Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater Sampling and Quality Analysis
2.2. Microorganism and Culture Conditions
2.3. Biomass and Pigment Production
2.4. Shotgun Metagenomic Sequencing and Data Processing
2.5. Statistical Analysis
3. Results
3.1. Water Quality of VHW
3.2. Effect of VHW Proportions on Biomass and Pigment Production of A. platensis
3.3. Metagenomic Analysis of Wastewater Samples from a Veterinary Hospital
3.4. Distribution of Antibiotic Resistance Genes (ARGs) Across Bacterial Genera
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, D.; Badia-Fabregat, M.; Vicent, T.; Caminal, G.; Rodríguez-Mozaz, S.; Balcázar, J.L.; Barceló, D. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 2016, 152, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, A.L.; Bollig, E.R.; Burgess, B.A.; Cohn, L.A.; Cole, S.D.; Dear, J.D.; Fellman, C.L.; Frey, E.; Goggs, R.; Johnston, A.; et al. Prevalence of antibiotic use for dogs and cats in United States veterinary teaching hospitals, August 2020. J. Vet. Intern. Med. 2023, 37, 1864. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, O.O.; Jimoh, A.B.; Adebayo, O.O.; Alamu, A.A.; Adeleye, A.I.; Fasanmi, O.G.; Olasoju, M.; Olagunju, P.O.; Fasina, F.O. Evaluation of antimicrobial usage in companion animals at a veterinary teaching hospital in Nigeria. Sci. Rep. 2023, 13, 18195. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 2012, 430, 109–118. [Google Scholar] [CrossRef]
- Caddey, B.; Fisher, S.; Barkema, H.W.; Nobrega, D.B. Companions in antimicrobial resistance: Examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin. Microbiol. Rev. 2025, 38, e00146-22. [Google Scholar] [CrossRef]
- Thamlikitkul, V.; Tiengrim, S.; Thamthaweechok, N.; Buranapakdee, P.; Chiemchaisri, W. Contamination by antibiotic-resistant bacteria in selected environments in Thailand. Int. J. Environ. Res. Public Health 2019, 16, 3753. [Google Scholar] [CrossRef]
- Khan, N.A.; Ahmed, S.; Farooqi, I.H.; Ali, I.; Vambol, V.; Changani, F.; Yousefi, M.; Vambol, S.; Khan, S.U.; Khan, A.H. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: A critical review. Trends Anal. Chem. 2020, 129, 115921. [Google Scholar] [CrossRef]
- Sabri, N.A.; van Holst, S.; Schmitt, H.; van der Zaan, B.M.; Gerritsen, H.W.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Sci. Total Environ. 2020, 741, 140199. [Google Scholar] [CrossRef]
- Kang, Z.; Jia, X.; Zhang, Y.; Kang, X.; Ge, M.; Liu, D.; Wang, C.; He, Z. A Review on application of biochar in the removal of pharmaceutical pollutants through adsorption and persulfate-based AOPs. Sustainability 2022, 14, 10128. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Lin, C.; Bui, X.-T.; Rakib, M.R.J.; Nguyen, H.-L.; Truong, Q.-M.; Hoang, H.-G.; Tran, H.-T.; Malafaia, G.; Idris, A.M. Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere 2024, 354, 141678. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Saheed, M.S.M.; Show, P.-L.; Chang, J.-S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020, 400, 122961. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Show, P.L.; Ngo, H.H.; Ho, S.-H. Algae-mediated antibiotic wastewater treatment: A critical review. Environ. Sci. Ecotechnol. 2022, 9, 100145. [Google Scholar] [CrossRef] [PubMed]
- Alemu, K.; Assefa, B.; Kifle, D.; Kloos, H. Removal of organic pollutants from municipal wastewater by applying high-rate algal pond in Addis Ababa, Ethiopia. Earth Syst. Environ. 2018, 2, 377–386. [Google Scholar] [CrossRef]
- Ali, S.; Waqas, W.; Bakky, M.A.H.; Zada, S.; Saif, U.M.; Hasan, M.T.; Shafiq, M.; Dildar, T.; Hui, W. Implications of microalgal–bacterial interactions in modern aquaculture practices: A review of the current knowledge. Rev. Aquac. 2025, 17, e12980. [Google Scholar] [CrossRef]
- Javed, F.; Hassan, A.A.; Zuhair, S.A. Microalgae–bacteria consortia for the treatment of fat, oil, and grease wastewater: Recent progress, interaction mechanisms, and application prospects. J. Hazard. Mater. Adv. 2025, 19, 100797. [Google Scholar] [CrossRef]
- Abd-El-Aziz, A.; Elnagdy, S.M.; Han, J.; Mihelič, R.; Wang, X.; Agathos, S.N.; Li, J. Bacteria-microalgae interactions from an evolutionary perspective and their biotechnological significance. Biotechnol. Adv. 2025, 82, 108591. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Lei, Y.; Li, X.; Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Bioremediation of sulfonamides by a microalgae-bacteria consortium-analysis of pollutants removal efficiency, cellular composition, and bacterial community. Bioresour. Technol. 2022, 351, 126964. [Google Scholar] [CrossRef]
- Toyama, T.; Kasuya, M.; Hanaoka, T.; Kobayashi, N.; Tanaka, Y.; Inoue, D.; Sei, K.; Morikawa, M.; Mori, K. Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnol. Biofuels 2018, 11, 176. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Djaghoubi, A.; Bouhoun, M.D.; Hadj Said, S.; Saggaï, A.; Sobti, S.; Aissa, B.H. Growth and nitrogen removal efficiency as protein content of Spirulina from tertiary municipal wastewater in Ouargla (Algerian Bas-Sahara). Energy Procedia 2015, 74, 1402–1409. [Google Scholar] [CrossRef]
- Hena, S.; Znad, H.; Heong, K.T.; Judd, S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 2018, 128, 267–277. [Google Scholar] [CrossRef]
- Liu, R.; Guo, Q.; Zheng, W.; Chen, L.; Luo, J. Cultivation of an Arthrospira platensis with digested piggery wastewater. Water Sci. Technol. 2015, 72, 1774–1779. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-087553-013-0. [Google Scholar]
- Kaur, B.; Choudhary, R.; Sharma, G.; Brar, L.K. Sustainable and effective microorganisms method for wastewater treatment. Desalin. Water Treat. 2024, 319, 100419. [Google Scholar] [CrossRef]
- Duangsri, C.; Mudtham, N.-A.; Incharoensakdi, A.; Raksajit, W. Enhanced polyhydroxybutyrate (PHB) accumulation in heterotrophically grown Arthrospira platensis under nitrogen deprivation. J. Appl. Phycol. 2020, 32, 3645–3654. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Garcin, C.; van Hille, R.P.; Harrison, S.T.L. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 2011, 85, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Hotos, G.N.; Antoniadis, T.I. The effect of colored and white light on growth and phycobiliproteins, chlorophyll and carotenoids content of the marine cyanobacteria Phormidium sp. and Cyanothece sp. in batch cultures. Life 2022, 12, 837. [Google Scholar] [CrossRef]
- Khandual, S.; Sanchez, E.O.L.; Andrews, H.E.; de la Rosa, J.D.P. Phycocyanin content and nutritional profile of Arthrospira platensis from Mexico: Efficient extraction process and stability evaluation of phycocyanin. BMC Chem. 2021, 15, 24. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Chandralekha Devi, A.; Raghavarao, K.S.M.S. A newer approach for the primary extraction of allophycocyanin with high purity and yield from dry biomass of Arthrospira platensis. Sep. Purif. Technol. 2018, 204, 162–174. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Gokare, R.A.; Ambati, R.R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Boto-Ordóñez, M.; Van Hulle, S.W.H.; Ferrer, I.; Garfí, M.; Rousseau, D.P.L. Natural pigments from microalgae grown in industrial wastewater. Bioresour. Technol. 2020, 303, 122894. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Depraetere, O.; Muylaert, K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: A study on chlorophyll fluorescence and electron transport. Algal Res. 2016, 16, 449–457. [Google Scholar] [CrossRef]
- Markou, G.; Chatzipavlidis, I.; Georgakakis, D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J. Microbiol. Biotechnol. 2012, 28, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ding, W.; Xi, J.; Gao, S.; Zhou, X.; Chen, Y.; Song, K.; Mao, X.; Tu, R.; Jiang, G. Effects of different nitrogen/phosphorus ratios on the growth and metabolism of microalgae Scenedesmus obliquus cultured in the mixed wastewater from primary settling tank and sludge thickener. Process Saf. Environ. Prot. 2023, 170, 824–833. [Google Scholar] [CrossRef]
- Kumari, P.; Shukla, S.P.; Bhuvaneswari, G.R.; Kumar, S.; Xavier, M.; Kumar, M. High value pigment production and carbon sequestration through wastewater grown Spirulina (Arthrospira) platensis: A green technology for wastewater utilization. Waste Manag. Bull. 2023, 1, 1–10. [Google Scholar] [CrossRef]
- Pikula, K.S.; Zakharenko, A.M.; Aruoja, V.; Golokhvast, K.S.; Tsatsakis, A.M. Oxidative stress and its biomarkers in microalgal ecotoxicology. Curr. Opin. Toxl. 2019, 13, 8–15. [Google Scholar] [CrossRef]
- Barati, B.; Li, Y.; Gusev, S.; Rousseau, D.; Van Hulle, S. Unlocking the potential of brewery wastewater: Sustainable cultivation of Arthrospira platensis for biomass and phycocyanin production. J. Water Process Eng. 2025, 70, 107107. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Zhai, J.; Wei, H.; Wang, Q. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresour. Technol. 2019, 273, 368–376. [Google Scholar] [CrossRef]
- Hu, M.; Wang, X.; Wen, X.; Xia, Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour. Technol. 2012, 117, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Suarez, C.; Simachew, A.; Paul, C.J. The potential of alkaline tolerant microbial consortia for textile wastewater treatment under integrated anaerobic/aerobic conditions: Performance evaluation and microbial community analysis. Int. Biodeterior. Biodegrad. 2025, 196, 105939. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Economou, C.N.; Markou, G.; Nicodemou, A.; Koutinas, M.; Tekerlekopoulou, A.G.; Vayenas, D.V. Cultivation of Arthrospira platensis in brewery wastewater. Water 2022, 14, 1547. [Google Scholar] [CrossRef]
- Khan, A.S.; Afrin, S.; Ahmed, F.; Rahman, S.R. Shotgun metagenomic analysis reveals the emergence of plasmid-encoded mcr-5.1 gene in hospital wastewater in Bangladesh. J. Glob. Antimicrob. Resist. 2024, 39, 22–26. [Google Scholar] [CrossRef]
- Guo, X.; Tang, N.; Lei, H.; Fang, Q.; Liu, L.; Zhou, Q.; Song, C. Metagenomic analysis of antibiotic resistance genes in untreated wastewater from three different hospitals. Front. Microbiol. 2021, 12, 709051. [Google Scholar] [CrossRef]
- Gong, W.; Guo, L.; Huang, C.; Xie, B.; Jiang, M.; Zhao, Y.; Zhang, H.; Wu, Y.; Liang, H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. Sci. Total Environ. 2024, 930, 172601. [Google Scholar] [CrossRef]
- Aliakbarzade, K.; Farajnia, S.; Karimi Nik, A.; Zarei, F.; Tanomand, A. Prevalence of aminoglycoside resistance genes in Acinetobacter baumannii isolates. Jundishapur J. Microbiol. 2014, 7, e11924. [Google Scholar] [CrossRef]
- Amande, T.J.; Kaszyk, V.; Brown, F. Identification of oqxB efflux pump and tigecycline resistance gene cluster tmexC3D2-toprJ3 in multidrug-resistant Pseudomonas stutzeri isolate G3. Infect. Drug Resist. 2025, 18, 2889–2899. [Google Scholar] [CrossRef]
- Roberts, M.C. Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front. Microbiol. 2011, 2, 40. [Google Scholar] [CrossRef]
- Zeng, J.; Pan, Y.; Yang, J.; Hou, M.; Zeng, Z.; Xiong, W. Metagenomic insights into the distribution of antibiotic resistome between the gut-associated environments and the pristine environments. Environ Int. 2019, 126, 346–354. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
NH3–N | 56.56 ± 3.23 mg/L |
NO3−–N | ≤0.011 mg/L |
PO43− | 6.31 ± 1.43 mg/L |
BOD | 71.50 ± 12.31 mg/L |
COD | 160.97 ± 24.44 mg/L |
TDS | 412.00 ± 21.57 mg/L |
TSS | 25.06 ± 1.83 mg/L |
TKN | 76.13 ± 3.10 mg/L |
FOG | 9.59 ± 2.58 mg/L |
pH | 7.5 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promariya, A.; Treenarat, S.; Akrimajirachoote, N.; Sricharern, W.; Raksajit, W. Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes. Biology 2025, 14, 1396. https://doi.org/10.3390/biology14101396
Promariya A, Treenarat S, Akrimajirachoote N, Sricharern W, Raksajit W. Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes. Biology. 2025; 14(10):1396. https://doi.org/10.3390/biology14101396
Chicago/Turabian StylePromariya, Authen, Sekbunkorn Treenarat, Nattaphong Akrimajirachoote, Wanat Sricharern, and Wuttinun Raksajit. 2025. "Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes" Biology 14, no. 10: 1396. https://doi.org/10.3390/biology14101396
APA StylePromariya, A., Treenarat, S., Akrimajirachoote, N., Sricharern, W., & Raksajit, W. (2025). Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes. Biology, 14(10), 1396. https://doi.org/10.3390/biology14101396