Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Antibacterial Fermentation Products Information
2.3. Experimental Diets and Animals
2.4. Growth Performance Measurements and Sampling
2.5. Serological Indicator
2.6. Hepatic Antioxidant Indices
2.7. RNA Extraction and Quantitative PCR Analysis
2.8. Gut Microbiota Analysis
2.9. Statistical Analysis
3. Results
3.1. FP Tolerance Test and Growth Performance
3.2. Serological Indicators
3.3. Hepatic Antioxidant Capacity
3.4. Gene Expression
3.5. Gut Microbiota Diversity and Distribution
3.6. Bio-Markers and Predicted Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dien, L.T.; Ngo, T.P.H.; Nguyen, T.V.; Kayansamruaj, P.; Salin, K.R.; Mohan, C.V.; Rodkhum, C.; Dong, H.T. Non-antibiotic approaches to combat motile Aeromonas infections in aquaculture: Current state of knowledge and future perspectives. Rev. Aquac. 2023, 15, 333–366. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Sadegh, T.H.; Dawood, M.A.; Dadar, M.; Sheikhzadeh, N. The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture 2020, 516, 734656. [Google Scholar] [CrossRef]
- Trampari, E.; Holden, E.R.; Wickham, G.J.; Ravi, A.; Martins, L.de.O.; Savva, G.M.; Webber, M.A. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. NPJ Biofilms Microbiol. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Vijayaram, S.; Sun, Y.Z.; Zuorro, A.; Ghafarifarsani, H.; Van Doan, H.; Hoseinifar, S.H. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. Fish Shellfish Immun. 2022, 130, 294–308. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Fan, W.; Jiang, Y.; Zhang, C.; Li, J.; Peng, W.; Wu, C. The Application of Fermentation Technology in Traditional Chinese Medicine: A Review. Am. J. Chin. Med. 2020, 48, 899–921. [Google Scholar] [CrossRef]
- Wei, L.; Ran, J.; Li, Z.; Zhang, Q.; Guo, K.; Mu, S.; Xie, Y.; Xie, A.; Xiao, Y. Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus niger xj. Appl. Biochem. Biotechnol. 2024, 196, 878–895. [Google Scholar] [CrossRef]
- Li, X.M.; Mi, Q.L.; Gao, Q.; Li, J.; Song, C.M.; Zeng, W.L.; Xiang, H.Y.; Liu, X.; Chen, J.H.; Zhang, C.M.; et al. Antibacterial Naphthalene Derivatives from the Fermentation Products of the Endophytic Fungus Phomopsis fukushii. Chem. Nat. Compd. 2021, 57, 293–296. [Google Scholar] [CrossRef]
- Kumar, S.; Bass, B.E.; Bandrick, M.; Loving, C.L.; Brockmeier, S.L.; Looft, T.; Trachsel, J.; Madson, D.M.; Thomas, M.; Casey, T.A.; et al. Fermentation products as feed additives mitigate some ill-effects of heat stress in pigs. J. Anim. Sci. 2017, 95, 279–290. [Google Scholar] [CrossRef]
- McDonald, P.O.; Schill, C.; Maina, T.W.; Samuel, B.; Porter, M.; Yoon, I.; McGill, J.L. Feeding Saccharomyces cerevisiae fermentation products lessens the severity of a viral-bacterial coinfection in preweaned calves. J. Anim. Sci. 2021, 99, skab300. [Google Scholar] [CrossRef]
- Nelson, J.R.; McIntyre, D.R.; Pavlidis, H.O.; Archer, G.S. Reducing Stress Susceptibility of Broiler Chickens by Supplementing a Yeast Fermentation Product in the Feed or Drinking Water. Animals 2018, 8, 173. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Sivinski, S.E.; Saylor, B.A.; Mamedova, L.K.; Sauls-Hiesterman, J.A.; Yoon, I.; Bradford, B.J. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J. Dairy Sci. 2019, 102, 8092–8107. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Du, D.; Zhang, Q.; Tsegay, T.; Wang, A.; Hao, Q.; Liu, S.; Ding, Q.; Yao, Y.; Yang, Y.; et al. Dietary Bacillus velezensis T23 fermented products supplementation improves growth, hepatopancreas and intestine health of Litopenaeus vannamei. Fish Shellfish Immunol. 2024, 149, 109595. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Pham, M.; Kim, K.; Son, M.; Lee, K. Effects of microbial fermentation of soybean on growth performances, phosphorus availability, and antioxidant activity in diets for juvenile olive flounder (Paralichthys olivaceus). Food Sci. Biotechnol. 2010, 19, 1605–1610. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Yang, H.W.; Teame, T.; Ran, C.; Yang, Y.L.; Yao, Y.Y.; Ding, Q.W.; Liu, S.B.; Li, S.K.; Zhang, Z.; et al. Immune disorders induced by improper use of dietary immunostimulants in aquatic animals: Research progress and prospective solutions by targeting gut microbiota. Rev. Aquac. 2024, 16, 608–621. [Google Scholar] [CrossRef]
- Machado, M.; Moura, J.; Peixoto, D.; Castro-Cunha, M.; Conceição, L.E.C.; Dias, J.; Costas, B. Dietary methionine as a strategy to improve innate immunity in rainbow trout (Oncorhynchus mykiss) juveniles. Gen. Comp. Endocr. 2021, 302, 113690. [Google Scholar] [CrossRef]
- Soares, M.P.; De Angelis, C.F.; Silva, L.M.; Montanari, B.H.; de Campos, C.M.; Queiroz, S.C.; Fernandes, M.N.; Longhini, W.E.; Peres, M.Â.; Leite, C.A.; et al. Short-term feeding with a diet supplemented with alcoholic extract of Artemisia annua enhances the resistance and growth performance of juvenile Nile tilapia (Oreochromis niloticus). Aquacult. Int. 2023, 32, 2773–2789. [Google Scholar] [CrossRef]
- Nayak, S.K. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Rev. Aquac. 2021, 13, 862–906. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immun. 2021, 117, 36–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Z.; Li, S.; Liu, T.; Song, J.; Li, J.; Zhang, X. Two Antimicrobial Peptides Derived from Bacillus and Their Properties. Molecules 2023, 28, 7899. [Google Scholar] [CrossRef]
- Lim, K.B.; Balolong, M.P.; Kim, S.H.; Oh, J.K.; Lee, J.Y.; Kang, D.K. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. Biomed. Res. Int. 2016, 7, 8521476. [Google Scholar]
- Jayakumar, A.; Nair, I.C.; Radhakrishnan, E.K. Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. Microb. Ecol. 2021, 81, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Fu, J.; Xu, B.; Wang, Y.; Jin, M. Interplay between gut microbiota and antimicrobial peptides. Anim. Nutr. 2020, 6, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, S.; Tyagi, A.; Singh, R. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: A Review. Probiotics Antimicrob 2023, 15, 1151–1168. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Jiang, H.; Cai, C.; Li, G.; Hao, J.; Yu, G. Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: An overview. Carbohydr. Polym. 2018, 195, 601–612. [Google Scholar] [CrossRef]
- MOA, China Fishery Statistical Yearbook 2023; China Agriculture Press: Beijing, China, 2023.
- Huang, X.; Liu, S.; Zhang, H.; Yao, J.; Geng, Y.; Ou, Y.; Chen, D.; Yang, S.; Yin, L.; Luo, W. Pathological characterization and cause of a novel liver disease in largemouth bass (Micropterus salmoides). Aqua Rep. 2022, 23, 101028. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, P.; Zhang, M.; Guo, W.; Deng, S.; Liu, H.; Yao, L. Isolation and identification of a new strain Micropterus salmoides rhabdovirus (MSRV) from largemouth bass Micropterus salmoides in China. Aquaculture 2023, 572, 739538. [Google Scholar] [CrossRef]
- Feng, X.; Yang, H.; Tu, X.; Wang, Z.; Gu, Z. First report of Ambiphrya species (Ciliophora, Peritrichia) infestation in farmed Micropterus salmoides and Ictalurus punctatus in China. Aquaculture 2022, 563, 738968. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Cai, Y.; Li, E.; Ren, Z.; Wu, Y.; Guo, W.; Sun, Y.; Zhou, Y. Beneficial effects of a host gut-derived probiotic, Bacillus pumilus, on the growth, non-specific immune response and disease resistance of juvenile golden pompano, Trachinotus ovatus. Aquaculture 2020, 514, 734446. [Google Scholar] [CrossRef]
- Bradley, D. The Isolation and Morphology of Some New Bacteriophages Specific for Bacillus and Acetobacter species. J. Gen. Appl. Microbiol. 1965, 41, 233–241. [Google Scholar] [CrossRef]
- Xu, S.; Tan, P.; Tang, Q.; Wang, T.; Ding, Y.; Fu, H.; Zhang, Y.; Zhou, C.; Song, M.; Tang, Q.; et al. Enhancing the stability of antimicrobial peptides: From design strategies to biomedical applications. Chem. Eng. J. 2023, 475, 145923. [Google Scholar] [CrossRef]
- Dong, Z.; Zhong, H.R.; Luo, W.; Song, Y.; Deng, S.M.; Zhang, Y.X. Antimicrobial activities and influential factors of temporin family antimicrobial substance derived from Hylarana guentheri of Hainan. Nat. Sci. J. Hainan Univ. 2016, 34, 250–256. (In Chinese) [Google Scholar]
- Hu, J. Screening of antagonistic Bacillus and isolation and property analysis of antimicrobial substance. Master’s Thesis, Anhui Engineering University, Wuhu, China, 2017. (In Chinese). [Google Scholar]
- Luo, W.J.; Zhong, H.R.; He, L.L.; Shao, J.Q.; Song, Y.T.; Zhang, Y.X. Antimicrobial stability and antibacterial mechanism of antimicrobial substance Lc-NKlysin-1a. J. Hainan Univ. Nat. Sci. Ed. 2017, 35, 345–351. (In Chinese) [Google Scholar]
- Wei, X.X.; Hang, B.L.; Ma, C.; Xia, Y.H.; Zhang, B.Q.; Wang, Q.; Xu, Y.Z.; Hu, J.H. Analysis of Antimicrobial Activity and Stability of Antibacterial Peptide JH-3. J. Anim. Husb. Vet. Sci. 2016, 47, 361–366. (In Chinese) [Google Scholar]
- Dashper, S.G.; O’Brien-Simpson, N.M.; Cross, K.J.; Paolini, R.A.; Hoffmann, B.; Catmull, D.V.; Malkoski, M.; Reynolds, E.C. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob. Agents Ch. 2005, 49, 2322–2328. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Nauseef, W.M. Salt, chloride, bleach, and innate host defense. J. Leukocyte Biol. 2015, 98, 163–172. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Srivastava, M.K.; Kapoor, U.; Srivastava, L.P. A 90 days oral toxicity of imidacloprid in female rats: Morphological, biochemical and histopathological evaluations. Food Chem. Toxicol. J. 2010, 48, 1185–1190. [Google Scholar] [CrossRef]
- Gradel, K.O. Interpretations of the Role of Plasma Albumin in Prognostic Indices: A Literature Review. J. Clin. Med. 2023, 12, 6132. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhang, Q.S.; Liu, S.B.; Yang, H.W.; Chen, X.Y.; Yang, Y.L.; Gao, C.C.; Ran, C.; Teame, T.; Zhang, Z.; et al. Pichia pastoris composition expressed aerolysin mutant of Aeromonas veronii as an oral vaccine evaluated in zebrafish (Danio rerio). Mar. Life Sci. Tech. 2024, 6, 475–487. [Google Scholar] [CrossRef]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly 2012, 142, w13659. [Google Scholar] [CrossRef]
- Denney, J.M.; Nelson, E.L.; Wadhwa, P.D.; Waters, T.P.; Mathew, L.; Chung, E.K.; Goldenberg, R.L.; Culhane, J.F. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine 2011, 53, 170–177. [Google Scholar] [CrossRef]
- Colakoglu, H.E.; Yazlik, M.O.; Kaya, U.; Colakoglu, E.C.; Kurt, S.; Oz, B.; Bayramoglu, R.; Vural, M.R.; Kuplulu, S. MDA and GSH-Px Activity in Transition Dairy Cows Under Seasonal Variations and their Relationship with Reproductive Performance. J. Vet. Res. 2017, 61, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tong, X.; Sui, X.; Wang, Z.; Qi, B.; Li, Y.; Jiang, L. Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Res. Int. 2018, 111, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Wang, Q.; Chen, H.; Liu, G.X.; Pan, Y.; Chen, J.; Zhang, W.B.; Mai, K.S. Effects of antimicrobial peptide APSH-07 on the growth performance, anti-oxidation responses, stress resistance and intestine microbiota in large yellow croaker Larimichthys crocea. Aqua Nutr. 2020, 26, 715–726. [Google Scholar] [CrossRef]
- Chen, Y.B.; Hu, J.; Lyu, Q.J.; Liu, L.J.; Wen, L.F.; Yang, X.K.; Zhao, H.H. The effects of Natucin C-Natucin P mixture on blood biochemical parameters, antioxidant activity and non-specific immune responses in tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2016, 55, 367–373. [Google Scholar] [CrossRef]
- Min, K.H.; Kim, K.H.; Ki, M.R.; Pack, S.P. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics 2024, 13, 794. [Google Scholar] [CrossRef]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef]
- Wang, X.; Fu, L.; Ma, J.; Li, Q.; Sun, Y.; Wang, Y.; Zhang, Y. A review of edible insect proteins application: Health benefits and safety. J. Insects Food Feed. 2024, 10, 1–16. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Bindels, L.B. Gut microbiota in 2017: Contribution of gut microbiota-host cooperation to drug efficacy. Nat. Rev. Gastro Hepat. 2018, 15, 69–70. [Google Scholar] [CrossRef]
- Wu, X.; Xia, Y.; He, F.; Zhu, C.; Ren, W. Intestinal mycobiota in health and diseases: From a disrupted equilibrium to clinical opportunities. Microbiome 2021, 9, 60. [Google Scholar] [CrossRef]
- Erdmann, K.; Cheung, B.W.; Schröder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef]
- Cullen, T.W.; Schofield, W.B.; Barry, N.A.; Putnam, E.E.; Rundell, E.A.; Trent, M.S.; Degnan, P.H.; Booth, C.J.; Yu, H.; Goodman, A.L. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 2015, 347, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, S.; Cao, X.; Ye, Y.; Yang, L.; Wang, J.; Liu, H.; Sun, H. Potential prebiotic activities of soybean peptides Maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice. J. Funct. Foods 2020, 65, 103729. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Chen, R.Y.; Yu, J.; Ding, G.H.; Seah, R.W.X.; Chen, J. Antimicrobial peptide hepcidin contributes to restoration of the intestinal flora after Aeromonas hydrophila infection in Acrossocheilus fasciatus. Comp. Biochem. Phys. C 2023, 263, 109486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Meng, Y.Q.; Li, J.J.; Zhang, X.X.; Li, J.T.; Xu, J.R.; Zheng, P.H.; Xian, J.A.; Lu, Y.P. Effects of antimicrobial peptides from dietary Hermetia illucens larvae on the growth, immunity, gene expression, intestinal microbiota and resistance to Aeromonas hydrophila of juvenile red claw crayfish (Cherax quadricarinatus). Fish Shellfish Immun. 2024, 147, 109437. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Liu, X.; Wen, L.; Zou, J. Effects of dietary antimicrobial peptides on intestinal morphology, antioxidant status, immune responses, microbiota and pathogen disease resistance in grass carp Ctenopharyngodon idellus. Microb. Pathog. 2022, 165, 105386. [Google Scholar] [CrossRef]
- Liao, X.Z.; Hu, S.K.; Wang, B.; Qin, H.P.; Zhao, J.C.; He, Z.H.; Chen, X.Y.; Liu, Y.S.; Qu, P.; Sun, C.B.; et al. Dietary supplementation with polypeptides improved growth performance, antibacterial immune and intestinal microbiota structure of Litopenaeus vannamei. Fish Shellfish Immun. 2019, 92, 480–488. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of peptides for antibacterial applications. Colloids Surf. B Biointerfaces 2021, 202, 111682. [Google Scholar] [CrossRef]
Parameters | Control | H1 | H2 | H3 | F | p |
---|---|---|---|---|---|---|
Weight gain (%) | 167.81 ± 5.89 | 207.35 ± 15.86 | 176.96 ± 10.97 | 173.19 ± 22.99 | 0.520 | 0.508 |
Specific growth rate (%/day) | 0.07 ± 0.00 | 0.08 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.01 | 0.510 | 0.503 |
Feed conversion rate | 1.06 ± 0.01 | 1.07 ± 0.04 | 1.05 ± 0.04 | 1.04 ± 0.01 | 0.848 | 0.469 |
Parameters | C0 | Control | H1 | H2 | H3 | F | p |
---|---|---|---|---|---|---|---|
ACE | 53.44 ± 7.34 a | 58.51 ± 12.41 a | 118.09 ± 9.38 b | 221.36 ± 8.38 c | 153.28 ± 14.59 b | 0.971 | 0.001 |
Chao1 | 53.33 ± 7.31 a | 62.90 ± 13.22 a | 118.46 ± 8.86 b | 221.33 ± 8.37 c | 153.50 ± 14.91 b | 0.430 | 0.001 |
Simpson | 0.24 ± 0.08 a | 0.39 ± 0.02 ab | 0.23 ± 0.08 a | 0.70 ± 0.02 b | 0.46 ± 0.19 ab | 0.231 | 0.036 |
Shannon | 0.72 ± 0.19 a | 0.90 ± 0.05 a | 1.10 ± 0.35 a | 3.16 ± 0.17 b | 2.01 ± 0.84 ab | 0.194 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, S.; Feng, D.; Xun, P.; Jiang, H.; Zhang, Y.; Yuan, G.; Guo, X. Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides. Biology 2025, 14, 646. https://doi.org/10.3390/biology14060646
Liu K, Liu S, Feng D, Xun P, Jiang H, Zhang Y, Yuan G, Guo X. Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides. Biology. 2025; 14(6):646. https://doi.org/10.3390/biology14060646
Chicago/Turabian StyleLiu, Kaifang, Shubin Liu, Dexiang Feng, Pengwei Xun, Hanjun Jiang, Yanwei Zhang, Gaoliang Yuan, and Xusheng Guo. 2025. "Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides" Biology 14, no. 6: 646. https://doi.org/10.3390/biology14060646
APA StyleLiu, K., Liu, S., Feng, D., Xun, P., Jiang, H., Zhang, Y., Yuan, G., & Guo, X. (2025). Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides. Biology, 14(6), 646. https://doi.org/10.3390/biology14060646