Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = visual–vestibular interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 908 KB  
Article
Effect of Tai Chi Practice on the Adaptation to Sensory and Motor Perturbations While Standing in Older Adults
by Arion Dey, Huiyeong Chang, Laila Shaaban, Armaan Suga, Genavieve Braden, Andres Bustamante, Jisang Park, Shenhua Zhang, Yang Hu and Manuel E. Hernandez
Appl. Sci. 2025, 15(13), 7458; https://doi.org/10.3390/app15137458 - 3 Jul 2025
Viewed by 1475
Abstract
Tai Chi provides an age-appropriate exercise to decrease fall risks in older adults. However, the exact mechanism underlying the benefits of Tai Chi practice remains an open question. Thus, this study examined how aging and Tai Chi practice impact adaptation to sensory and [...] Read more.
Tai Chi provides an age-appropriate exercise to decrease fall risks in older adults. However, the exact mechanism underlying the benefits of Tai Chi practice remains an open question. Thus, this study examined how aging and Tai Chi practice impact adaptation to sensory and motor perturbations while standing. We hypothesized that older Tai Chi practitioners would exhibit a decreased reliance on visual processes as sensory and motor perturbations increased, relative to naive healthy older adults. Using rambling and trembling decompositions of the center of pressure (COP) and frequency-domain features, we examined changes in low (0–0.3 Hz), medium (0.3–1 Hz), and high (1–3 Hz) frequency components, reflecting contributions from the visual, vestibular/somatosensory, and proprioceptive systems, respectively, in healthy young adults (HYA), healthy older adults (HOA), and Tai Chi practicing older adults (TCOA). Our results revealed statistically significant condition-by-group interactions in high-frequency COP-x and rambling-x and COP-y components, medium-frequency COP-y components, and all low-frequency components in COP and trembling (p < 0.05). Further, a significant trial-by-group interaction in high-frequency rambling-y was observed (p < 0.05). These results indicate age and Tai-chi-related differences in modulation of sensory contributions to balance as perturbations increase, and with repeated practice, which merit further investigation. Full article
Show Figures

Figure 1

18 pages, 1722 KB  
Review
The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception
by Jing Liu and Fu Zeng
Biology 2025, 14(7), 740; https://doi.org/10.3390/biology14070740 - 21 Jun 2025
Viewed by 1506
Abstract
Self-motion perception is a complex multisensory process that relies on the integration of various sensory signals, particularly visual and vestibular inputs, to construct stable and unified perceptions. It is essential for spatial navigation and effective interaction with the environment. This review systematically explores [...] Read more.
Self-motion perception is a complex multisensory process that relies on the integration of various sensory signals, particularly visual and vestibular inputs, to construct stable and unified perceptions. It is essential for spatial navigation and effective interaction with the environment. This review systematically explores the mechanisms and computational principles underlying visual–vestibular integration in self-motion perception. We first outline the individual contributions of visual and vestibular cues and then introduce Bayesian inference as a normative framework for the quantitative modeling of multisensory integration. We also discuss multisensory recalibration as a critical mechanism in resolving conflicts between sensory inputs and maintaining perceptual stability. Using heading perception as a model system, we further describe the relevant visual and vestibular pathways involved in this process, as well as the brain regions involved. Finally, we discuss the neural mechanisms mediating visual–vestibular interactions through models of the Bayesian optimal integration and divisive normalization. Full article
(This article belongs to the Special Issue Mechanisms Underlying Neuronal Network Activity)
Show Figures

Figure 1

11 pages, 552 KB  
Article
The Link Between Anxiety and Depression, and Balance in Young Adults
by Tatiana Marques, Patrícia Bernardo and Margarida Serrano
Audiol. Res. 2025, 15(3), 57; https://doi.org/10.3390/audiolres15030057 - 12 May 2025
Viewed by 1680
Abstract
Background/Objectives: The ability of young adults to control their balance is generally effortless and can occur automatically with minimal cognitive involvement. However, this ability may be compromised when integration conflicts arise due to impairments in vestibular, visual, or somatosensory functions. Hence, psychomotor symptoms [...] Read more.
Background/Objectives: The ability of young adults to control their balance is generally effortless and can occur automatically with minimal cognitive involvement. However, this ability may be compromised when integration conflicts arise due to impairments in vestibular, visual, or somatosensory functions. Hence, psychomotor symptoms linked to emotional states can also influence postural control. The purpose of this study was to understand the effects of anxiety and depression on balance in young adults. Methods: Our study included 50 young adults (21.86 ± 2.63 years), consisting of 13 males and 37 females. Anxiety and depressive symptoms were evaluated using the Hospital Anxiety and Depression Scale (HADS), while balance was assessed through the Modified Clinical Test for the Sensory Interaction on Balance (mCTSIB). Data analysis was conducted using Pearson’s correlation coefficient test and the Kruskal–Wallis test. Results: Pearson’s correlation analysis indicated that young adults exhibited stable postural control. However, a positive correlation (0.259, p < 0.1) was observed between anxiety levels and the sway index. Additionally, positive correlations were found between anxiety and both somatosensory (0.281, p < 0.05) and visual (0.276, p < 0.1) ratios. Conclusions: The results suggest that higher anxiety levels are associated with reduced postural balance, with sensory inputs, particularly visual and somatosensory, playing a key role in this decreased stability. Full article
Show Figures

Figure 1

21 pages, 1680 KB  
Article
Sensor-Based Assessment of Mental Fatigue Effects on Postural Stability and Multi-Sensory Integration
by Yao Sun, Yingjie Sun, Jia Zhang and Feng Ran
Sensors 2025, 25(5), 1470; https://doi.org/10.3390/s25051470 - 27 Feb 2025
Cited by 2 | Viewed by 1805
Abstract
Objective: Mental fatigue (MF) induced by prolonged cognitive tasks poses significant risks to postural stability, yet its effects on multi-sensory integration remain poorly understood. Method: This study investigated how MF alters sensory reweighting and postural control in 27 healthy young males. A 45 [...] Read more.
Objective: Mental fatigue (MF) induced by prolonged cognitive tasks poses significant risks to postural stability, yet its effects on multi-sensory integration remain poorly understood. Method: This study investigated how MF alters sensory reweighting and postural control in 27 healthy young males. A 45 min incongruent Stroop task was employed to induce MF, validated via subjective Visual Analog Scale (VAS) scores and psychomotor vigilance tests. Postural stability was assessed under four sensory perturbation conditions (O-H: no interference; C-H: visual occlusion; O-S: proprioceptive perturbation; C-S: combined perturbations) using a Kistler force platform. Center of pressure (COP) signals were analyzed through time-domain metrics, sample entropy (SampEn), and Discrete Wavelet Transform (DWT) to quantify energy distributions across sensory-related frequency bands (visual: 0–0.1 Hz; vestibular: 0.1–0.39 Hz; cerebellar: 0.39–1.56 Hz; proprioceptive: 1.56–6.25 Hz). Results: MF significantly reduced proprioceptive energy contributions (p < 0.05) while increasing vestibular reliance under O-S conditions (p < 0.05). Time-domain metrics showed no significant changes in COP velocity or displacement, but SampEn decreased under closed-eye conditions (p < 0.001), indicating reduced postural adaptability. DWT analysis highlighted MF’s interaction with visual occlusion, altering cerebellar and proprioceptive energy dynamics (p < 0.01). Conclusion: These findings demonstrate that MF disrupts proprioceptive integration, prompting compensatory shifts toward vestibular and cerebellar inputs. The integration of nonlinear entropy and frequency-domain analyses advances methodological frameworks for fatigue research, offering insights into real-time sensor-based fatigue monitoring and balance rehabilitation strategies. This study underscores the hierarchical interplay of sensory systems under cognitive load and provides empirical evidence for optimizing interventions in high-risk occupational and clinical settings. Full article
Show Figures

Figure 1

11 pages, 1544 KB  
Article
The Impact of Virtual Reality Content Characteristics on Cybersickness and Head Movement Patterns
by Seo-Yoon Park and Dong-Kyun Koo
Sensors 2025, 25(1), 215; https://doi.org/10.3390/s25010215 - 2 Jan 2025
Cited by 3 | Viewed by 1811
Abstract
Virtual reality (VR) technology has gained popularity across various fields; however, its use often induces cybersickness, characterized by symptoms such as dizziness, nausea, and eye strain. This study investigated the differences in cybersickness levels and head movement patterns under three distinct VR viewing [...] Read more.
Virtual reality (VR) technology has gained popularity across various fields; however, its use often induces cybersickness, characterized by symptoms such as dizziness, nausea, and eye strain. This study investigated the differences in cybersickness levels and head movement patterns under three distinct VR viewing conditions: dynamic VR (DVR), static VR (SVR), and a control condition (CON) using a simulator. Thirty healthy adults participated, and their head movements were recorded using the Meta Quest 2 VR headset and analyzed using Python. The Virtual Reality Sickness Questionnaire (VRSQ) assessed subjective cybersickness levels. The results revealed that the SVR condition induced the highest VRSQ scores (M = 58.057), indicating the most severe cybersickness symptoms, while the DVR condition elicited significantly higher values in head movement variables, particularly in the coefficient of variation (CV) and integral values of head position along the vertical axis, and mean velocity (p < 0.05). These findings suggest that VR content characteristics directly influence users’ head movement patterns, closely related to cybersickness occurrence and severity. This study highlights the importance of analyzing head movement patterns in cybersickness research and provides insights for VR content design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

17 pages, 9088 KB  
Article
Objective Evaluation of Motion Cueing Algorithms for Vehicle Driving Simulator Based on Criteria Importance through Intercriteria Correlation (CRITIC) Weight Method Combined with Gray Correlation Analysis
by Xue Jiang, Xiafei Chen, Yiyang Jiao and Lijie Zhang
Machines 2024, 12(5), 344; https://doi.org/10.3390/machines12050344 - 16 May 2024
Cited by 3 | Viewed by 1582
Abstract
Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, [...] Read more.
Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, our study initially establishes a model rooted in visual–vestibular interaction and head tilt angle perception systems. We then employ metrics like the Normalized Average Absolute Difference (NAAD), Normalized Pearson Correlation (NPC), and Estimated Delay (ED) to devise an evaluation index system. Furthermore, we use a combined approach incorporating CRITIC and gray relational analysis to ascertain the weights of these indicators. This allows us to consolidate them into a comprehensive evaluation metric that reflects the overall fidelity of motion cueing algorithms. Subjective evaluation experiments validate the reasonableness and efficacy of our proposed Perception Fidelity Evaluation (PFE) method. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

11 pages, 1848 KB  
Article
The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects
by Taylor W. Cleworth, John H. J. Allum, Emma I. Nielsen and Mark G. Carpenter
Brain Sci. 2023, 13(11), 1502; https://doi.org/10.3390/brainsci13111502 - 24 Oct 2023
Cited by 1 | Viewed by 2098
Abstract
Background: Falls and related injuries are critical issues in several disease states, as well as aging, especially when interactions between vestibular and visual sensory inputs are involved. Slow support surface tilt (0.6 deg/s) followed by subjective postural horizontal (SPH) assessments have been [...] Read more.
Background: Falls and related injuries are critical issues in several disease states, as well as aging, especially when interactions between vestibular and visual sensory inputs are involved. Slow support surface tilt (0.6 deg/s) followed by subjective postural horizontal (SPH) assessments have been proposed as a viable method for assessing otolith contributions to balance control. Previous assessments of perceived body alignment to vertical, including subjective visual vertical, have suggested that visual inputs are weighted more when vestibular information is near the threshold and less reliable during slow body tilt. To date, no studies have examined the influence of visual stimuli on slow roll-tilt postural responses and the SPH. Therefore, this study investigated how dynamic visual cues, in the form of circular vection (CV), influence postural responses and the perception of the horizontal during and after support surface tilt. Methods: Ten healthy young adults (6 female, mean age 23) wore a head-mounted display while standing on a tilting platform. Participants were asked to remain upright for 30 s, during which (1) the visual scene rotated, inducing roll CV clockwise (CW) or counter-clockwise (CCW) at 60°/s; (2) the platform only (PO) rotated in roll to test SPH (0.6°/s, 2°, CW or CCW); (3) a combination of both; or (4) neither occurred. During SPH trials, participants used a hand-held device to reset the position of the platform to 0.8°/s to their perceived SPH. The angular motion of body segments was measured using pairs of light-emitting diodes mounted on the head, trunk and pelvis. Segment motion, prior to platform motion, was compared to that at peak body motion induced by platform motion and when SPH had been set. Results: When the support surface was tilted 2°, peak upper body tilt significantly increased for congruent CV and platform tilt and decreased at the pelvis for incongruent CV when compared to PO, leading to significant differences across body segments for congruent and incongruent conditions (p ≤ 0.008). During PO, participants’ mean SPH deviated from horizontal by 0.2°. The pelvis deviated 0.2°, the trunk 0.3°, and the head 0.5° in the direction of initial platform rotation. When platform tilt and CV directions were congruent or incongruent, only head tilt at SPH reset under congruent conditions was significantly different from the PO condition (1.7° vs. 0.5°). Conclusions: Roll CV has a significant effect on phasic body responses and a less significant effect on tonic body responses to lateral tilt. The SPH of the support surface was not altered by CV. Responses during tilt demonstrated enhanced reactions for congruent and reduced reactions for incongruent CV, both different from responses to CV alone. Tonic body displacements associated with SPH were changed less than those during tilt and were only slightly larger than displacements for CV alone. This study supports the hypothesis of weighted multisensory integration during dynamic postural tasks being highly dependent on the direction of visual cues during tilt and less dependent on tonic SPH offsets. These techniques could be used to examine vestibular and visual interactions within clinical populations, particularly those with visual vertigo and dizziness. Full article
(This article belongs to the Special Issue Vestibular Neurology)
Show Figures

Figure 1

15 pages, 508 KB  
Review
Perceptual Biases as the Side Effect of a Multisensory Adaptive System: Insights from Verticality and Self-Motion Perception
by Luigi F. Cuturi
Vision 2022, 6(3), 53; https://doi.org/10.3390/vision6030053 - 26 Aug 2022
Cited by 2 | Viewed by 2841
Abstract
Perceptual biases can be interpreted as adverse consequences of optimal processes which otherwise improve system performance. The review presented here focuses on the investigation of inaccuracies in multisensory perception by focusing on the perception of verticality and self-motion, where the vestibular sensory modality [...] Read more.
Perceptual biases can be interpreted as adverse consequences of optimal processes which otherwise improve system performance. The review presented here focuses on the investigation of inaccuracies in multisensory perception by focusing on the perception of verticality and self-motion, where the vestibular sensory modality has a prominent role. Perception of verticality indicates how the system processes gravity. Thus, it represents an indirect measurement of vestibular perception. Head tilts can lead to biases in perceived verticality, interpreted as the influence of a vestibular prior set at the most common orientation relative to gravity (i.e., upright), useful for improving precision when upright (e.g., fall avoidance). Studies on the perception of verticality across development and in the presence of blindness show that prior acquisition is mediated by visual experience, thus unveiling the fundamental role of visuo-vestibular interconnections across development. Such multisensory interactions can be behaviorally tested with cross-modal aftereffect paradigms which test whether adaptation in one sensory modality induces biases in another, eventually revealing an interconnection between the tested sensory modalities. Such phenomena indicate the presence of multisensory neural mechanisms that constantly function to calibrate self-motion dedicated sensory modalities with each other as well as with the environment. Thus, biases in vestibular perception reveal how the brain optimally adapts to environmental requests, such as spatial navigation and steady changes in the surroundings. Full article
Show Figures

Figure 1

13 pages, 1606 KB  
Article
The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study
by Milos Dordevic, Sonja Hoelzer, Augusta Russo, José C. García Alanis and Notger G. Müller
Life 2022, 12(8), 1239; https://doi.org/10.3390/life12081239 - 15 Aug 2022
Cited by 12 | Viewed by 2621
Abstract
As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, [...] Read more.
As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

20 pages, 5097 KB  
Article
Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase
by Joëlle Al-Choboq, Mélanie L. Ferlazzo, Laurène Sonzogni, Adeline Granzotto, Laura El-Nachef, Mira Maalouf, Elise Berthel and Nicolas Foray
Int. J. Mol. Sci. 2022, 23(3), 1570; https://doi.org/10.3390/ijms23031570 - 29 Jan 2022
Cited by 12 | Viewed by 3332
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the [...] Read more.
Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1—a subset of USH—by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (ɣH2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 29252 KB  
Review
Brain Correlates of Persistent Postural-Perceptual Dizziness: A Review of Neuroimaging Studies
by Iole Indovina, Luca Passamonti, Viviana Mucci, Giuseppe Chiarella, Francesco Lacquaniti and Jeffrey P. Staab
J. Clin. Med. 2021, 10(18), 4274; https://doi.org/10.3390/jcm10184274 - 21 Sep 2021
Cited by 37 | Viewed by 9285
Abstract
Persistent postural-perceptual dizziness (PPPD), defined in 2017, is a vestibular disorder characterized by chronic dizziness that is exacerbated by upright posture and exposure to complex visual stimuli. This review focused on recent neuroimaging studies that explored the pathophysiological mechanisms underlying PPPD and three [...] Read more.
Persistent postural-perceptual dizziness (PPPD), defined in 2017, is a vestibular disorder characterized by chronic dizziness that is exacerbated by upright posture and exposure to complex visual stimuli. This review focused on recent neuroimaging studies that explored the pathophysiological mechanisms underlying PPPD and three conditions that predated it. The emerging picture is that local activity and functional connectivity in multimodal vestibular cortical areas are decreased in PPPD, which is potentially related to structural abnormalities (e.g., reductions in cortical folding and grey-matter volume). Additionally, connectivity between the prefrontal cortex, which regulates attentional and emotional responses, and primary visual and motor regions appears to be increased in PPPD. These results complement physiological and psychological data identifying hypervigilant postural control and visual dependence in patients with PPPD, supporting the hypothesis that PPPD arises from shifts in interactions among visuo-vestibular, sensorimotor, and emotional networks that overweigh visual over vestibular inputs and increase the effects of anxiety-related mechanisms on locomotor control and spatial orientation. Full article
Show Figures

Figure 1

18 pages, 3504 KB  
Article
Kohonen Neural Network Investigation of the Effects of the Visual, Proprioceptive and Vestibular Systems to Balance in Young Healthy Adult Subjects
by Oseikhuemen Davis Ojie and Reza Saatchi
Healthcare 2021, 9(9), 1219; https://doi.org/10.3390/healthcare9091219 - 16 Sep 2021
Cited by 7 | Viewed by 3149
Abstract
Kohonen neural network (KNN) was used to investigate the effects of the visual, proprioceptive and vestibular systems using the sway information in the mediolateral (ML) and anterior-posterior (AP) directions, obtained from an inertial measurement unit, placed at the lower backs of 23 healthy [...] Read more.
Kohonen neural network (KNN) was used to investigate the effects of the visual, proprioceptive and vestibular systems using the sway information in the mediolateral (ML) and anterior-posterior (AP) directions, obtained from an inertial measurement unit, placed at the lower backs of 23 healthy adult subjects (10 males, 13 females, mean (standard deviation) age: 24.5 (4.0) years, height: 173.6 (6.8) centimeter, weight: 72.7 (9.9) kg). The measurements were based on the modified Clinical Test of Sensory Interaction and Balance (mCTSIB). KNN clustered the subjects’ time-domain sway measures by processing their sway’s root mean square position, velocity, and acceleration. Clustering effectiveness was established using external performance indicators such as purity, precision-recall, and F-measure. Differences in these measures, from the clustering of each mCTSIB condition with its condition, were used to extract information about the balance-related sensory systems, where smaller values indicated reduced sway differences. The results for the parameters of purity, precision, recall, and F-measure were higher in the AP direction as compared to the ML direction by 7.12%, 11.64%, 7.12%, and 9.50% respectively, with their differences statistically significant (p < 0.05) thus suggesting the related sensory systems affect majorly the AP direction sway as compared to the ML direction sway. Sway differences in the ML direction were lowest in the presence of the visual system. It was concluded that the effect of the visual system on the balance can be examined mostly by the ML sway while the proprioceptive and vestibular systems can be examined mostly by the AP direction sway. Full article
Show Figures

Figure 1

13 pages, 1395 KB  
Article
The Role of the Functional Head Impulse Test with and without Optokinetic Stimuli in Vestibular Migraine and Acute Unilateral Vestibulopathy: Discovering a Dynamic Visual Dependence
by Augusto Pietro Casani, Francesco Lazzerini, Ottavia Marconi and Nicola Vernassa
J. Clin. Med. 2021, 10(17), 3787; https://doi.org/10.3390/jcm10173787 - 25 Aug 2021
Cited by 13 | Viewed by 2733
Abstract
(1) Background: Visually induced vertigo (i.e., vertigo provoked by moving visual scenes) can be considered a noticeable feature of vestibular migraines (VM) and can be present in patients suffering from acute unilateral vestibulopathy (AUV). Hypersensitivity to moving or conflicting visual stimulation is named [...] Read more.
(1) Background: Visually induced vertigo (i.e., vertigo provoked by moving visual scenes) can be considered a noticeable feature of vestibular migraines (VM) and can be present in patients suffering from acute unilateral vestibulopathy (AUV). Hypersensitivity to moving or conflicting visual stimulation is named visual dependence. (2) Methods: Visuo-vestibular interactions were analyzed via the functional Head Impulse Test (fHIT) with and without optokinetic stimulation (o-fHIT) in 25 patients with VM, in 20 subjects affected by AUV, and in 20 healthy subjects. We calculated the percentage of correct answers (%CA) without and with the addition of the optokinetic background (OB). (3) In VM groups, the %CA on the fHIT was 92.07% without OB and 73.66% with OB. A significant difference was found between %CA on the deficit side and that on the normal side in AUV, both without OB and with OB. (4) Conclusions: The fHIT results in terms of %CA with and without OB could be useful to identify the presence of a dynamic visual dependence, especially in patients suffering from VM. The difference in %CA with and without OB could provide instrumental support to help correctly identify subjects suffering from VM. We propose the use of the fHIT in clinical practice whenever there is a need to highlight a condition of dynamic visual dependence. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

10 pages, 1427 KB  
Article
Titanium and Platinum–Fluoroplastic Stapes Prostheses Visualization on Cone Beam Computed Tomography and High-Resolution Computed Tomography
by Valerie Dahm, Ursula Schwarz–Nemec, Alice B. Auinger, Michael A. Arnoldner, Alexandra Kaider, Dominik Riss, Christian Czerny and Christoph Arnoldner
Life 2021, 11(2), 156; https://doi.org/10.3390/life11020156 - 17 Feb 2021
Cited by 3 | Viewed by 4324
Abstract
Objective: The aim of this study was to evaluate whether stapes prostheses can be visualized with less metal artifacts and therefore more accurately on cone beam computed tomography in comparison to computed tomography imaging. Recent studies have shown that cone beam computed tomography [...] Read more.
Objective: The aim of this study was to evaluate whether stapes prostheses can be visualized with less metal artifacts and therefore more accurately on cone beam computed tomography in comparison to computed tomography imaging. Recent studies have shown that cone beam computed tomography has advantages when imaging metal artifacts. Patients with hearing loss or vertigo, who have undergone stapedotomy, often present a challenge for otologic surgeons. Imaging studies can deliver crucial additional information. Methods: A retrospective analysis of imaging studies and clinical data in a tertiary care center were carried out. Forty-one patients with forty-five implanted ears were evaluated in the study. All included patients had been implanted with a platinum–fluoroplastic (n = 19) or titanium (n = 26) piston and subsequently had undergone imaging months or years after surgery for various reasons. Patients underwent computed tomography or cone beam computed tomography of the temporal bone depending on availability. Piston visualization, prosthesis length, vestibular intrusion and audiologic results were compared between the groups. Piston position on imaging studies were compared to intraoperative findings. Results: Functional length measurements of all prostheses were carried out with a mean error of −0.17 mm (±0.20). Platinum–fluoroplastic protheses were significantly underestimated in length compared to titanium prostheses. To analyze the material-dependent difference in the measurement errors of the imaging techniques the interaction was tested in an ANOVA model and showed no statistically significant result (p = 0.24). The blinded neuroradiologist viewed two implants, both platinum–fluoroplastic pistons, as located outside of the vestibule due to an underestimation of the prothesis length and the missing radiodensity of the lower end of the prosthesis. Conclusion: Surgeons and radiologists should be aware of the different types and radiologic features of stapes prostheses and the missing radiodensity of some protheses parts. Cone beam computed tomography is an imaging alternative with a potential advantage of reduced radiation in patients after stapes surgery suffering from vertigo or hearing loss to evaluate piston position. Full article
Show Figures

Figure 1

12 pages, 694 KB  
Article
Visual Feedback and Postural Control in Multiple Sclerosis
by Hernan Inojosa, Dirk Schriefer, Katrin Trentzsch, Antonia Klöditz and Tjalf Ziemssen
J. Clin. Med. 2020, 9(5), 1291; https://doi.org/10.3390/jcm9051291 - 30 Apr 2020
Cited by 11 | Viewed by 3639
Abstract
As people with multiple sclerosis (pwMS) manifest heterogeneous demyelinating lesions that could affect somatosensory or vestibular ways, visual stimulus as feedback could be especially relevant to achieve postural control. This has clinical importance for the development of preventive measures and rehabilitation therapies in [...] Read more.
As people with multiple sclerosis (pwMS) manifest heterogeneous demyelinating lesions that could affect somatosensory or vestibular ways, visual stimulus as feedback could be especially relevant to achieve postural control. This has clinical importance for the development of preventive measures and rehabilitation therapies in order to avoid falls and accidents in this group. In our study, we objectively evaluated the influence of visual feedback on the stabilization of balance in pwMS versus healthy controls (HC) and its potential utility in clinical evaluation. Static posturography tests were performed in 99 pwMS and 30 HC. Subjects stood on a force platform with open and closed eyes. During this procedure, three balance parameters were obtained for both vision conditions: average sway, average speed, and average speed of sway. Neurostatus-Expanded Disease Disability Score (EDSS) and Multiple Sclerosis Functional Composite (MSFC) were performed in parallel as well. A two-way mixed repeated measures ANCOVA, controlling for sex and age, was performed to evaluate the effect of vision, MS diagnosis, and the interaction of both in static posturography parameters. The difference between both closed and open eyes conditions was calculated for each parameter and further analyzed according to MS-relevant clinical variables. The magnitude of the vision effect differed between pwMS and HC as a significant interaction between the vision and the MS diagnosis in the delineated area (p < 0.001) and average speed of sway (p = 0.001) was seen. These parameters had a greater increase in pwMS than in HC after closing eyes. For the average sway, a significant main effect of vision was present (p = 0.047). Additionally, the differences obtained between open and closed eyes conditions assessed with the delineated area and average speed of sway were moderately correlated to the assessed clinical tests EDSS (r = 0.405 and r = 0.329, respectively) and the MSFC (r = −0.385 and r = −0.259, respectively). In our study, pwMS were more dependent of visual feedback than HC to maintain postural control. This easy and short evaluation by static posturography could support the development of targeted preventive measures and interventions in pwMS. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

Back to TopTop