Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera)
Simple Summary
Abstract
1. Introduction
2. Theoretical Framework and Literature Review
3. Materials and Methods
3.1. Literature Search Strategy
3.2. Screening and Selection
- (i)
- Peer-reviewed experimental studies (in vitro, in vivo, or clinical);
- (ii)
- Focus on the therapeutic use of the specified plants;
- (iii)
- Clear identification of plant part and extract type.
3.3. Data Extraction and Synthesis
- Plant species and part used;
- Study type (in vitro, in vivo, or clinical);
- Extract type and dosage;
- Biological mechanism or molecular target;
- Reported therapeutic outcome.
4. Traditional Formulations and Synergistic Effects
Examples of Synergistic Plant Combinations
5. Medicinal Plant Usage Overview
6. Medicinal Plants’ Overview of Phoenix Dactylifera
6.1. Overview
6.2. Antidiabetic Effect
6.3. Cardioprotective Effect
6.4. Antibacterial Effect
Antidiabetic Effect | ||||||
Scientific name | Trial type | Model or method | Used Part or form | Dose and duration | Therapeutic effect | Reference |
P. dactylifera | In vivo | Male Wistar albino rats male aged 2–3 weeks | Methanolic Extract of P. dactylifera | 5 mg/kg/day for 25 days | Improve glucolipid balance Improve oxidative stress Confer both direct and indirect cardioprotective effects | [68] |
In vitro | Biochemical assays | Seeds | - | Antioxidant, antimicrobial, and anti-inflammatory properties | [51] | |
In vivo | Diabetic rat model | Extract from epicarp or seeds | - | Improved biochemical parameters (e.g., glucose, urea, creatinine), reduced ALT and AST levels, enhanced antioxidant enzyme activity, modulated oxidative stress | [13,52] | |
In vivo | Male Wistar rats weighing 200–250 g | The aqueous suspension of P. dactylifera seeds (aqPDS) | 1 g/kg/d for 4 weeks. | Ameliorate glucolipid imbalance, reduce oxidative stress, and protect liver and kidney architecture | [53] | |
In vitro | Enzyme inhibition assays | Date seed extracts | - | Inhibition of α-glucosidase and α-amylase, antioxidant activity | [54] | |
In vitro | Enzyme inhibition assays | Date fruit extract | - | Inhibition of α-glucosidase, α-amylase; improvement in glucose tolerance | [55] | |
In vitro | Enzyme inhibition assays | DP pollen | - | Antioxidant properties, enzyme inhibition (α-glucosidase, α-amylase) | [56,57] | |
Cardioprotective | ||||||
In vivo | Male Wistar albino rats male aged 2–3 weeks | Methanolic Extract of P.Dactylifera | 5 mg/kg/day for 25 days | Improve glucolipid balance Improve oxidative stress Confer both direct and indirect cardioprotective effects | [68] | |
In vivo | Hypercholestrolemic rats | Polyphenol-rich extract | 25, 50, and 100 mg/kg.bw | Significant antioxidant effects, improved lipid profile, and reduced cardiac markers in cholesterol-fed rats | [60] | |
In vivo | Rats | Ajwa date extract | 250 and 500 mg/kg.bw | Cardioprotection via modulation of oxidative stress, inflammation, and apoptosis pathways | [61] | |
In vivo | Twenty-four male Wistar rats (200–250 g) | Nano-preparation of Ajwa date extract | 1.4 g/kg orally 1 h before doxorubicin infusion | Protection against cardiotoxicity, prevention of ischemia, and enhancement of antioxidant capacity | [62] | |
In vitro | Antioxidant assays | Phenolic and flavonoid extracts from fruits | - | High antioxidant activities due to phenolic acids and flavonoid glycosides contributing to cardiovascular health | [58,59] | |
Antibacterial | ||||||
In vitro | - | DP extracts | - | Pseudomonas aeruginosa cell walls were damaged | [69] | |
In vitro | Antibacterial testing against E. coli, B. cereus, S. aureus, and Serratia marcescens | Methanolic extract of Ajwa dates | - | Significant antibacterial activity against a range of bacteria | [70] | |
In vitro | Investigation of cell wall damage in P. aeruginosa | Flavonoid glycosides in DP extracts | - | Damage to the cell walls of P. aeruginosa causing pore formation in the bacterial cells | [69] | |
In vivo and in vitro | Health benefits testing (e.g., oxidative stress reduction, hepatoprotective effects) | Aqueous and mixed aqueous/organic extracts | - | Exhibited oxidative stress reduction, free radical scavenging, coronary heart disease prevention, hepatoprotective effects, anti-inflammatory, and anticancer activities | [70] | |
In vitro | Bioactive compound analysis | Ethanol extract of Ajwa dates | - | Identified 33 active components, including flavonoid glycosides, phenolic acid derivatives, fatty acids, and lignans, which contribute to therapeutic and health-promoting properties | [69] |
7. Solanum lycopersicum
7.1. Overview
7.2. Antidiabetic Effect
7.3. Cardioprotective Effect
7.4. Antibacterial Effect
Antidiabetic | ||||||
Scientific name | Trial type | Model or method | Used Part or form | Dose and duration | Therapeutic effect | Reference |
S. lycopersicum | In vivo | Hypertension patients | Antioxidant-rich tomato juice extract | 250 mg/day for eight weeks | Systolic blood pressure decreased Diastolic blood pressure decreased | [91] |
In vivo | Diabatic patient | Serum lycopene | - | Inverse association between lycopene levels and disturbed glucose metabolism or T2DM; decrease in fasting glucose observed | [16] | |
In vivo | Normal rate | Lycopene-rich tomato homogenates | Daily for 4 weeks | Improved glucose tolerance and enhanced insulin sensitivity | [72] | |
In vivo | Hyperglycemic rats | Lycopene (exogenous administration) | 90 mg/kg body weight | Reduced glucose and H2O2 levels, improved total antioxidant status, and normalized lipid profiles, demonstrating significant hypoglycemic, hypolipidemic, and antioxidant effects | [71] | |
In vitro | Tomato, bioactive compounds | Lycopene | - | Antidiabetic effects via antioxidant, anti-inflammatory actions | [80,81] | |
In vivo | Thirty-two type 2 diabetes patients | Raw tomato | 200 g/day for 8 weeks | Suggested cardiovascular risk reduction in T2DM patients | [82] | |
Cardioprotective | ||||||
In vivo | Hypertension patients | Antioxidant-rich tomato juice extract | 250 mg/day, for 8 weeks | Systolic blood pressure decreased Diastolic blood pressure decreased | [91] | |
In vivo | Human dietary intervention studies | Lycopene-rich diets | Long-term dietary consumption | Reduction in systolic and diastolic blood pressure, improved HDL levels, decreased CRP (inflammation marker) | [16,92] | |
In vitro | Antioxidant and anti-inflammatory assays | Tomato | - | Antioxidant and antiplatelet effects, showcasing potential for functional food development | [93] | |
In vitro | Bioavailability and metabolic studies | Tomato carotenoids and phenolic extracts | - | Increased antioxidant capacity and modulation of oxidative stress pathways | [94] | |
Antibacterial | ||||||
In vitro | - | - | Ability to inhibit the growth of certain bacteria such as S. boydii. Similarly, S. dysenteriae exhibited time-dependent inhibition rates of 5.17%, 3.67%, and 2.85% under the same conditions. In the case of Staphylococcus aureus, TCLs inhibited growth at rates of 6.84% and 0.51% after 8 and 16 h of treatment, though their activity diminished after 24 h. Conversely, E. coli showed mitogenic growth (7–9%) rather than inhibition when treated with TCLs | [95] | ||
In vitro | Composition analysis and antimicrobial testing | Processing waste of ten tomato varieties | - | Moderate correlation between antimicrobial activity against S. aureus and isochlorogenic acid content; potential bioactive uses of tomato waste | [96] | |
In vitro | Antimicrobial testing on pathogenic protozoa, bacteria, fungi | Natural tomato powders with tomatine | - | Significant inhibition of pathogens due to tomatine content | [87] | |
In vitro | Ozone microbubble water treatment on tomatoes | Whole tomatoes | - | Effective bacterial inactivation without altering physical/sensory characteristics of tomatoes | [86] | |
In vitro | Antimicrobial and antioxidant analysis | Tomato plant extracts (leaves) | - | Strong antimicrobial and antioxidant activities correlated with phenolic, flavonoid, and chlorophyll contents | [88] | |
In vitro | Antimicrobial assay on pathogens | Tomato heme-binding protein 2 | - | Potent antimicrobial properties against a wide range of pathogens | [89] |
8. Trigonella foenum-graecum
8.1. Overview
8.2. Antidiabetic Effect
8.3. Cardioprotective Effect
8.4. Antibacterial Effect
Antidiabetic | ||||||
Scientific name | Trial type | Model or method | Used Part or form | Dose and duration | Therapeutic effect | Reference |
T. foenum-graecum | In vivo | Young Wistar strain albino rats | Trigonelline is a bioactive compound of T. foenum-graecum | 30 days | Protected cardiac tissue from alcohol-induced toxicity | [108] |
In vivo | Diabetic rats | Fenugreek seeds, leaves | - | Reduction of blood glucose levels | [101] | |
In vivo | - | Fenugreek | - | Antidiabetic, antihyperlipidemic, anti-obesity, anticancer, anti-inflammatory, antioxidant, antibacterial | [64,69,110,111] | |
In vivo | - | Fenugreek seeds and compounds | - | Improves blood glucose, insulin resistance, insulin sensitivity, and lipid profiles | [15] | |
In vivo | Diabetic patients | Seed powder solution | 25 g orally twice a day for one month | Improving lipid metabolism in type II diabetic patients with no adverse effects | [109] | |
Cardioprotective | ||||||
Young Wistar strain albino rats | Trigonelline is a bioactive compound of T. foenum-graecum | 30 days | Protected cardiac tissue from alcohol-induced toxicity | [108] | ||
In vivo | Neonatal rat cardiomyocytes, CoCl2-induced hypoxia | Fenugreek | Single application | Protection against hypoxia, improved calcium signaling, increased cardiomyocyte | [114] | |
In vivo | Rat model | Fenugreek seed extract | - | Improved antioxidant enzyme activity, reduced oxidative stress, and amelioration of cardiac damage | [107] | |
In vivo | Streptozotocin-induced diabetic rats | Fenugreek seed extract | - | Improved diabetic cardiomyopathy markers | [113] | |
In vivo | Hypercholesterolemic rat model | Fenugreek seeds (dietary intervention) | - | Enhanced lipid profiles, reduced pathological changes in cardiac tissue, and cardioprotection in hypercholesterolemic conditions | [97,107] | |
In vivo | Neonatal rat cardiomyocytes, CoCl2-induced hypoxia | Fenugreek | Single application | Protection against hypoxia, improved calcium signaling, increased cardiomyocyte | [114] | |
Antibacterial | ||||||
In vitro | Wistar rat model | Fenugreek extract alone and in combination with Bifidobacterium breve | Treated orally at the same time once daily for 2 weeks | Inhibition of H. pylori growth | [119] | |
In vitro | Antibacterial activity assay | Methanolic extract | Not specified | Significant antibacterial activity against E. coli, B. cereus, S. aureus, and Serratia marcescens | [70] | |
In vitro | Structural analysis on P. aeruginosa | Flavonoid glycosides from extracts | Not specified | This caused structural damage to P. aeruginosa cell walls, leading to pore formation and showcasing strong antimicrobial potential | [69] |
9. Medicinal Plants’ Overview of Withania somnifera
9.1. Overview
9.2. Antidiabetic Effect
9.3. Cardioprotective Effect
9.4. Antibacterial Effect
Antidiabetic | ||||||
Scientific name | Trial type | Model or method | Used Part or form | Dose and duration | Therapeutic effect | Reference |
Withania somnifera | In vivo | Diabetic rat model | Withaferin A | - | Controlled Type 1 diabetes through Nrf2/NFκB signaling modulation. | [126,129] |
In vivo | Diabetic patients | Ashwagandha root powder | - | Improved lipid profiles, reduced body weight, and regulated blood pressure in diabetic patients. | [130,131] | |
In vivo | Rat models | Aqueous extracts | 200, 400 mg/kg for 5 days | Lowered blood glucose and HbA1c levels; anti-inflammatory and anti-glycating effects. | [122] | |
In vitro | Cellular assays | Anti-adipogenic withanolides | - | Inhibited preadipocyte differentiation into adipocytes, potentially reducing obesity-related disorders. | [17] | |
Cardioprotective | ||||||
In vivo | Male Wistar rats | Standardized W. somnifera extracts | 300 mg/kg | Prevented doxorubicin-induced cardiotoxicity. | [141] | |
In vivo | Rat model | W. somnifera extracts | 1 mg/kg | Reduced myocardial necrosis and oxidative stress. | [17] | |
In vivo | Rat model | W. somnifera extract | - | Protected against doxorubicin cardiotoxicity; improved antioxidant status. | [122] | |
In vitro | Cellular assays | Withaferin A | - | Activation of protective Nrf2 pathway, anti-apoptotic effects. | [126] | |
In vivo | Rat model | Methanolic extract | - | Improved oxidative stress markers, reduced cardiac damage. | [133] | |
In vivo | Wistar rats with IR injury | Oral Withania somnifera | 50 mg/kg/day for 1 month | Reduced myocardial injury via antioxidant mechanisms. | [134] | |
In vitro and In vivo | Various models (e.g., cancer, neurodegeneration) | Withaferin A | - | Multi-target therapeutic effects, including cardioprotection via multiple pathways. | [132] | |
In vivo | Fifty healthy athletic adults | Ashwagandha root extract capsules | 300 mg, twice daily for 8 weeks | Enhanced cardiorespiratory endurance, improved stress recovery, and antioxidant levels. | [136] | |
Antibacterial | ||||||
In vitro | Disc diffusion method | Zinc nanoparticles (ZnONPs) from extracts | - | Antibacterial activity against S. aureus, Klebsiella pneumoniae, and E. coli. | [142] | |
In vitro | Antimicrobial assays | Aqueous and alcoholic extracts | - | Activity against Salmonella typhimurium and other pathogens like S. aureus and C. albicans. | [139] | |
In vivo | Balb/C mice model | Leaf and root extracts | - | Enhanced survival in salmonellosis. | [139] | |
In vitro | Antimicrobial assays | Methanolic extracts | - | Highest antibacterial activity (leaf extracts) against S. typhi. | [18] | |
In vitro | Antimicrobial protein assays | Flavonoids from extracts | - | Effective against methicillin-resistant S. aureus, Enterococcus spp., and Gram-negative bacteria like E. coli, K. pneumoniae, and P. mirabilis. | [122,126] | |
In vitro | Antibacterial/fungal plant pathogen assays | Fruit extract | - | Antibacterial and antifungal activities against plant pathogens. | [140] |
10. Comparative Evaluation and Contradictions
Plant | Bioactive Compounds and Actions | References |
---|---|---|
Phoenix dactylifera | Flavonoids, phenolic acids, saponins, tannins—antioxidant, hypoglycemic, anti-inflammatory, cardioprotective | [13,51,59] |
Solanum lycopersicum | Lycopene, β-carotene, polyphenols, vitamins C and E—antioxidant, antihypertensive, antidiabetic, antibacterial | [16,72,95] |
Trigonella foenum-graecum | Trigonelline, diosgenin, 4-hydroxyisoleucine, galactomannan, saponins—insulin sensitizer, hypolipidemic, antibacterial | [15,64,110] |
Withania somnifera | Withanolides, alkaloids (withanine), flavonoids, sitoindosides—adaptogenic, antidiabetic, cardioprotective, antimicrobial | [14,19,122] |
Medicinal Plant | Traditional Uses | Key Bioactive Compounds | Modern Applications |
---|---|---|---|
Phoenix dactylifera (Date Palm) | Management of diabetes, hypertension, immune enhancement, nutritional support, and anemia treatment. | Flavonoids, phenolic acids, saponins, tannins | Antidiabetic, cardioprotective, antimicrobial activities; functional foods; dietary supplements; skin-care products. |
Solanum lycopersicum (Tomato) | Antimicrobial, wound healing, gastrointestinal and skin disorders; cardiovascular support. | Lycopene, β-carotene, polyphenols, vitamins C and E | Antioxidant-rich functional foods, potential antidiabetic and cardiovascular supplements, and topical antimicrobial products. |
Trigonella foenum-graecum (Fenugreek) | Diabetes management, cholesterol reduction, gastrointestinal health improvement, and anti-inflammatory use. | Trigonelline, diosgenin, galactomannans, 4-hydroxyisoleucine, saponins | Supplements for diabetes and hypercholesterolemia; antimicrobial agents; dietary fiber-enriched functional foods; anti-inflammatory preparations. |
Withania somnifera (Ashwagandha) | Stress relief, immune enhancement, diabetes management, neurological and cardiovascular health, and anti-inflammatory treatments. | Withanolides, alkaloids (withanine), flavonoids, steroidal saponins | Adaptogenic supplements, antidiabetic and cardioprotective therapies, antimicrobial and neuroprotective formulations, functional beverages, and food products. |
11. Comparative Analysis with Traditional Chinese Medicine (TCM)
12. Safety Profiles and Toxic Effects of Medicinal Plants
13. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Sajjed, A.; Adnan, S.; Alam, H.; Mohamed, E.A.R. Ethno Botanical Study of Traditional Native Plants in Al Ain UAE. Int. J. Adv. Res. Biol. Sci. 2017, 4, 165–174. [Google Scholar]
- Shahrajabian, M.H.; Sun, W.; Magadlela, A.; Hong, S.; Cheng, Q. Fenugreek Cultivation in the Middle East and Other Parts of the World with Emphasis on Historical Aspects and Its Uses in Traditional Medicine and Modern Pharmaceutical Science. In Fenugreek: Biology and Applications; Naeem, M., Aftab, T., Khan, M.M.A., Eds.; Springer: Singapore, 2021; pp. 13–30. ISBN 978-981-16-1197-1. [Google Scholar]
- Gowthami, R.; Sharma, N.; Pandey, R.; Agrawal, A. Status and Consolidated List of Threatened Medicinal Plants of India. Genet. Resour. Crop Evol. 2021, 68, 2235–2263. [Google Scholar] [CrossRef]
- Ssenku, J.E.; Okurut, S.A.; Namuli, A.; Kudamba, A.; Tugume, P.; Matovu, P.; Wasige, G.; Kafeero, H.M.; Walusansa, A. Medicinal Plant Use, Conservation, and the Associated Traditional Knowledge in Rural Communities in Eastern Uganda. Trop. Med. Health 2022, 50, 39. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazouani, F.; El-Ouahmani, N.; Teixidor-Toneu, I.; Yacoubi, B.; Zekhnini, A. A Survey of Medicinal Plants Used in Traditional Medicine by Women and Herbalists from the City of Agadir, Southwest of Morocco. Eur. J. Integr. Med. 2021, 42, 101284. [Google Scholar] [CrossRef]
- Alqethami, A.; Aldhebiani, A.Y.; Teixidor-Toneu, I. Medicinal Plants Used in Jeddah, Saudi Arabia: A Gender Perspective. J. Ethnopharmacol. 2020, 257, 112899. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of Taxol Biosynthesis by Aspergillus terreus, Endophyte of Podocarpus gracilior Pilger, upon Intimate Interaction with the Plant Endogenous Microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- Hussein, E.; Daoud, S.; Alrabaiah, H.; Badawi, R. Exploring Undergraduate Students’ Attitudes towards Emergency Online Learning during COVID-19: A Case from the UAE. Child. Youth Serv. Rev. 2020, 119, 105699. [Google Scholar] [CrossRef]
- WHO Noncommunicable Diseases Country Profiles 2018. Available online: https://www.who.int/publications/i/item/9789241514620 (accessed on 25 May 2025).
- Howes, M.-J.R.; Quave, C.L.; Collemare, J.; Tatsis, E.C.; Twilley, D.; Lulekal, E.; Farlow, A.; Li, L.; Cazar, M.-E.; Leaman, D.J.; et al. Molecules from Nature: Reconciling Biodiversity Conservation and Global Healthcare Imperatives for Sustainable Use of Medicinal Plants and Fungi. Plants People Planet 2020, 2, 463–481. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aly, S.M.; Ali, H.; Babiker, A.Y.; Srikar, S.; Khan, A.A. Therapeutic Effects of Date Fruits (Phoenix dactylifera) in the Prevention of Diseases via Modulation of Anti-Inflammatory, Anti-Oxidant and Anti-Tumour Activity. Int. J. Clin. Exp. Med. 2014, 7, 483–491. [Google Scholar] [PubMed]
- Saleem, S.; Muhammad, G.; Hussain, M.A.; Altaf, M.; Bukhari, S.N.A. Withania somnifera L.: Insights into the Phytochemical Profile, Therapeutic Potential, Clinical Trials, and Future Prospective. Iran. J. Basic Med. Sci. 2020, 23, 1501–1526. [Google Scholar] [CrossRef] [PubMed]
- Sarker, D.K.; Ray, P.; Dutta, A.K.; Rouf, R.; Uddin, S.J. Antidiabetic Potential of Fenugreek (Trigonella foenum-graecum): A Magic Herb for Diabetes Mellitus. Food Sci. Nutr. 2024, 12, 7108–7136. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-J.; Huang, C.-Y.; Kiefer, R.; Lee, S.-D.; Maurya, N.; Velmurugan, B.K. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. Molecules 2022, 27, 3235. [Google Scholar] [CrossRef]
- Wiciński, M.; Fajkiel-Madajczyk, A.; Kurant, Z.; Liss, S.; Szyperski, P.; Szambelan, M.; Gromadzki, B.; Rupniak, I.; Słupski, M.; Sadowska-Krawczenko, I. Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review. Nutrients 2024, 16, 2481. [Google Scholar] [CrossRef]
- Alam, N.; Hossain, M.; Mottalib, M.A.; Sulaiman, S.A.; Gan, S.H.; Khalil, M.I. Methanolic Extracts of Withania somnifera Leaves, Fruits and Roots Possess Antioxidant Properties and Antibacterial Activities. BMC Complement. Altern. Med. 2012, 12, 175. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, P. Evaluation of Antimicrobial Efficacy of Flavonoids of Withania somnifera L. Indian J. Pharm. Sci. 2011, 73, 473–478. [Google Scholar]
- Alqaydi, T.K.; Bedir, A.S.; Abu-Elsaoud, A.M.; El-Tarabily, K.A.; Al Raish, S.M. An Assessment of the Knowledge, Attitude, and Practice of Probiotics and Prebiotics among the Population of the United Arab Emirates. Foods 2024, 13, 2219. [Google Scholar] [CrossRef]
- Almaramah, S.B.; Abu-Elsaoud, A.M.; Alteneiji, W.A.; Albedwawi, S.T.; El-Tarabily, K.A.; Al Raish, S.M. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods 2024, 13, 1608. [Google Scholar] [CrossRef]
- Mesmar, A.K.; Albedwawi, S.T.; Alsalami, A.K.; Alshemeili, A.R.; Abu-Elsaoud, A.M.; El-Tarabily, K.A.; Al Raish, S.M. The Effect of Recycled Spent Coffee Grounds Fertilizer, Vermicompost, and Chemical Fertilizers on the Growth and Soil Quality of Red Radish (Raphanus sativus) in the United Arab Emirates: A Sustainability Perspective. Foods 2024, 13, 1997. [Google Scholar] [CrossRef]
- Almasri, R.S.; Bedir, A.S.; Al Raish, S.M. Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Nutrients 2025, 17, 411. [Google Scholar] [CrossRef]
- Elnady, R.E.; Abdon, M.S.; Shaheen, H.R.; Eladawy, R.M.; Azar, Y.O.; Al Raish, S.M. The Future of Alopecia Treatment: Plant Extracts, Nanocarriers, and 3D Bioprinting in Focus. Pharmaceutics 2025, 17, 584. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Bedir, A.S.; Abu-Elsaoud, A.M.; Al Raish, S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024, 16, 4150. [Google Scholar] [CrossRef] [PubMed]
- Almasri, R.S.; Bedir, A.S.; Ranneh, Y.K.; El-Tarabily, K.A.; Al Raish, S.M. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024, 16, 3848. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Saad, B.; Azaizeh, H.; Said, O. Tradition and Perspectives of Arab Herbal Medicine: A Review. Evid.-Based Complement. Altern. Med. 2005, 2, 475–479. [Google Scholar] [CrossRef]
- Singh, N.; Bhalla, M.; De Jager, P.; Gilca, M. An Overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 208–213. [Google Scholar] [CrossRef]
- Yadav, U.C.S.; Baquer, N.Z. Pharmacological Effects of Trigonella foenum-graecum L. in Health and Disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Pavadhgul, P.; Chongsuwat, R.; Komindr, S. Nutraceutical Improves Glycemic Control, Insulin Sensitivity, and Oxidative Stress in Hyperglycemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nat. Prod. Commun. 2020, 15, 1934578X20918687. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Evidence-Based Efficacy of Adaptogens in Fatigue, and Molecular Mechanisms Related to Their Stress-Protective Activity. Curr. Clin. Pharmacol. 2009, 4, 198–219. [Google Scholar] [CrossRef]
- Mazrouei, N.A.; Meslamani, A.Z.A.; Alajeel, R.; Alghadban, G.; Ansari, N.; Kaabi, M.A.; Sadeq, A.; Ibrahim, R.; Ibrahim, O.M. The Patterns of Herbal Medicine Use in the United Arab Emirates; A National Study. Pharm. Pract. 2022, 20, 01–07. [Google Scholar] [CrossRef] [PubMed]
- Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef] [PubMed]
- Metwaly, A.M.; Ghoneim, M.M.; Eissa, I.H.; Elsehemy, I.A.; Mostafa, A.E.; Hegazy, M.M.; Afifi, W.M.; Dou, D. Traditional Ancient Egyptian Medicine: A Review. Saudi J. Biol. Sci. 2021, 28, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadou, K.; Krigas, N.; Lazari, D.; Maloupa, E. Chapter 4—Sustainable Use of Mediterranean Medicinal-Aromatic Plants. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 57–74. ISBN 978-0-12-814700-9. [Google Scholar]
- Ahmad, I.; Aqil, F.; Ahmad, F.; Owais, M. Herbal Medicines: Prospects and Constraints. In Modern Phytomedicine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 59–77. ISBN 978-3-527-60998-7. [Google Scholar]
- Al-Yateem, N.; Lajam, A.M.A.; Othman, M.M.G.; Ahmed, M.A.A.; Ibrahim, S.; Halimi, A.; Ahmad, F.R.; Subu, M.A.; Dias, J.M.; Rahman, S.A.; et al. The Impact of Cultural Healthcare Practices on Children’s Health in the United Arab Emirates: A Qualitative Study of Traditional Remedies and Implications. Front. Public Health 2023, 11, 1266742. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- AbouZeid, E.M.; Afifi, A.H.; Hussei, R.A.; Salama, A.A.; Youssef, F.S.; El-Ahmady, S.H.; Ammar, N.M. Phoenix dactylifera L.: An Overview of Phytochemical Constituents and Impact on Women’s Health. Chem. Biodivers. 2024, 21, e202400456. [Google Scholar] [CrossRef]
- Chao, C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef]
- Krueger, R.R. Date Palm (Phoenix dactylifera L.) Biology and Utilization. In The Date Palm Genome, Vol. 1: Phylogeny, Biodiversity and Mapping; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–28. ISBN 978-3-030-73746-7. [Google Scholar]
- Al-Karmadi, A.; Okoh, A.I. An overview of date (Phoenix dactylifera) fruits as an important global food resource. Foods 2024, 13, 1024. [Google Scholar] [CrossRef]
- Shamim, A.; Sanka Loganathachetti, D.; Chandran, S.; Masmoudi, K.; Mundra, S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci. Rep. 2022, 12, 12733. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Gullón, B.; Amarowicz, R.; Misihairabgwi, J.M.; Lorenzo, J.M. Phoenix dactylifera Products in Human Health—A Review. Trends Food Sci. Technol. 2020, 105, 238–250. [Google Scholar] [CrossRef]
- Yahia, E.M.; Kader, A.A. Date (Phoenix dactylifera L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 41–81e. ISBN 978-1-84569-735-8. [Google Scholar]
- El-Beltagi, H.S.; Shah, S.T.; Mohamed, H.I.; Alam, N.; Sajid, M.; Khan, A.; Basit, A. Physiological Response, Phytochemicals, Antioxidant, and Enzymatic Activity of Date Palm (Phoenix dactylifera L.) Cultivated under Different Storage Time, Harvesting Stages, and Temperatures. Saudi J. Biol. Sci. 2023, 30, 103818. [Google Scholar] [CrossRef] [PubMed]
- Halabi, A.A.; Elwakil, B.H.; Hagar, M.; Olama, Z.A. Date Fruit (Phoenix dactylifera L.) Cultivar Extracts: Nanoparticle Synthesis, Antimicrobial and Antioxidant Activities. Molecules 2022, 27, 5165. [Google Scholar] [CrossRef]
- Saputri, R.D.; Usman, A.N.; Widaningsih, Y.; Jafar, N.; Ahmad, M.; Ramadhani, S.; Dirpan, A. Date Palm (Phoenix dactylifera) Consumption as a Nutrition Source for Mild Anemia. Gac. Sanit. 2021, 35 (Suppl. S2), S271–S274. [Google Scholar] [CrossRef] [PubMed]
- Alahyane, A.; ElQarnifa, S.; Ayour, J.; Elateri, I.; Ouamnina, A.; Ait-Oubahou, A.; Benichou, M.; Abderrazik, M. Date Seeds (Phoenix dactylifera L.) Valorization: Chemical Composition of Lipid Fraction. Braz. J. Biol. 2022, 84, e260771. [Google Scholar] [CrossRef]
- Alkhoori, M.A.; Kong, A.S.-Y.; Aljaafari, M.N.; Abushelaibi, A.; Erin Lim, S.-H.; Cheng, W.-H.; Chong, C.-M.; Lai, K.-S. Biochemical Composition and Biological Activities of Date Palm (Phoenix dactylifera L.) Seeds: A Review. Biomolecules 2022, 12, 1626. [Google Scholar] [CrossRef] [PubMed]
- Michael, H.N.; Salib, J.Y.; Eskander, E.F. Bioactivity of Diosmetin Glycosides Isolated from the Epicarp of Date Fruits, Phoenix dactylifera, on the Biochemical Profile of Alloxan Diabetic Male Rats. Phytother. Res. 2013, 27, 699–704. [Google Scholar] [CrossRef]
- Abdelaziz, D.H.A.; Ali, S.A.; Mostafa, M.M.A. Phoenix dactylifera Seeds Ameliorate Early Diabetic Complications in Streptozotocin-Induced Diabetic Rats. Pharm. Biol. 2015, 53, 792–799. [Google Scholar] [CrossRef]
- Djaoudene, O.; López, V.; Cásedas, G.; Les, F.; Schisano, C.; Bachir Bey, M.; Tenore, G.C. Phoenix dactylifera L. Seeds: A by-Product as a Source of Bioactive Compounds with Antioxidant and Enzyme Inhibitory Properties. Food Funct. 2019, 10, 4953–4965. [Google Scholar] [CrossRef]
- Mia, M.A.-T.; Mosaib, M.G.; Khalil, M.I.; Islam, M.A.; Gan, S.H. Potentials and Safety of Date Palm Fruit against Diabetes: A Critical Review. Foods 2020, 9, 1557. [Google Scholar] [CrossRef]
- Lammari, N.; Froiio, F.; Louaer, M.; Cristiano, M.C.; Bensouici, C.; Paolino, D.; Louaer, O.; Meniai, A.H.; Elaissari, A. Poly(Ethyl Acrylate-Co-Methyl Methacrylate-Co-Trimethylammoniethyl Methacrylate Chloride) (Eudragit RS100) Nanocapsules as Nanovector Carriers for Phoenix dactylifera L. Seeds Oil: A Versatile Antidiabetic Agent. Biomacromolecules 2020, 21, 4442–4456. [Google Scholar] [CrossRef]
- Salhi, S.; Chentouf, M.; Harrak, H.; Rahim, A.; Çakir, C.; Çam, D.; Öztürk, M.; Hamidallah, N.; Cabaraux, J.-F.; El Amiri, B. Assessment of Physicochemical Parameters, Bioactive Compounds, Biological Activities, and Nutritional Value of the Most Two Commercialized Pollen Types of Date Palm (Phoenix dactylifera L.) in Morocco. Food Sci. Technol. Int. 2024, 30, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Al-Dashti, Y.A.; Holt, R.R.; Keen, C.L.; Hackman, R.M. Date Palm Fruit (Phoenix dactylifera): Effects on Vascular Health and Future Research Directions. Int. J. Mol. Sci. 2021, 22, 4665. [Google Scholar] [CrossRef]
- Alhaider, I.A.; Mohamed, M.E.; Ahmed, K.K.M.; Kumar, A.H.S. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells. Front. Pharmacol. 2017, 8, 592. [Google Scholar] [CrossRef]
- Alqarni, M.M.M.; Osman, M.A.; Al-Tamimi, D.S.; Gassem, M.A.; Al-Khalifa, A.S.; Al-Juhaimi, F.; Mohamed Ahmed, I.A. Antioxidant and Antihyperlipidemic Effects of Ajwa Date (Phoenix dactylifera L.) Extracts in Rats Fed a Cholesterol-Rich Diet. J. Food Biochem. 2019, 43, e12933. [Google Scholar] [CrossRef]
- Al-Yahya, M.; Raish, M.; AlSaid, M.S.; Ahmad, A.; Mothana, R.A.; Al-Sohaibani, M.; Al-Dosari, M.S.; Parvez, M.K.; Rafatullah, S. ‘Ajwa’ Dates (Phoenix dactylifera L.) Extract Ameliorates Isoproterenol-Induced Cardiomyopathy through Downregulation of Oxidative, Inflammatory and Apoptotic Molecules in Rodent Model. Phytomedicine 2016, 23, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaouni, S.; Abdul-Hady, S.; El-Bassossy, H.; Salah, N.; Hagras, M. Ajwa Nanopreparation Prevents Doxorubicin-Associated Cardiac Dysfunction: Effect on Cardiac Ischemia and Antioxidant Capacity. Integr. Cancer Ther. 2019, 18, 1534735419862351. [Google Scholar] [CrossRef]
- Alenisan, M.A.; Alqattan, H.H.; Tolbah, L.S.; Shori, A.B. Antioxidant Properties of Dairy Products Fortified with Natural Additives: A Review. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 101–106. [Google Scholar] [CrossRef]
- Duda-Madej, A.; Stecko, J.; Sobieraj, J.; Szymańska, N.; Kozłowska, J. Naringenin and Its Derivatives-Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics 2022, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Al-daihan, S.; Bhat, R.S. Antibacterial Activities of Extracts of Leaf, Fruit, Seed and Bark of Phoenix dactylifera. Afr. J. Biotechnol. 2012, 11, 10021–10025. [Google Scholar] [CrossRef]
- Alkaabi, J.M.; Al-Dabbagh, B.; Ahmad, S.; Saadi, H.F.; Gariballa, S.; Ghazali, M.A. Glycemic Indices of Five Varieties of Dates in Healthy and Diabetic Subjects. Nutr. J. 2011, 10, 59. [Google Scholar] [CrossRef]
- Rock, W.; Rosenblat, M.; Borochov-Neori, H.; Volkova, N.; Judeinstein, S.; Elias, M.; Aviram, M. Effects of Date (Phoenix dactylifera L., Medjool or Hallawi Variety) Consumption by Healthy Subjects on Serum Glucose and Lipid Levels and on Serum Oxidative Status: A Pilot Study. J. Agric. Food Chem. 2009, 57, 8010–8017. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, L.; Grieve, D.J.; Muzaffar, H.; Iftikhar, A.; Anwar, H. Methanolic Extract of Phoenix dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024, 13, 1196. [Google Scholar] [CrossRef]
- Mauludiyana, S.; Aryati; Dachlan, Y.P.; Saputro, I.D. Anti-Inflammatory and Antibacterial Potential of Ajwa Date (Phoenix dactylifera L.) Extract in Burn Infection. J. Adv. Pharm. Technol. Res. 2023, 14, 161–165. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef]
- Ali, M.M.; Agha, F.G. Amelioration of Streptozotocin-Induced Diabetes Mellitus, Oxidative Stress and Dyslipidemia in Rats by Tomato Extract Lycopene. Scand. J. Clin. Lab. Investig. 2009, 69, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Tominaga, N.; Wakagi, M.; Ishikawa-Takano, Y. Consumption of Lycopene-Rich Tomatoes Improved Glucose Homeostasis in Rats via an Increase in Leptin Levels. J. Nat. Med. 2020, 74, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Demoz, M.S.; Gachoki, K.P.; Mungai, K.J.; Negusse, B.G. Ethnobotanical Survey and Preliminary Phytochemical Studies of Plants Traditionally Used for Diabetes in Eritrea. Eur. J. Med. Plants 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.A.; García-Viguera, C. Potential Bioactive Compounds in Health Promotion from Broccoli Cultivars Grown in Spain. J. Sci. Food Agric. 2002, 82, 1293–1297. [Google Scholar] [CrossRef]
- Tang, X.; Yang, X.; Peng, Y.; Lin, J. Protective Effects of Lycopene against H2O2-Induced Oxidative Injury and Apoptosis in Human Endothelial Cells. Cardiovasc. Drugs Ther. 2009, 23, 439–448. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and Lycopene Supplementation and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef]
- Lim, S.; Hwang, S.; Yu, J.H.; Lim, J.W.; Kim, H. Lycopene Inhibits Regulator of Calcineurin 1-Mediated Apoptosis by Reducing Oxidative Stress and down-Regulating Nucling in Neuronal Cells. Mol. Nutr. Food Res. 2017, 61, 1600530. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Huang, D.; Li, S. Lycopene Alleviates Oxidative Stress-Induced Cell Injury in Human Vascular Endothelial Cells by Encouraging the SIRT1/Nrf2/HO-1 Pathway. Clin. Exp. Hypertens. 2023, 45, 2205051. [Google Scholar] [CrossRef]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Valderas-Martínez, P.; Arranz-Martínez, S.; Almanza-Aguilera, E.; Corella, D.; Estruch, R.; Lamuela-Raventós, R.M. Trans-Lycopene from Tomato Juice Attenuates Inflammatory Biomarkers in Human Plasma Samples: An Intervention Trial. Mol. Nutr. Food Res. 2017, 61, 1600993. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.-D.; et al. Lycopene in Protection against Obesity and Diabetes: A Mechanistic Review. Pharmacol. Res. 2020, 159, 104966. [Google Scholar] [CrossRef]
- Banihani, S.A. Tomato (Solanum lycopersicum L.) and Type 2 Diabetes. Int. J. Food Prop. 2018, 21, 99–105. [Google Scholar] [CrossRef]
- Shidfar, F.; Froghifar, N.; Vafa, M.; Rajab, A.; Hosseini, S.; Shidfar, S.; Gohari, M. The Effects of Tomato Consumption on Serum Glucose, Apolipoprotein B, Apolipoprotein A-I, Homocysteine and Blood Pressure in Type 2 Diabetic Patients. Int. J. Food Sci. Nutr. 2011, 62, 289–294. [Google Scholar] [CrossRef]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a Tomato-Rich Diet on Markers of Cardiovascular Disease Risk in Moderately Overweight, Disease-Free, Middle-Aged Adults: A Randomized Controlled Trial1234. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can Lycopene Be Considered an Effective Protection against Cardiovascular Disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef]
- Hou, C.-Y.; Chen, Y.-R.; Wu, J.-S.; Chen, H.-L.; Hsiao, C.-P.; Liu, C.-T.; Lin, C.-M. Antibacterial Efficacy and Physiochemical Effects of Ozone Microbubble Water on Tomato. Sustainability 2022, 14, 6549. [Google Scholar] [CrossRef]
- Tam, C.C.; Nguyen, K.; Nguyen, D.; Hamada, S.; Kwon, O.; Kuang, I.; Gong, S.; Escobar, S.; Liu, M.; Kim, J.; et al. Antimicrobial Properties of Tomato Leaves, Stems, and Fruit and Their Relationship to Chemical Composition. BMC Complement. Med. Ther. 2021, 21, 229. [Google Scholar] [CrossRef] [PubMed]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-Paz, J.d.J.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-Ríos, E. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int. J. Anal. Chem. 2015, 2015, 284071. [Google Scholar] [CrossRef] [PubMed]
- Farvardin, A.; Llorens, E.; Liu-Xu, L.; Sánchez-Giménez, L.; Wong, A.; Biosca, E.G.; Pedra, J.M.; Falomir, E.; Camañes, G.; Scalschi, L.; et al. Solanum Lycopersicum Heme-Binding Protein 2 as a Potent Antimicrobial Weapon against Plant Pathogens. Sci. Rep. 2023, 13, 20336. [Google Scholar] [CrossRef]
- Kwon, R.S.; Lee, G.Y.; Lee, S.; Song, J. Antimicrobial Properties of Tomato Juice and Peptides against Typhoidal Salmonella. Microbiol. Spectr. 2024, 12, e03102-23. [Google Scholar] [CrossRef]
- Engelhard, Y.N.; Gazer, B.; Paran, E. Natural Antioxidants from Tomato Extract Reduce Blood Pressure in Patients with Grade-1 Hypertension: A Double-Blind, Placebo-Controlled Pilot Study. Am. Heart J. 2006, 151, 100.e1–100.e6. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Katsiki, N.; George, E.S.; Banach, M. Tomato and Lycopene Consumption Is Inversely Associated with Total and Cause-Specific Mortality: A Population-Based Cohort Study, on Behalf of the International Lipid Expert Panel (ILEP). Br. J. Nutr. 2020, 124, 1303–1310. [Google Scholar] [CrossRef]
- Plaza, A.; Rodríguez, L.; Concha-Meyer, A.A.; Cabezas, R.; Zurob, E.; Merlet, G.; Palomo, I.; Fuentes, E. Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts. Plants 2023, 12, 1188. [Google Scholar] [CrossRef]
- López-Yerena, A.; Padro, T.; de Santisteban Villaplana, V.; Muñoz-García, N.; Pérez, A.; Vilahur, G.; Badimon, L. Vascular and Platelet Effects of Tomato Soffritto Intake in Overweight and Obese Subjects. Nutrients 2023, 15, 5084. [Google Scholar] [CrossRef]
- Arfin, N.; Podder, M.K.; Kabir, S.R.; Asaduzzaman, A.K.M.; Hasan, I. Antibacterial, Antifungal and in Vivo Anticancer Activities of Chitin-Binding Lectins from Tomato (Solanum lycopersicum) Fruits. Arab. J. Chem. 2022, 15, 104001. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and Antioxidant Properties of Tomato Processing Byproducts and Their Correlation with the Biochemical Composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Faisal, Z.; Irfan, R.; Akram, N.; Manzoor, H.M.I.; Aabdi, M.A.; Anwar, M.J.; Khawar, S.; Saif, A.; Shah, Y.A.; Afzaal, M.; et al. The Multifaceted Potential of Fenugreek Seeds: From Health Benefits to Food and Nanotechnology Applications. Food Sci. Nutr. 2024, 12, 2294–2310. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Yadav, S.S.; Kumar, S.; Narashiman, B. Ethnopharmacological, Phytochemical and Clinical Studies on Fenugreek (Trigonella foenum-graecum L.). Food Biosci. 2022, 46, 101546. [Google Scholar] [CrossRef]
- Ruwali, P.; Pandey, N.; Jindal, K.; Singh, R.V. Fenugreek (Trigonella foenum-graecum): Nutraceutical Values, Phytochemical, Ethnomedicinal and Pharmacological Overview. S. Afr. J. Bot. 2022, 151, 423–431. [Google Scholar] [CrossRef]
- Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; Chalaras, S.K.; Khatibai, L.B.; Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; et al. Fenugreek (Trigonella foenum-graecum L.): An Important Medicinal and Aromatic Crop. In Active Ingredients from Aromatic and Medicinal Plants; IntechOpen: London, UK, 2017; ISBN 978-953-51-2976-9. [Google Scholar]
- Idris, S.; Mishra, A.; Khushtar, M. Recent Therapeutic Interventions of Fenugreek Seed: A Mechanistic Approach. Drug Res. 2020, 71, 180–192. [Google Scholar] [CrossRef]
- Roberts, K.T. The Potential of Fenugreek (Trigonella foenum-graecum) as a Functional Food and Nutraceutical and Its Effects on Glycemia and Lipidemia. J. Med. Food 2011, 14, 1485–1489. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Al-Ali, S.; Tranchant, C.C.; Gammoh, S.; Alrosan, M.; Kubow, S.; Tan, T.-C.; Ghatasheh, S. Current Perspectives on Fenugreek Bioactive Compounds and Their Potential Impact on Human Health: A Review of Recent Insights into Functional Foods and Other High Value Applications. J. Food Sci. 2024, 89, 1835–1864. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Alghamdi, S.S.; Mahmood, K.; Afzal, M. Fenugreek a Multipurpose Crop: Potentialities and Improvements. Saudi J. Biol. Sci. 2016, 23, 300–310. [Google Scholar] [CrossRef]
- Salarbashi, D.; Bazeli, J.; Fahmideh-Rad, E. Fenugreek Seed Gum: Biological Properties, Chemical Modifications, and Structural Analysis- A Review. Int. J. Biol. Macromol. 2019, 138, 386–393. [Google Scholar] [CrossRef]
- Thomas, J.E.; Bandara, M.; Lee, E.L.; Driedger, D.; Acharya, S. Biochemical Monitoring in Fenugreek to Develop Functional Food and Medicinal Plant Variants. New Biotechnol. 2011, 28, 110–117. [Google Scholar] [CrossRef]
- Almatroodi, S.; Almatroudi, A.; Alsahli, M.; Rahmani, A.; Rahmani, A.; Rahmani, A. Fenugreek (Trigonella foenum-graecum) and Its Active Compounds: A Review of Its Effects on Human Health through Modulating Biological Activities. Pharmacogn. J. 2021, 13, 813–821. [Google Scholar] [CrossRef]
- Sekhar, M.G.; Ramudu Shanmugam, K.; Chakrapani, I.S. Trigonelline, a Fenugreek Bioactive Compound Protects Heart Tissue against Alcohol Intoxication: An in-Vivo Study Focusing on Antioxidant Perspective. J. Ayurveda Integr. Med. 2024, 15, 100963. [Google Scholar] [CrossRef] [PubMed]
- Geberemeskel, G.A.; Debebe, Y.G.; Nguse, N.A. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella foenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J. Diabetes Res. 2019, 2019, 8507453. [Google Scholar] [CrossRef]
- Baquer, N.Z.; Kumar, P.; Taha, A.; Kale, R.K.; Cowsik, S.M.; McLean, P. Metabolic and Molecular Action of Trigonella foenum-graecum (Fenugreek) and Trace Metals in Experimental Diabetic Tissues. J. Biosci. 2011, 36, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A Plant Alkaloid with Therapeutic Potential for Diabetes and Central Nervous System Disease. Curr. Med. Chem. 2012, 19, 3523–3531. [Google Scholar] [CrossRef]
- Verma, D.K.; Hasan, A.; Rengaraju, M.; Devi, S.; Sharma, G.; Narayanan, V.; Parameswaran, S.; Kumar, D.T.; Kadarkarai, K.; Sunil, S. Evaluation of Withania somnifera Based Supplement for Immunomodulatory and Antiviral Properties against Viral Infection. J. Ayurveda Integr. Med. 2024, 15, 100955. [Google Scholar] [CrossRef]
- Bafadam, S.; Mahmoudabady, M.; Niazmand, S.; Rezaee, S.A.; Soukhtanloo, M. Cardioprotective Effects of Fenugreek (Trigonella Foenum-Graceum) Seed Extract in Streptozotocin Induced Diabetic Rats. J. Cardiovasc. Thorac. Res. 2021, 13, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, N.I.; Mohamed, M.; Sirajudeen, K.N.M.S.; Saidan, N.H.; Hua, G.S.; Abdul Kadir Pahirulzaman, K.; Rao, P.V. Promoting Cardioprotection with Fenugreek: Insights from CoCl2-Induced Hypoxia in Neonatal Rat Cardiomyocytes. Iran. J. Basic Med. Sci. 2023, 26, 1360–1369. [Google Scholar] [CrossRef]
- Al-Timimi, L.A.N. Antibacterial and Anticancer Activities of Fenugreek Seed Extract. Asian Pac. J. Cancer Prev. 2019, 20, 3771–3776. [Google Scholar] [CrossRef]
- Sitohy, M.; Al-Mohammadi, A.-R.; Osman, A.; Abdel-Shafi, S.; El-Gazzar, N.; Hamdi, S.; Ismail, S.H.; Enan, G. Silver-Protein Nanocomposites as Antimicrobial Agents. Nanomaterials 2021, 11, 3006. [Google Scholar] [CrossRef]
- Hadi, S.T.; Mariod, A.A. Antioxidant and Antimicrobial Activity of Fenugreek (Trigonella foenum-graecum) Seed and Seedoil. In Multiple Biological Activities of Unconventional Seed Oils; Mariod, A.A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 111–117. ISBN 978-0-12-824135-6. [Google Scholar]
- Sindhusha, V.B.; Rajasekar, A. Preparation and Evaluation of Antimicrobial Property and Anti-Inflammatory Activity of Fenugreek Gel Against Oral Microbes: An Invitro Study. Cureus 2023, 15, e47659. [Google Scholar] [CrossRef]
- Hasna, B.; Houari, H.; Koula, D.; Marina, S.; Emilia, U.; Assia, B. In Vitro and In Vivo Study of Combined Effect of Some Algerian Medicinal Plants and Probiotics against Helicobacter Pylori. Microorganisms 2023, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Smith, S.J. Ashwagandha (Withania somnifera) for the Treatment and Enhancement of Mental and Physical Conditions: A Systematic Review of Human Trials. J. Herb. Med. 2021, 28, 100434. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Dhir, A. Withania somnifera: An Indian Ginseng. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1093–1105. [Google Scholar] [CrossRef]
- Paul, S.; Chakraborty, S.; Anand, U.; Dey, S.; Nandy, S.; Ghorai, M.; Saha, S.C.; Patil, M.T.; Kandimalla, R.; Proćków, J.; et al. Withania somnifera (L.) Dunal (Ashwagandha): A Comprehensive Review on Ethnopharmacology, Pharmacotherapeutics, Biomedicinal and Toxicological Aspects. Biomed. Pharmacother. 2021, 143, 112175. [Google Scholar] [CrossRef] [PubMed]
- Khabiya, R.; Choudhary, G.P.; Jnanesha, A.C.; Kumar, A.; Lal, R.K. An Insight into the Potential Varieties of Ashwagandha (Indian Ginseng) for Better Therapeutic Efficacy. Ecol. Front. 2024, 44, 444–450. [Google Scholar] [CrossRef]
- Mandlik (Ingawale), D.S.; Namdeo, A.G. Pharmacological Evaluation of Ashwagandha Highlighting Its Healthcare Claims, Safety, and Toxicity Aspects. J. Diet. Suppl. 2021, 18, 183–226. [Google Scholar] [CrossRef]
- Shinde, S.; Balasubramaniam, A.K.; Mulay, V.; Saste, G.; Girme, A.; Hingorani, L. Recent Advancements in Extraction Techniques of Ashwagandha (Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS Omega 2023, 8, 40982–41003. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, P.; Malinowska, M.; Ignacyk, M.; Szustowski, P.; Nowak, J.; Pesta, K.; Szeląg, M.; Szklanny, D.; Judasz, E.; Kaczmarek, G.; et al. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023, 15, 1057. [Google Scholar] [CrossRef]
- Hussain, S.A.; Panjagari, N.R.; Singh, R.R.B.; Patil, G.R. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components. Crit. Rev. Food Sci. Nutr. 2015, 55, 94–122. [Google Scholar] [CrossRef]
- Senthil, K.; Thirugnanasambantham, P.; Oh, T.J.; Kim, S.H.; Choi, H.K. Free Radical Scavenging Activity and Comparative Metabolic Profiling of in Vitro Cultured and Field Grown Withania somnifera Roots. PLoS ONE 2015, 10, e0123360. [Google Scholar] [CrossRef]
- Tekula, S.; Khurana, A.; Anchi, P.; Godugu, C. Withaferin-A Attenuates Multiple Low Doses of Streptozotocin (MLD-STZ) Induced Type 1 Diabetes. Biomed. Pharmacother. 2018, 106, 1428–1440. [Google Scholar] [CrossRef]
- Nayak, S.; Nayak, S.; Panda, B.; Sambit, D. A Clinical Study on Management of Stress in Type-2 Diabetes Mellitus (Madhumeha) With Ashwagandha (Withania somnifera). Diabetes Mellit. 2015, 2, 413–417. [Google Scholar]
- Usharani, P.; Fatima, N.; Kumar, C.U.; Kishan, P.V. Evaluation of A Highly Standardized Withania somnifera Extract on Endothelial Dysfunction and Biomarkers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized, Double Blind, Placebo Controlled Study. Int. J. Ayurveda Pharma Res. 2014, 2, 22–32. [Google Scholar]
- Behl, T.; Sharma, A.; Sharma, L.; Sehgal, A.; Zengin, G.; Brata, R.; Fratila, O.; Bungau, S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020, 8, 571. [Google Scholar] [CrossRef] [PubMed]
- Ashour, O.M.; Abdel-Naim, A.B.; Abdallah, H.M.; Nagy, A.A.; Mohamadin, A.M.; Abdel-Sattar, E.A. Evaluation of the Potential Cardioprotective Activity of Some Saudi Plants against Doxorubicin Toxicity. Z. Naturforsch C J. Biosci. 2012, 67, 297–307. [Google Scholar] [CrossRef]
- Mohanty, I.R.; Arya, D.S.; Gupta, S.K. Withania somnifera Provides Cardioprotection and Attenuates Ischemia–Reperfusion Induced Apoptosis. Clin. Nutr. 2008, 27, 635–642. [Google Scholar] [CrossRef]
- Guo, S.; Rezaei, M.J. The Benefits of Ashwagandha (Withania somnifera) Supplements on Brain Function and Sports Performance. Front. Nutr. 2024, 11, 1439294. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Gupta, S.K.; Pathak, A.K. A Double-Blind, Randomized, Placebo-Controlled Trial on the Effect of Ashwagandha (Withania somnifera Dunal.) Root Extract in Improving Cardiorespiratory Endurance and Recovery in Healthy Athletic Adults. J. Ethnopharmacol. 2021, 272, 113929. [Google Scholar] [CrossRef]
- Amagase, H.; Farnsworth, N.R. A Review of Botanical Characteristics, Phytochemistry, Clinical Relevance in Efficacy and Safety of Lycium Barbarum Fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Attele, A.S.; Zhou, Y.-P.; Xie, J.-T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.-S. Antidiabetic Effects of Panax Ginseng Berry Extract and the Identification of an Effective Component. Diabetes 2002, 51, 1851–1858. [Google Scholar] [CrossRef]
- Owais, M.; Sharad, K.S.; Shehbaz, A.; Saleemuddin, M. Antibacterial Efficacy of Withania somnifera (Ashwagandha) an Indigenous Medicinal Plant against Experimental Murine Salmonellosis. Phytomedicine 2005, 12, 229–235. [Google Scholar] [CrossRef] [PubMed]
- EL-Hefny, M.; Salem, M.Z.M.; Behiry, S.I.; Ali, H.M. The Potential Antibacterial and Antifungal Activities of Wood Treated with Withania somnifera Fruit Extract, and the Phenolic, Caffeine, and Flavonoid Composition of the Extract According to HPLC. Processes 2020, 8, 113. [Google Scholar] [CrossRef]
- Hamza, A.; Amin, A.; Daoud, S. The Protective Effect of a Purified Extract of Withania somnifera against Doxorubicin-Induced Cardiac Toxicity in Rats. Cell Biol. Toxicol. 2008, 24, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Kiani, B.H.; Haq, I.-; Alhodaib, A.; Basheer, S.; Fatima, H.; Naz, I.; Ur-Rehman, T. Comparative Evaluation of Biomedical Applications of Zinc Nanoparticles Synthesized by Using Withania somnifera Plant Extracts. Plants 2022, 11, 1525. [Google Scholar] [CrossRef]
- Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A Small Plant with Big Benefits: Fenugreek (Trigonella foenum-graecum Linn.) for Disease Prevention and Health Promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xia, Z. Traditional Chinese Medicine (TCM)—Does Its Contemporary Business Booming and Globalization Really Reconfirm Its Medical Efficacy & Safety? Med. Drug Discov. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese Medicine for Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 69, 2952–2966. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
- Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front. Pharmacol. 2016, 7, 201. [Google Scholar] [CrossRef]
- Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front. Pharmacol. 2019, 10, 743. [Google Scholar] [CrossRef]
- Kumar, P.; Kale, R.K.; McLean, P.; Baquer, N.Z. Antidiabetic and Neuroprotective Effects of Trigonella foenum-graecum Seed Powder in Diabetic Rat Brain. Prague Med. Rep. 2012, 113, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, B. Traditional Chinese Medicine Network Pharmacology: Theory, Methodology and Application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Kaptchuk, T.J. The Web That Has No Weaver: Understanding Chinese Medicine, 2nd ed.; [Newly Expanded and Updated]; McGraw-Hill: New York, NY, USA, 2000; ISBN 978-0-8092-2840-9. [Google Scholar]
- Azaizeh, H.; Saad, B.; Cooper, E.; Said, O. Traditional Arabic and Islamic Medicine, a Re-Emerging Health Aid. Evid.-Based Complement. Altern. Med. 2010, 7, 419–424. [Google Scholar] [CrossRef]
- Basch, E.; Ulbricht, C.; Kuo, G.; Szapary, P.; Smith, M. Therapeutic Applications of Fenugreek. Altern. Med. Rev. 2003, 8, 20–27. [Google Scholar]
- Ulbricht, C.; Basch, E.; Burke, D.; Cheung, L.; Ernst, E.; Giese, N.; Foppa, I.; Hammerness, P.; Hashmi, S.; Kuo, G.; et al. Fenugreek (Trigonella foenum-graecum L. Leguminosae): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. J. Herb. Pharmacother. 2008, 7, 143–177. [Google Scholar] [CrossRef] [PubMed]
- Mishra, L.C.; Singh, B.B.; Dagenais, S. Scientific Basis for the Therapeutic Use of Withania somnifera (Ashwagandha): A Review. Altern. Med. Rev. 2000, 5, 334–346. [Google Scholar]
- Friedman, M. Tomato Glycoalkaloids: Role in the Plant and in the Diet. J. Agric. Food Chem. 2002, 50, 5751–5780. [Google Scholar] [CrossRef]
- Capucho, J.; do Paço, A.; Gaspar, P.D. Tourism Related to Aromatic and Medicinal Plants: Some Practical Evidence. Sustainability 2023, 15, 15966. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Raish, S.M.; Almasri, R.S.; Bedir, A.S. Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera). Biology 2025, 14, 695. https://doi.org/10.3390/biology14060695
Al Raish SM, Almasri RS, Bedir AS. Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera). Biology. 2025; 14(6):695. https://doi.org/10.3390/biology14060695
Chicago/Turabian StyleAl Raish, Seham M., Razan S. Almasri, and Alaa S. Bedir. 2025. "Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera)" Biology 14, no. 6: 695. https://doi.org/10.3390/biology14060695
APA StyleAl Raish, S. M., Almasri, R. S., & Bedir, A. S. (2025). Ancient Remedies, Modern Medicine: A Review of Antidiabetic, Cardioprotective, and Antimicrobial Activities of Date Palm (Phoenix dactylifera), Tomato (Solanum lycopersicum), Fenugreek (Trigonella foenum-graecum), and Ashwagandha (Withania somnifera). Biology, 14(6), 695. https://doi.org/10.3390/biology14060695