Bioinformatics-Based Analysis of the Screening and Evaluation of Potential Targets of FTY720 for the Treatment of Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Screening and Analysis of Genes
2.3. Identification of the Hub Gene
2.4. miRNA Prediction of Marker Genes
2.5. Construction of the Hub Gene-TFs Regulatory Network
2.6. Immune Cell Infiltration Analysis of the Hub Gene
2.7. Molecular Docking
2.8. Molecular Dynamics Simulation
3. Results
3.1. Identification of Drug Targets, Disease Genes, and DEGs
3.2. PPI Analysis and Enrichment Analysis of Genes
3.3. Identification of the Hub Gene
3.4. Marker Genes and miRNA Networks
3.5. KEGG Pathway Enrichment Analysis of miRNAs
3.6. TFs-Hub Gene Network Construction
3.7. Immune Infiltration Analysis of ZEB2 and S1PR1
3.8. Molecular Docking
3.9. Molecular Dynamics Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.A.-O.; Laversanne, M. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Li, Y.A.-O.; Xiao, X.A.-O. Lung Cancer in Ever- and Never-Smokers: Findings from Multi-Population GWAS Studies. Cancer Epidemiol. Biomark. Prev. 2024, 33, 389–399. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z. A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics. Comput. Biol. Med. 2024, 178, 108638. [Google Scholar] [CrossRef] [PubMed]
- Rojiani, M.A.-O.; Rojiani, A.A.-O. Non-Small Cell Lung Cancer-Tumor Biology. Cancers 2024, 16, 716. [Google Scholar] [CrossRef]
- Sorin, M.; Prosty, C. Neoadjuvant Chemoimmunotherapy for NSCLC: A Systematic Review and Meta-Analysis. JAMA Oncol. 2024, 10, 621–633. [Google Scholar] [CrossRef]
- La Mantia, L.; Tramacere, I.; Firwana, B. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev. 2016, 4, CD009371. [Google Scholar] [CrossRef] [PubMed]
- Kleinschnitz, C.; Kraft, P.; Dreykluft, A. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 2013, 121, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Kraft, P.; Göb, E.; Schuhmann, M.K. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 2013, 44, 3202–3210. [Google Scholar] [CrossRef]
- Rana, A.; Sharma, S. Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore. Clin. Exp. Pharmacol. Physiol. 2016, 43, 166–173. [Google Scholar] [CrossRef]
- van Vuuren, D.; Marais, E. The differential effects of FTY720 on functional recovery and infarct size following myocardial ischaemia/reperfusion. Cardiovasc. J. Afr. 2016, 27, 375–386. [Google Scholar] [CrossRef]
- Chua, C.W.; Lee, D.; Ling, M.-T. FTY720, a fungus metabolite, inhibits in vivo growth of androgen-independent prostate cancer. Int. J. Cancer 2005, 117, 1039–1048. [Google Scholar] [CrossRef]
- Zhou, C.; Ling, M.; Kin-Wah Lee, T. FTY720, a fungus metabolite, inhibits invasion ability of androgen-independent prostate cancer cells through inactivation of RhoA-GTPase. Cancer Lett. 2006, 233, 36–47. [Google Scholar]
- Azuma, H.; Takahara, S.; Ichimaru, N. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res. 2002, 62, 1410–1419. [Google Scholar]
- Nagaoka, Y.; Otsuki, K.; Fujita, T. Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol. Pharm. Bull. 2008, 31, 1177–1181. [Google Scholar] [CrossRef]
- Ng, K.T.; Man, K.; Ho, J.W. Marked suppression of tumor growth by FTY720 in a rat liver tumor model: The significance of down-regulation of cell survival Akt pathway. Int. J. Oncol. 2007, 30, 375–380. [Google Scholar] [PubMed]
- Lee, T.K.; Man, K.; Ho, J.W. FTY720: A promising agent for treatment of metastatic hepatocellular carcinoma. Clin. Cancer Res. 2005, 11, 8458–8466. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, M.; Xia, W. FTY720, a synthetic compound from Isaria sinclairii, inhibits proliferation and induces apoptosis in pancreatic cancer cells. Cancer Lett. 2007, 254, 288–297. [Google Scholar] [CrossRef]
- Azuma, H.; Takahara, S.; Horie, S. Induction of apoptosis in human bladder cancer cells in vitro and in vivo caused by FTY720 treatment. J. Urol. 2003, 169, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, T. Combination treatment of FTY720 and cisplatin exhibits enhanced antitumour effects on cisplatin-resistant non-small lung cancer cells. Oncol. Rep. 2018, 39, 565–572. [Google Scholar] [CrossRef]
- Hirata, N.; Yamada, S. FTY720 Inhibits Expansion of Breast Cancer Stem Cells via PP2A Activation. Int. J. Mol. Sci. 2021, 22, 7259. [Google Scholar] [CrossRef]
- Nagahashi, M.; Yamada, A. Targeting the SphK1/S1P/S1PR1 Axis That Links Obesity, Chronic Inflammation, and Breast Cancer Metastasis. Cancer Res. 2018, 78, 1713–1725. [Google Scholar] [CrossRef]
- Hait, N.C.; Avni, D. The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERα expression and enhances hormonal therapy for breast cancer. Oncogenesis 2015, 4, e156. [Google Scholar] [CrossRef]
- Singh, S.A.-O.; Weigel, C.A.-O. FTY720/Fingolimod mitigates paclitaxel-induced Sparcl1-driven neuropathic pain and breast cancer progression. FASEB J. 2024, 38, e23872. [Google Scholar] [CrossRef] [PubMed]
- Rincón, R.; Cristóbal, I. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget 2015, 6, 4299–4314. [Google Scholar] [CrossRef]
- Chung, W.P.; Huang, W.L. FTY720 in resistant human epidermal growth factor receptor 2-positive breast cancer. Sci. Rep. 2022, 12, 241. [Google Scholar] [CrossRef]
- Ota, K.; Okuma, T. Fingolimod sensitizes EGFR wild-type non-small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest. Oncol. Rep. 2019, 42, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.; Han, Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef]
- Gregor, A.A.-O.; Inage, T. Lung cancer staging: State of the art in the era of ablative therapies and surgical segmentectomy. Respirology 2020, 25, 924–932. [Google Scholar] [CrossRef]
- Lahiri, A.; Maji, A. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023, 22, 40. [Google Scholar] [CrossRef]
- Harrow, S.; Palma, D.A. Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SABR-COMET): Extended Long-Term Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Fujita, T.; Inoue, K.; Yamamoto, S. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J. Antibiot. 1994, 47, 208–215. [Google Scholar]
- Massion, P.P.; Kuo, W.; Stokoe, D. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: Implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2002, 62, 3636–3640. [Google Scholar]
- Ma, Y.Y.; Wei, S.; Lin, Y.C. PIK3CA as an oncogene in cervical cancer. Oncogene 2000, 19, 2739–2744. [Google Scholar] [CrossRef] [PubMed]
- Ihnatko, R.; Kubes, M. TNF signaling: Early events and phosphorylation. Gen. Physiol. Biophys. 2007, 26, 159–167. [Google Scholar]
- Liu, Y.; Gao, Y. Expression of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) in non-small cell lung cancer and its relationship with the occurrence and prognosis of cancer pain. Ann. Palliat. Med. 2021, 10, 12759–12766. [Google Scholar] [CrossRef]
- Ciuffreda, L.; Incani, U.C.; Incani, U.; Steelman, L.S. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC. Curr. Pharm. Des. 2014, 20, 3944–3957. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hong, Y.; Xu, Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis 2014, 19, 1627–1636. [Google Scholar] [CrossRef]
- Cantalupo, A.; Gargiulo, A. S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure. Hypertension 2017, 70, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Meissner, A. S1PR (Sphingosine-1-Phosphate Receptor) Signaling in the Regulation of Vascular Tone and Blood Pressure: Is S1PR1 Doing the Trick? Hypertension 2017, 70, 232–234. [Google Scholar] [CrossRef]
- Anelli, V.; Gault, C.; Snider, A.J. Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J. 2010, 24, 2727–2738. [Google Scholar] [CrossRef]
- Weichand, B.; Popp, R. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J. Exp. Med. 2017, 214, 2695–2713. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, H. miR-367-3p Regulates Cells Proliferation and Invasion in NSCLC by Targeting ZEB2. Zhongguo Fei Ai Za Zhi 2022, 25, 782–788. [Google Scholar] [PubMed]
- Tong, X.; Su, P.; Yang, H. MicroRNA-598 inhibits the proliferation and invasion of non-small cell lung cancer cells by directly targeting ZEB2. Exp. Ther. Med. 2022, 24, 528. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Wang, T. Circular RNA Signature in Hepatocellular Carcinoma. J. Cancer 2019, 10, 3361–3372. [Google Scholar] [CrossRef]
- Long, T.; Li, J. A genetic variant in gene NDUFAF4 confers the risk of non-small cell lung cancer by perturbing hsa-miR-215 binding. Mol. Carcinog. 2024, 63, 145–159. [Google Scholar] [CrossRef]
- Zhang, X.; Cong, P.A.-O. Genomic gain/methylation modification/hsa-miR-132-3p increases RRS1 overexpression in liver hepatocellular carcinoma. Cancer Sci. 2023, 114, 4329–4342. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y. CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J. Cell Mol. Med. 2020, 24, 11445–11456. [Google Scholar] [CrossRef]
- Verger, A.; Quinlan, K.; Crofts, L.A. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol. Cell Biol. 2006, 26, 4882–4894. [Google Scholar] [CrossRef]
- Cao, W.; Ribeiro Rde, O.; Liu, D. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS ONE 2012, 7, e52984. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z. EZH2 promotes gastric cancer cells proliferation by repressing p21 expression. Pathol. Res. Pract. 2019, 215, 152374. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Q. AFAP1-AS1 induces cisplatin resistance in non-small cell lung cancer through PI3K/AKT pathway. Oncol. Lett. 2020, 19, 1024–1030. [Google Scholar] [CrossRef]
- Chen, Z.; Du, Y. EZH2 inhibition suppresses bladder cancer cell growth and metastasis via the JAK2/STAT3 signaling pathway. Oncol. Lett. 2019, 18, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cui, W. Silencing of ZNF610 suppresses cell proliferation and migration in lung adenocarcinoma. Cell Biochem. Funct. 2024, 42, e4078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chopin, M. Type 1 conventional dendritic cells: Ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol. 2021, 42, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.H.; Lin, Y.Q. Natural killer cell homing and trafficking in tissues and tumors: From biology to application. Signal Transduct. Target. Ther. 2022, 7, 205. [Google Scholar] [CrossRef] [PubMed]
Term Name | Term Genes | Target Genes (n) | miRNAs (n) | miRNA Names | p-Value |
---|---|---|---|---|---|
Hippo signaling pathway | 164 | 28 | 3 | hsa-miR-132-3p, | 2.286 × 10−6 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
FoxO signaling pathway | 139 | 21 | 3 | hsa-miR-132-3p, | 0.0003 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
Neurotrophin signaling pathway | 124 | 19 | 3 | hsa-miR-132-3p, | 0.0004 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
Thyroid hormone signaling pathway | 137 | 20 | 3 | hsa-miR-132-3p, | 0.0006 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
Signaling pathways regulating pluripotency of stem cells | 156 | 22 | 3 | hsa-miR-132-3p, | 0.0005 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
TGF-beta signaling pathway | 103 | 16 | 3 | hsa-miR-132-3p, | 0.0009 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
PI3K-Akt signaling pathway | 372 | 39 | 3 | hsa-miR-132-3p, | 0.0021 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
HIF-1 signaling pathway | 112 | 16 | 3 | hsa-miR-132-3p, | 0.0024 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p | |||||
MAPK signaling pathway | 329 | 35 | 3 | hsa-miR-132-3p, | 0.0028 |
hsa-miR-192-5p, | |||||
hsa-miR-215-5p |
CID | ZEB2 | S1PR1 | |
---|---|---|---|
FTY720 | 107969 | −2.52 | −2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Hailati, S.; Dilimulati, D.; Baishan, A.; Aikebaier, A.; Zhou, W. Bioinformatics-Based Analysis of the Screening and Evaluation of Potential Targets of FTY720 for the Treatment of Non-Small Cell Lung Cancer. Biology 2025, 14, 1311. https://doi.org/10.3390/biology14101311
Han M, Hailati S, Dilimulati D, Baishan A, Aikebaier A, Zhou W. Bioinformatics-Based Analysis of the Screening and Evaluation of Potential Targets of FTY720 for the Treatment of Non-Small Cell Lung Cancer. Biology. 2025; 14(10):1311. https://doi.org/10.3390/biology14101311
Chicago/Turabian StyleHan, Mengyuan, Sendaer Hailati, Dilihuma Dilimulati, Alhar Baishan, Alifeiye Aikebaier, and Wenting Zhou. 2025. "Bioinformatics-Based Analysis of the Screening and Evaluation of Potential Targets of FTY720 for the Treatment of Non-Small Cell Lung Cancer" Biology 14, no. 10: 1311. https://doi.org/10.3390/biology14101311
APA StyleHan, M., Hailati, S., Dilimulati, D., Baishan, A., Aikebaier, A., & Zhou, W. (2025). Bioinformatics-Based Analysis of the Screening and Evaluation of Potential Targets of FTY720 for the Treatment of Non-Small Cell Lung Cancer. Biology, 14(10), 1311. https://doi.org/10.3390/biology14101311