Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Synthesis of ASBVd(−)
2.2. Kinetics Studies
2.3. ASBVd(−) Structural Modeling
3. Results
3.1. Influence of Pressure on the Reaction Rate
3.2. Influence of Temperature on the Reaction Rate
3.3. The 2D and 3D Structural Modeling of ASBVd(−) at Different Temperatures
3.4. Reciprocal Effects of Pressure and Temperature on the Activation Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adkar-Purushothama, C.R.; Perreault, J.-P. Current overview on viroid–host interactions. WIREs RNA 2020, 11, e1570. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Gas, M.-E.; Molina, D.; Hernández, C.; Daròs, J.-A. Analysis of viroid replication. In Plant Virology Protocols; Springer: Totowa, NJ, USA, 2008; pp. 167–183. [Google Scholar]
- Ding, B. The Biology of Viroid-Host Interactions. Annu. Rev. Phytopathol. 2009, 47, 105–131. [Google Scholar] [CrossRef]
- Maurel, M.-C.; Leclerc, F.; Hervé, G. Ribozyme Chemistry: To be or not to be under high pressure. Chem. Rev. 2019, 120, 4898–4918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclerc, F.; Karplus, M. Two-metal-ion mechanism for hammerhead-ribozyme catalysis. J. Phys. Chem. B 2006, 110, 3395–3409. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.-A.; Daròs, J.-A.; Flores, R. Complexes containing both polarity strands of avocado sunblotch viroid: Identification in chloroplasts and characterization. Virology 1999, 253, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.L.; Oliveira, A.C.; Vieira, T.C.R.G.; de Oliveira, G.A.P.; Suarez, M.C.; Foguel, D. High-Pressure Chemical Biology and Biotechnology. Chem. Rev. 2014, 114, 7239–7267. [Google Scholar] [CrossRef] [PubMed]
- Winter, R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu. Rev. Biophys. 2019, 48, 441–463. [Google Scholar] [CrossRef]
- Han, T.; Liu, H.; Wang, J.; Gao, C.; Han, Y. Electrostrictive Effect of Materials under High Pressure Revealed by Electrochemical Impedance Spectroscopy. J. Phys. Chem. C 2021, 125, 8788–8793. [Google Scholar] [CrossRef]
- Hills, G.; Kinnibrugh, D. The pressure coefficient of the hydrogen electrode reaction. J. Electrochem. Soc. 1966, 113, 1111. [Google Scholar] [CrossRef]
- Tobe, S.; Heams, T.; Vergne, J.; Herve, G.; Maurel, M.-C. The catalytic mechanism of hairpin ribozyme studied by hydrostatic pressure. Nucleic Acids Res. 2005, 33, 2557–2564. [Google Scholar] [CrossRef] [Green Version]
- Hervé, G.; Tobé, S.; Heams, T.; Vergne, J.; Maurel, M.-C. Hydrostatic and osmotic pressure study of the hairpin ribozyme. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2006, 1764, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Ztouti, M.; Kaddour, H.; Miralles, F.; Simian, C.; Vergne, J.; Hervé, G.; Maurel, M.C. Adenine, a hairpin ribozyme cofactor–high-pressure and competition studies. FEBS J. 2009, 276, 2574–2588. [Google Scholar] [CrossRef] [PubMed]
- Kaddour, H.; Vergne, J.; Hervé, G.; Maurel, M.C. High-pressure analysis of a hammerhead ribozyme from Chrysanthemum chlorotic mottle viroid reveals two different populations of self-cleaving molecule. FEBS J. 2011, 278, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Gaston, H.B.H. Application of NIR Raman Spectroscopy to Probe the Flexibility of RNA Structure. In RNA Spectroscopy: Methods and Protocols; Arluison, V., Wien, F., Eds.; Springer: New York, NY, USA, 2020; pp. 149–164. [Google Scholar]
- Hui-Bon-Hoa, G.; Kaddour, H.; Vergne, J.; Kruglik, S.G.; Maurel, M.-C. Raman characterization of Avocado Sunblotchviroid and its response to external perturbations and self-cleavage. BMC Biophys. 2014, 7, 2. [Google Scholar] [CrossRef]
- Diener, T.O. The Viroids; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar]
- Chang, T.; He, S.; Amini, R.; Li, Y. Functional Nucleic Acids under Unusual Conditions. ChemBioChem 2021, 22, 2368–2383. [Google Scholar] [CrossRef]
- Magnabosco, C.; Lin, L.H.; Dong, H.; Bomberg, M.; Ghiorse, W.; Stan-Lotter, H.; Pedersen, K.; Kieft, T.L.; van Heerden, E.; Onstott, T.C. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 2018, 11, 707–717. [Google Scholar] [CrossRef]
- Paul, B.G.; Bagby, S.C.; Czornyj, E.; Arambula, D.; Handa, S.; Sczyrba, A.; Ghosh, P.; Miller, J.F.; Valentine, D.L. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 2015, 6, 6585. [Google Scholar] [CrossRef]
- Quéméneur, M.; Erauso, G.; Frouin, E.; Zeghal, E.; Vandecasteele, C.; Ollivier, B.; Tamburini, C.; Garel, M.; Ménez, B.; Postec, A. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front. Microbiol. 2019, 10, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurel, M.-C.; Leclerc, F.; Vergne, J.; Zaccai, G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019, 11, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delan-Forino, C.; Deforges, J.; Benard, L.; Sargueil, B.; Maurel, M.-C.; Torchet, C. Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands. Viruses 2014, 6, 489–506. [Google Scholar] [CrossRef] [Green Version]
- Delan-Forino, C.; Maurel, M.-C.; Torchet, C. Replication of avocado sunblotch viroid in the yeast Saccharomyces cerevisiae. J. Virol. 2011, 85, 3229–3238. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The vienna RNA websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, R.; Bernhart, S.H.; Zu Siederdissen, C.H.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Mathews, D.H.; Disney, M.D.; Childs, J.L.; Schroeder, S.J.; Zuker, M.; Turner, D.H. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 2004, 101, 7287–7292. [Google Scholar] [CrossRef] [Green Version]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Youkharibache, P.; Zhang, D.; Lanczycki, C.J.; Geer, R.C.; Madej, T.; Phan, L.; Ward, M.; Lu, S.; Marchler, G.H.; et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 2020, 36, 131–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Wu, Q.; Peng, Z.; Yang, J. Enhanced prediction of RNA solvent accessibility with long short-term memory neural networks and improved sequence profiles. Bioinformatics 2019, 35, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
- Heremans, K. High pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 1982, 11, 1–21. [Google Scholar] [CrossRef]
- Leclerc, F.; Zaccai, G.; Vergne, J.; Řìhovà, M.; Martel, A.; Maurel, M.-C. Self-assembly Controls Self-cleavage of HHR from ASBVd (−): A Combined SANS and Modeling Study. Sci. Rep. 2016, 6, 30287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Chan, C.Y.; Lawrence, C.E. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 2005, 11, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Daniel, I.; Oger, P.; Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 2006, 35, 858–875. [Google Scholar] [CrossRef]
- Dufour, E.; Hervé, G.; Haertle, T. Hydrolysis of β-lactoglobulin by thermolysin and pepsin under high hydrostatic pressure. Biopolym. Orig. Res. Biomol. 1995, 35, 475–483. [Google Scholar] [CrossRef]
- Northrop, D.B. Effects of high pressure on enzymatic activity. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2002, 1595, 71–79. [Google Scholar] [CrossRef]
- Guy, H.I.; Schmidt, B.; Hervé, G.; Evans, D.R. Pressure-induced dissociation of carbamoyl-phosphate synthetase domains: The catalytically active form is dimeric. J. Biol. Chem. 1998, 273, 14172–14178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High pressure enhancement of enzymes: A review. Enzym. Microb. Technol. 2009, 45, 331–347. [Google Scholar] [CrossRef]
- Hervé, G.; Evans, H.G.; Fernado, R.; Patel, C.; Hachem, F.; Evans, D.R. Activation of latent dihydroorotase from Aquifex aeolicus by pressure. J. Biol. Chem. 2017, 292, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peracchi, A. Origins of the temperature dependence of hammerhead ribozyme catalysis. Nucleic Acids Res. 1999, 27, 2875–2882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, K.J.; Uhlenbeck, O.C. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry 1995, 34, 1744–1749. [Google Scholar] [CrossRef]
- Feig, A.L.; Ammons, G.E.; Uhlenbeck, O.C. Cryoenzymology of the hammerhead ribozyme. RNA 1998, 4, 1251–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, Y.; Taira, K. Temperature-dependent change in the rate-determining step in a reaction catalyzed by a hammerhead ribozyme. FEBS Lett. 1995, 361, 273–276. [Google Scholar] [CrossRef] [Green Version]
- El-Murr, N.; Maurel, M.-C.; Rihova, M.; Vergne, J.; Hervé, G.; Kato, M.; Kawamura, K. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Naturwissenschaften 2012, 99, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Moelling, K.; Broecker, F. Viroids and the Origin of Life. Int. J. Mol. Sci. 2021, 22, 3476. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Damer, B.; Deamer, D. The Hot Spring Hypothesis for an Origin of Life. Astrobiology 2019, 20, 429–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Peña, M.; García-Robles, I. Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep. 2010, 11, 711–716. [Google Scholar] [CrossRef] [Green Version]
Temperature (°C) | Minimum Free Energy Prediction (kcal/mol) | Thermodynamic Ensemble Prediction (kcal/mol) |
---|---|---|
0 | −118.4 | −119.71 |
20 | −83.78 | −86.79 |
25 | −75.16 | −78.84 |
30 | −66.63 | −71.05 |
35 | −58.54 | −63.44 |
40 | −50.75 | −56.11 |
45 | −43.13 | −49.09 |
55 | −28.64 | −36.01 |
65 | −17.16 | −24.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaddour, H.; Lucchi, H.; Hervé, G.; Vergne, J.; Maurel, M.-C. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. Biology 2021, 10, 720. https://doi.org/10.3390/biology10080720
Kaddour H, Lucchi H, Hervé G, Vergne J, Maurel M-C. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. Biology. 2021; 10(8):720. https://doi.org/10.3390/biology10080720
Chicago/Turabian StyleKaddour, Hussein, Honorine Lucchi, Guy Hervé, Jacques Vergne, and Marie-Christine Maurel. 2021. "Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth" Biology 10, no. 8: 720. https://doi.org/10.3390/biology10080720
APA StyleKaddour, H., Lucchi, H., Hervé, G., Vergne, J., & Maurel, M. -C. (2021). Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. Biology, 10(8), 720. https://doi.org/10.3390/biology10080720