, 298, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, C.R.; DeAngelis, G.C.; Angelaki, D.E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 2013, 14, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Ursino, M.; Cuppini, C.; Magosso, E. Neurocomputational approaches to modelling multisensory integration in the brain: A review. Neural Netw. 2014, 60, 141–165. [Google Scholar] [CrossRef] [PubMed]
- Körding, K.P.; Wolpert, D.M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 2006, 10, 319–326. [Google Scholar] [CrossRef]
- Delle Monache, S.; La Scaleia, B.; Finazzi Agro, A.; Lacquaniti, F.; Zago, M. Psychophysical evidence for an internal model of gravity in the visual and vestibular estimates of vertical motion duration. Sci. Rep. 2025, 15, 10394. [Google Scholar] [CrossRef]
- MacNeilage, P.R.; Banks, M.S.; DeAngelis, G.C.; Angelaki, D.E. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J. Neurosci. 2010, 30, 9084–9094. [Google Scholar] [CrossRef]
- Prsa, M.; Gale, S.; Blanke, O. Self-motion leads to mandatory cue fusion across sensory modalities. J. Neurophysiol. 2012, 108, 2282–2291. [Google Scholar] [CrossRef]
- Van Beers, R.J.; Sittig, A.C.; Denier van der Gon, J.J. How humans combine simultaneous proprioceptive and visual position information. Exp. Brain Res. 1996, 111, 253–261. [Google Scholar] [CrossRef]
- Van Beers, R.J.; Sittig, A.C.; Gon, J.J. Integration of proprioceptive and visual position-information: An experimentally supported model. J. Neurophysiol. 1999, 81, 1355–1364. [Google Scholar] [CrossRef]
- Fetsch, C.R.; Pouget, A.; DeAngelis, G.C.; Angelaki, D.E. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 2011, 15, 146–154. [Google Scholar] [CrossRef]
- Dokka, K.; Park, H.; Jansen, M.; DeAngelis, G.C.; Angelaki, D.E. Causal inference accounts for heading perception in the presence of object motion. Proc. Natl. Acad. Sci. USA 2019, 116, 9060–9065. [Google Scholar] [CrossRef] [PubMed]
- Kording, K.P.; Beierholm, U.; Ma, W.J.; Quartz, S.; Tenenbaum, J.B.; Shams, L. Causal inference in multisensory perception. PLoS ONE 2007, 2, e943. [Google Scholar] [CrossRef] [PubMed]
- Rohe, T.; Noppeney, U. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol. 2015, 13, e1002073. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, L.; Dokka, K.; Angelaki, D.E.; Ma, W.J. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. PLoS Comput. Biol. 2018, 14, e1006110. [Google Scholar] [CrossRef]
- Zaidel, A.; Ma, W.J.; Angelaki, D.E. Supervised calibration relies on the multisensory percept. Neuron 2013, 80, 1544–1557. [Google Scholar] [CrossRef]
- Zaidel, A.; Turner, A.H.; Angelaki, D.E. Multisensory calibration is independent of cue reliability. J. Neurosci. 2011, 31, 13949–13962. [Google Scholar] [CrossRef]
- Zeng, F.; Zaidel, A.; Chen, A. Contrary neuronal recalibration in different multisensory cortical areas. Elife 2023, 12, e82895. [Google Scholar] [CrossRef]
- Hou, H.; Gu, Y. Multisensory integration for self-motion perception. Senses: A Compr. Ref. 2020, 6, 458–482. [Google Scholar]
- Noel, J.P.; Angelaki, D.E. Cognitive, Systems, and Computational Neurosciences of the Self in Motion. Annu. Rev. Psychol. 2022, 73, 103–129. [Google Scholar] [CrossRef]
- Angelaki, D.E. How Optic Flow and Inertial Cues Improve Motion Perception. Cold Spring Harb. Symp. Quant. Biol. 2014, 79, 141–148. [Google Scholar] [CrossRef]
- Gu, Y. Vestibular signals in primate cortex for self-motion perception. Curr. Opin. Neurobiol. 2018, 52, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, S.; Velez-Fort, M.; Margrie, T.W. Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception. Annu. Rev. Neurosci. 2023, 46, 301–320. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.T.; Wall, M.B.; Thilo, K.V. Vestibular inputs to human motion-sensitive visual cortex. Cereb. Cortex 2012, 22, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.T.; Greenlee, M.W.; DeAngelis, G.C.; Angelaki, D.E. Distributed visual–vestibular processing in the cerebral cortex of man and macaque. Multisens. Res. 2017, 30, 91–120. [Google Scholar] [CrossRef]
- Felleman, D.J.; Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1991, 1, 1–47. [Google Scholar] [CrossRef]
- Grusser, O.J.; Pause, M.; Schreiter, U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J. Physiol. 1990, 430, 537–557. [Google Scholar] [CrossRef]
- Guldin, W.O.; Grusser, O.J. Is there a vestibular cortex? Trends Neurosci. 1998, 21, 254–259. [Google Scholar] [CrossRef]
- Duffy, C.J. MST Neurons Respond to Optic Flow and Translational Movement. J. Neurophysiol. 1998, 80, 1816–1827. [Google Scholar] [CrossRef]
- Duffy, C.J.; Wurtz, R.H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 1991, 65, 1329–1345. [Google Scholar] [CrossRef]
- Page, W.K.; Duffy, C.J. Heading Representation in MST: Sensory Interactions and Population Encoding. J. Neurophysiol. 2003, 89, 1994–2013. [Google Scholar] [CrossRef]
- Gu, Y.; Watkins, P.V.; Angelaki, D.E.; DeAngelis, G.C. Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area. J. Neurosci. 2006, 26, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.L.; DeAngelis, G.C.; Angelaki, D.E. Multisensory Integration in Macaque Visual Cortex Depends on Cue Reliability. Neuron 2008, 59, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, F.; Duhamel, J.R.; Ben Hamed, S.; Graf, W. Heading encoding in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 2002, 16, 1554–1568. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, F.; Klam, F.; Duhamel, J.R.; Ben Hamed, S.; Graf, W. Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 2002, 16, 1569–1586. [Google Scholar] [CrossRef]
- Schlack, A.; Hoffmann, K.P.; Bremmer, F. Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 2002, 16, 1877–1886. [Google Scholar] [CrossRef]
- Chen, A.; DeAngelis, G.C.; Angelaki, D.E. Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex. J. Neurosci. 2011, 31, 12036–12052. [Google Scholar] [CrossRef]
- Chen, A.; DeAngelis, G.C.; Angelaki, D.E. Functional Specializations of the Ventral Intraparietal Area for Multisensory Heading Discrimination. J. Neurosci. 2013, 33, 3567–3581. [Google Scholar] [CrossRef]
- Zhang, T.; Britten, K.H. The Responses of VIP Neurons Are Sufficiently Sensitive to Support Heading Judgments. J. Neurophysiol. 2010, 103, 1865–1873. [Google Scholar] [CrossRef]
- Chen, A.; DeAngelis, G.C.; Angelaki, D.E. A Comparison of Vestibular Spatiotemporal Tuning in Macaque Parietoinsular Vestibular Cortex, Ventral Intraparietal Area, and Medial Superior Temporal Area. J. Neurosci. 2011, 31, 3082–3094. [Google Scholar] [CrossRef]
- Chen, A.; DeAngelis, G.C.; Angelaki, D.E. Convergence of Vestibular and Visual Self-Motion Signals in an Area of the Posterior Sylvian Fissure. J. Neurosci. 2011, 31, 11617–11627. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, R.; Zhu, Z.; Yang, Q.; Chen, A. The computational rules of cross-modality suppression in the visual posterior sylvian area. iScience 2023, 26, 106973. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Cheng, Z.; Yang, L.; DeAngelis, G.C.; Angelaki, D.E. Multisensory Convergence of Visual and Vestibular Heading Cues in the Pursuit Area of the Frontal Eye Field. Cereb. Cortex 2016, 26, 3785–3801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, Y.; Chen, A. Encoding of vestibular and optic flow cues to self-motion in the posterior superior temporal polysensory area. J. Physiol. 2021, 599, 3937–3954. [Google Scholar] [CrossRef] [PubMed]
- Avila, E.; Lakshminarasimhan, K.J.; DeAngelis, G.C.; Angelaki, D.E. Visual and Vestibular Selectivity for Self-Motion in Macaque Posterior Parietal Area 7a. Cereb. Cortex 2019, 29, 3932–3947. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 1974, 158, 295–305. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 1977, 198, 1–59. [Google Scholar]
- Albright, T.D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 1984, 52, 1106–1130. [Google Scholar] [CrossRef]
- Albright, T.D.; Desimone, R. Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp. Brain Res. 1987, 65, 582–592. [Google Scholar] [CrossRef]
- Tanaka, K.; Saito, H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 1989, 62, 626–641. [Google Scholar] [CrossRef]
- Kim, H.R.; Pitkow, X.; Angelaki, D.E.; DeAngelis, G.C. A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons. J. Neurophysiol. 2016, 116, 1449–1467. [Google Scholar] [CrossRef]
- Gu, Y.; DeAngelis, G.C.; Angelaki, D.E. Causal Links Between Dorsal Medial Superior Temporal Area Neurons and Multisensory Heading Perception. J. Neurosci. 2012, 32, 2299–2313. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Gu, Y. Probing Sensory Readout via Combined Choice-Correlation Measures and Microstimulation Perturbation. Neuron 2018, 100, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Huk, A.C.; Dougherty, R.F.; Heeger, D.J. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 2002, 22, 7195–7205. [Google Scholar] [CrossRef] [PubMed]
- Dukelow, S.P.; DeSouza, J.F.; Culham, J.C.; van den Berg, A.V.; Menon, R.S.; Vilis, T. Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J. Neurophysiol. 2001, 86, 1991–2000. [Google Scholar] [CrossRef]
- Billington, J.; Smith, A.T. Neural mechanisms for discounting head-roll-induced retinal motion. J. Neurosci. 2015, 35, 4851–4856. [Google Scholar] [CrossRef]
- Chen, A.; DeAngelis, G.C.; Angelaki, D.E. Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow. J. Neurosci. 2010, 30, 3022–3042. [Google Scholar] [CrossRef]
- Kirsch, V.; Keeser, D.; Hergenroeder, T.; Erat, O.; Ertl-Wagner, B.; Brandt, T.; Dieterich, M. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct. Funct. 2016, 221, 1291–1308. [Google Scholar] [CrossRef]
- Lopez, C.; Blanke, O. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 2011, 67, 119–146. [Google Scholar] [CrossRef]
- Dieterich, M.; Brandt, T. Global orientation in space and the lateralization of brain functions. Curr. Opin. Neurol. 2018, 31, 96–104. [Google Scholar] [CrossRef]
- Raiser, T.M.; Flanagin, V.L.; Duering, M.; van Ombergen, A.; Ruehl, R.M.; Zu Eulenburg, P. The human corticocortical vestibular network. Neuroimage 2020, 223, 117362. [Google Scholar] [CrossRef]
- Ibitoye, R.T.; Mallas, E.J.; Bourke, N.J.; Kaski, D.; Bronstein, A.M.; Sharp, D.J. The human vestibular cortex: Functional anatomy of OP2, its connectivity and the effect of vestibular disease. Cereb. Cortex 2023, 33, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Zu Eulenburg, P.; Caspers, S.; Roski, C.; Eickhoff, S.B. Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 2012, 60, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Blanke, O.; Mast, F.W. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 2012, 212, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Gu, Y.; Liu, S.; DeAngelis, G.C.; Angelaki, D.E. Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading Perception. J. Neurosci. 2016, 36, 3789–3798. [Google Scholar] [CrossRef]
- Frank, S.M.; Greenlee, M.W. The parieto-insular vestibular cortex in humans: More than a single area? J. Neurophysiol. 2018, 120, 1438–1450. [Google Scholar] [CrossRef]
- Sunaert, S.; Van Hecke, P.; Marchal, G.; Orban, G.A. Motion-responsive regions of the human brain. Exp. Brain Res. 1999, 127, 355–370. [Google Scholar] [CrossRef]
- Cardin, V.; Smith, A.T. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb. Cortex 2010, 20, 1964–1973. [Google Scholar] [CrossRef]
- Frank, S.M.; Baumann, O.; Mattingley, J.B.; Greenlee, M.W. Vestibular and visual responses in human posterior insular cortex. J. Neurophysiol. 2014, 112, 2481–2491. [Google Scholar] [CrossRef]
- Wirth, A.M.; Frank, S.M.; Greenlee, M.W.; Beer, A.L. White Matter Connectivity of the Visual-Vestibular Cortex Examined by Diffusion-Weighted Imaging. Brain Connect 2018, 8, 235–244. [Google Scholar] [CrossRef]
- Indovina, I.; Bosco, G.; Riccelli, R.; Maffei, V.; Lacquaniti, F.; Passamonti, L.; Toschi, N. Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. Neuroimage 2020, 222, 117247. [Google Scholar] [CrossRef]
- Beer, A.L.; Becker, M.; Frank, S.M.; Greenlee, M.W. Vestibular and visual brain areas in the medial cortex of the human brain. J. Neurophysiol. 2023, 129, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.B.; Smith, A.T. The representation of egomotion in the human brain. Curr. Biol. 2008, 18, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Baudewig, J.; Paulus, W.; Dechent, P. The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis. Neurosci. 2008, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.T.; Beer, A.L.; Furlan, M.; Mars, R.B. Connectivity of the Cingulate Sulcus Visual Area (CSv) in the Human Cerebral Cortex. Cereb. Cortex 2018, 28, 713–725. [Google Scholar] [CrossRef]
- Boussaoud, D.; Ungerleider, L.G.; Desimone, R. Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 1990, 296, 462–495. [Google Scholar] [CrossRef]
- Zaidel, A.; DeAngelis, G.C.; Angelaki, D.E. Decoupled choice-driven and stimulus-related activity in parietal neurons may be misrepresented by choice probabilities. Nat. Commun. 2017, 8, 715. [Google Scholar] [CrossRef]
- Chen, A.; Zeng, F.; DeAngelis, G.C.; Angelaki, D.E. Dynamics of Heading and Choice-Related Signals in the Parieto-Insular Vestibular Cortex of Macaque Monkeys. J. Neurosci. 2021, 41, 3254–3265. [Google Scholar] [CrossRef]
- Bremmer, F.; Schlack, A.; Shah, N.J.; Zafiris, O.; Kubischik, M.; Hoffmann, K.; Zilles, K.; Fink, G.R. Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 2001, 29, 287–296. [Google Scholar] [CrossRef]
- Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 2011, 14, 775–782. [Google Scholar] [CrossRef]
- Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A Neural Signature of Divisive Normalization at the Level of Multisensory Integration in Primate Cortex. Neuron 2017, 95, 399–411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zeng, F. The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception. Biology 2025, 14, 740. https://doi.org/10.3390/biology14070740
Liu J, Zeng F. The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception. Biology. 2025; 14(7):740. https://doi.org/10.3390/biology14070740
Chicago/Turabian StyleLiu, Jing, and Fu Zeng. 2025. "The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception" Biology 14, no. 7: 740. https://doi.org/10.3390/biology14070740
APA StyleLiu, J., & Zeng, F. (2025). The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception. Biology, 14(7), 740. https://doi.org/10.3390/biology14070740