Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification
2.2. DNA Extraction, Amplification and Sequencing
2.3. ITS, Alpha-Actin and Beta-Tubulin Sequence Analysis
3. Results
3.1. Phylogenetic Analyses
3.2. Taxonomy
- Xylaria chaiyaphumensis Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 3A–H.
- 2.
- Xylaria conica Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 3I–Q.
- 3.
- 4.
- Xylaria fulvescens Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 4G–L.
- 5.
- Xylaria ischnostroma Wangsawat N, Ju, Y.-M., Phosri C., Whalley A.J.S. & Suwannasai N., sp. nov. Figure 5A–G.
- 6.
- Xylaria margaretae Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 5H–N.
- 7.
- Xylaria minima Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 6A–H.
- 8.
- 9.
- Xylaria reinkingii var. microspora Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, var. nov. Figure 7A–H.
- 10.
- Xylaria siamensis Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 7I–R.
- 11.
- Xylaria sihanonthii Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 8A–F.
- 12.
- Xylaria subintraflava Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 8G–O.
- 13.
- Xylaria thienhirunae Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 9A–G.
- 14.
- Xylaria vinacea Wangsawat N, Y.-M. Ju, Phosri C, Whalley AJS & Suwannasai N, sp. nov. Figure 9H–P.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batra, L.R.; Batra, S.W.T. Termite-fungus mutualism. In Insect-Fungus Symbiosis-Nutrition, Mutualism and Commensalism; Batra, L.R., Montclair, N.J., Eds.; Allanheld, Osmun & Co.: New York, NY, USA, 1979; pp. 117–163. [Google Scholar]
- Hsieh, H.-M.; Lin, C.-R.; Fang, M.-J.; Rogers, J.D.; Fournier, J.; Lechat, C.; Ju, Y.-M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010, 54, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Petch, T. Termite fungi: A resume. Ann. Roy. Bot. Gard. 1913, 5, 303–341. [Google Scholar]
- Dennis, R.W.G. Xylarioideae and Thamnomycetoideae of Congo. Bull. Jard. Bot. l’État Brux. 1961, 31, 109. [Google Scholar] [CrossRef]
- Rogers, J.D.; Ju, Y.-M.; Lehmann, J. Some Xylaria species on termite nests. Mycologia 2005, 97, 914–923. [Google Scholar] [CrossRef]
- Ju, Y.-M.; Hsieh, H.-M. Xylaria species associated with nests of Odontotermes formosanusin Taiwan. Mycologia 2007, 99, 936–957. [Google Scholar] [CrossRef]
- Rogers, J.D. The Xylariaceae: Systematic, Biological and Evolutionary Aspects. Mycologia 1979, 71, 1–42. [Google Scholar] [CrossRef]
- Hsieh, H.-M.; Chou, J.-C.; Ju, Y.-M. Xylaria insolita and X. subescharoidea: Two newly described species collected from a termite nesting site in Hua-lien, Taiwan. Bot. Stud. 2020, 61, 11–19. [Google Scholar] [CrossRef]
- Thienhirun, S. A preliminary account of the Xylariaceae of Thailand. Ph.D. Thesis, Liverpool John Moores University, Liverpool, UK, 1997. [Google Scholar]
- Srihanant, N.; Petcharat, V. Some Xylaria species in oil palm and Pará rubber plantation in southern Thailand. Khon. Kaen. Agri. J. 2015, 43, 163–169. [Google Scholar]
- McKnight, K.H.; Rayner, R.W. A Mycological Colour Chart. Mycologia 1972, 64, 34. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Shinsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Suwannasai, N.; Martín, M.P.; Phosri, C.; Sihanonth, P.; Whalley, A.J.S.; Spouge, J.L. Fungi in Thailand: A Case Study of the Efficacy of an ITS Barcode for Automatically Identifying Species within the Annulohypoxylon and Hypoxylon Genera. PLoS ONE 2013, 8, e54529. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Hoehna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree v1.4.2, a Graphical Viewer of Phylogenetic Trees. 2014. Available online: http://tree.bio.ed.ac.uk/software/figtree/0 (accessed on 17 June 2021).
- Guedegbe, H.J.; Miambi, E.; Pando, A.; Houngnandan, P.; Rouland-Lefevre, C. Molecular diversity and host specificity of termite-associated Xylaria. Mycologia 2009, 101, 686–691. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.-M.; Hsieh, H.-M.; He, X.-S. Xylaria coprinicola, a new species that antagonizes cultivation of Coprinus comatus in China. Mycologia 2011, 103, 424–430. [Google Scholar] [CrossRef]
- Kim, C.S.; Jo, J.W.; Kwag, Y.-N.; Oh, S.-O.; Lee, S.-G.; Sung, G.-H.; Han, J.-G.; Oh, J.; Shrestha, B.; Kim, S.-Y.; et al. New Records of Xylaria Species in Korea: X. ripicola sp. nov. and X. tentaculata. Mycobiology 2016, 44, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-N.; Hsieh, H.-M.; Ju, Y.-M. Xylaria terricola sp. nov., a terrestrial anamorphic Xylaria species found in Taiwan. Fungal Sci. 2017, 32, 1–8. [Google Scholar]
- Visser, A.A.; Ros, V.I.; De Beer, Z.W.; Debets, A.J.; Hartog, E.; Kuyper, T.W.; Læssoe, T.; Slippers, B.; Aanen, D.K. Levels of specificity of Xylaria species associated with fungus-growing termites: A phylogenetic approach. Mol. Ecol. 2009, 18, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.G. Mycological notes 51. Mycol. Writ. 1917, 5, 717–732. [Google Scholar]
- Hsieh, H.-M.; Ju, Y.-M.; Rogers, J.D. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 2005, 97, 844–865. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-B.; Zhou, M.; Yuan, Y.; Dai, Y.-C. Global Diversity and Taxonomy of Sidera (Hymenochaetales, Basidiomycota): Four New Species and Keys to Species of the Genus. J. Fungi 2021, 7, 251. [Google Scholar] [CrossRef]
- Boedijn, K.B. On a new family of the Sphaeriales. Persoonia 1959, 1, 15–19. [Google Scholar]
- U’Ren, J.M.; Miadlikowska, J.; Zimmerman, N.B.; Lutzoni, F.; Stajich, J.E.; Arnold, A.E. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol. Phylogenet. Evol. 2016, 98, 210–232. [Google Scholar] [CrossRef] [Green Version]
- Wendt, L.; Sir, E.B.; Kuhnert, E.; Heitkämper, S.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Luangsa-Ard, J.J.; Srikitikulchai, P.; Persoh, D.; et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018, 17, 115–154. [Google Scholar] [CrossRef] [Green Version]
- Konta, S.; Hyde, K.D.; Phookamsak, R.; Xu, J.C.; Maharachchikumbura, S.S.N.; Daranagama, D.A.; McKenzie, E.H.C.; Boonmee, S.; Tibpromma, S.; Eungwanichayapant, P.D.; et al. Polyphyletic genera in Xylariaceae (Xylariales): Neoxylaria gen. nov. and Stilbohypoxylon. Mycosphere 2020, 11, 2629–2651. [Google Scholar] [CrossRef]
- Krishna, K.; Grimaldi, D.A.; Krishna, V.; Engel, M.S. Treatise on the Isoptera of the world 4. Termitidae (Part one). Bull. Am. Mus. Nat. Hist. 2013, 377, 977–1494. [Google Scholar]
- Sornnuwat, Y.; Vongkaluang, C.; Takematsu, Y. A systematic key to termites of Thailand. Kasetsart J. 2004, 38, 349–368. [Google Scholar]
Species | Collection Number | Country | GenBank Accession Number ITS | Reference | GenBank Accession Number Beta-Tubulin | Reference | GenBank Accession Number Alpha-Actin | Reference |
---|---|---|---|---|---|---|---|---|
Astrocystis bambusae | HAST 89021904 | Taiwan | - | - | GQ495942 | [2] | GQ449239 | [2] |
A. mirabilis | HAST 94070803 | Taiwan | - | - | GQ495941 | [2] | GQ449238 | [2] |
A. sublimbata | HAST 89032207 | Taiwan | - | - | GQ495940 | [2] | GQ449236 | [2] |
Kretzschmariaclavus | JDR 114 | French Guiana | - | - | EF025611 | [2] | EF025596 | [2] |
K. guyanensis | HAST 89062903 | Taiwan | GU300079 | [2] | GQ478214 | [2] | GQ408901 | [2] |
K. sandvicensis | JDR 113 | USA, Hawaiian Islands | - | - | GQ478211 | [2] | GQ398234 | [2] |
Nemania bipapillata | HAST 90080610 | Taiwan | - | - | GQ470221 | [2] | GQ389693 | [2] |
N. diffusa | HAST 91020401 | Taiwan | - | - | GQ470220 | [2] | GQ389692 | [2] |
N. illita | JDR 236 | USA | - | - | EF025608 | [2] | EF025593 | [2] |
Poronia pileiformis | WSP 88113001 | Taiwan | GU324760 | [2] | GQ502720 | [2] | GQ455449 | [2] |
Rosellinia buxi | JDR 99 | France | - | - | GQ470228 | [2] | GQ398228 | [2] |
R. necatrix | HAST 89062904 | Taiwan | - | - | EF025603 | [2] | EF025588 | [2] |
Xylaria acuminatilongissima | HAST 623 | Taiwan | EU178738 | [6] | GQ502711 | [2] | GQ853046 | [2] |
X. adscendens | JDR 865 | Thailand | GU322432 | [2] | GQ487709 | [2] | GQ438746 | [2] |
X. apoda | HAST 90080804 | Taiwan | GU322437 | [2] | GQ495930 | [2] | GQ438751 | [2] |
X. arbuscula var. plenofissura | HAST 93082814 | Taiwan | GU339495 | [2] | GQ478225 | [2] | GQ421285 | [2] |
X. atrodivaricata | HAST 95052001 | Taiwan | EU178739 | [6] | GQ502713 | [2] | GQ853048 | [2] |
X. atrosphaerica | HAST 91111214 | Taiwan | GU322459 | [2] | GQ495953 | [2] | GQ452363 | [2] |
X. bambusicola | JDR 162 | Thailand | GU300088 | [2] | GQ478223 | [2] | GQ408910 | [2] |
X. brunneovinosa | HAST 720 | Taiwan | EU179862 | [6] | GQ502706 | [2] | GQ853041 | [2] |
X. chaiyaphumensis | SWUF16-04.1 | Thailand | MT622777 | This study | - | - | - | - |
X. chaiyaphumensis | SWUF16-11.4 | Thailand | MT622776 | This study | MW459236 | This study | MW459213 | This study |
X. chaiyaphumensis | SWUF17-15.1 | Thailand | MT622774 | This study | - | - | MW459214 | This study |
X. chaiyaphumensis | SWUF17-49.2 | Thailand | MT622775 | This study | - | - | MW459215 | This study |
X. cirrata | HAST 664 | Taiwan | EU179863 | [6] | GQ502707 | [2] | GQ853042 | [2] |
X. coccophora | HAST 786 | French Guiana | GU300093 | [2] | GQ487701 | [2] | GQ421289 | [2] |
X. conica | SWUF18-4.3 | Thailand | MT622786 | This study | - | - | MW459223 | This study |
X. conica | SWUF18-4.4 | Thailand | MT622787 | This study | MW459243 | This study | MW459224 | This study |
X. coprinicola | 1145 | China | HM585020 | [23] | HM585018 | [23] | HM585017 | [23] |
X. crozonensis | HAST 398 | France | GU324748 | [2] | GQ502697 | [2] | GQ455441 | [2] |
X. cubensis | GENT 159 | Papua New Guinea | - | - | GQ502702 | [2] | GQ455446 | [2] |
X. cubensis | HAST 515 | French West Indies | GU373810 | [2] | GQ502701 | [2] | GQ455445 | [2] |
X. culleniae | JDR 189 | Thailand | GU322442 | [2] | GQ495935 | [2] | GQ438756 | [2] |
X. curta | HAST 92092022 | Taiwan | GU322443 | [2] | GQ495936 | [2] | GQ438757 | [2] |
X. escharoidea | HAST 658 | Taiwan | EU179864 | [6] | GQ502709 | [2] | GQ853044 | [2] |
X. escharoidea | CLZhao TJ-1 | China | MK343687 | Unpublished | - | - | - | - |
X. escharoidea | CLZhao TJ-2 | China | MK343688 | Unpublished | - | - | - | - |
X. escharoidea | CLZhao TJ-3 | China | MK343689 | Unpublished | - | - | - | - |
X. escharoidea | SWFU000021 | China | MK862248 | Unpublished | - | - | - | - |
X. escharoidea | 274-CW107 | China | KU194333 | Unpublished | - | - | - | - |
X. escharoidea | TF18 | China | MN509048 | Unpublished | - | - | - | - |
X. escharoidea | Y-4 | China | KC462194 | Unpublished | - | - | - | - |
X. cf. escharoidea | SWUF17-35.1 | Thailand | MT622792 | This study | MW459227 | This study | MW459200 | This study |
X. cf. escharoidea | SWUF17-38.1 | Thailand | MT622793 | This study | - | - | - | - |
X. cf. escharoidea | SWUF17-39.1 | Thailand | MT622794 | This study | MW459228 | This study | MW459201 | This study |
X. cf. escharoidea | SWUF17-39.2 | Thailand | MT622795 | This study | - | - | - | - |
X. fimbriata | HAST 491 | French West Indies | GU324753 | [2] | GQ502705 | [2] | GQ853040 | [2] |
X. fulvescens | SWUF17-27.2 | Thailand | MT622780 | This study | MW459238 | This study | MW459218 | This study |
X. griseosepiacea | HAST 641 | Taiwan | EU179865 | [6] | GQ502714 | [2] | GQ853049 | [2] |
X. hypoxylon | HAST 95082001 | Taiwan | GU300095 | [2] | GQ487703 | [2] | GQ427195 | [2] |
X. ianthinovelutina | HAST 553 | French West Indies | GU322441 | [2] | GQ495934 | [2] | GQ438755 | [2] |
X. insolita | HAST 99090301-1251 | Taiwan | MN655979 | [8] | MN656983 | [8] | MN656985 | [8] |
X. intracolorata | HAST 90080402 | Taiwan | GU324741 | [2] | GQ502690 | [2] | GQ452375 | [2] |
X. intraflava | HAST 725 | Taiwan | EU179866 | [6] | GQ502718 | [2] | GQ853053 | [2] |
X. ischnostroma | SWUF18-22.1 | Thailand | MT622788 | This study | MW459244 | This study | MW459225 | This study |
X. juruensis | HAST 92042501 | Taiwan | GU322439 | [2] | GQ495932 | [2] | GQ438753 | [2] |
X. laevis | HAST 95,072,910 | Taiwan | GU324747 | [2] | GQ502696 | [2] | GQ455440 | [2] |
X. luteostromata var. macrospora | HAST 508 | French West Indies | GU324739 | [2] | GQ502688 | [2] | GQ452373 | [2] |
X. margaretae | SWUF17-34.1 | Thailand | MT622778 | This study | - | - | MW459216 | This study |
X. margaretae | SWUF17-34.2 | Thailand | MT622779 | This study | MW459237 | This study | MW459217 | This study |
X. minima | SWUF18-3.2 | Thailand | MT622789 | This study | MW459245 | This study | MW459226 | This study |
X. multiplex | HAST 580 | French West Indies | GU300098 | - | GQ487705 | [2] | GQ427198 | [2] |
X. nigripes | HAST 653 | Taiwan | GU324755 | [2] | GQ502710 | [2] | GQ853045 | [2] |
X. nigripes | Xn1 | China | MK748600 | Unpublished | - | - | - | - |
X. nigripes | Xn-6 | China | JQ967448 | Unpublished | - | - | - | - |
X. nigripes | Xn-7 | China | JQ979095 | Unpublished | - | - | - | - |
X. nigripes | CWF | Taiwan | KJ627787 | Unpublished | - | - | - | - |
X. nigripes | 420526MF0342 | China | MG712340 | Unpublished | - | - | - | - |
X. nigripes | Hf-1A | Taiwan | JQ927570 | Unpublished | - | - | - | - |
X. nigripes | 4-29 | China | HM050414 | Unpublished | - | - | - | - |
X. nigripes | ZD17052101 | China | MN523323 | Unpublished | - | - | - | - |
X. cf. nigripes | SWUF17-31.2 | Thailand | MT622790 | This study | MW459229 | This study | MW459202 | This study |
X. cf. nigripes | SWUF17-36.1 | Thailand | MT622791 | This study | - | - | MW459203 | This study |
X. ochraceostroma | HAST 401 | Taiwan | EU179869 | [6] | GQ502717 | [2] | GQ853052 | [2] |
X. oligotoma | HAST 784 | French Guiana | GU300092 | [2] | GQ487700 | [2] | GQ421288 | [2] |
X. ophiopoda | HAST 93082805 | Taiwan | GU322461 | [2] | GQ452365 | [2] | GQ495955 | [2] |
X. plebeja | HAST 91122401 | Taiwan | GU324740 | [2] | GQ502689 | [2] | GQ452374 | [2] |
X. polymorpha | JDR1012 | USA | GU322460 | [2] | GQ495954 | [2] | GQ452364 | [2] |
X. reinkingii var. microspora | SWUF17-19.1 | Thailand | MT622769 | This study | MW459234 | This study | MW459209 | This study |
X. ripicola | KA11-0060-1 | South Korea | NR153251 | [24] | - | - | - | - |
X. ripicola | KA11-0060-2 | South Korea | KM817200 | [24] | - | - | - | - |
X. siamensis | SWUF17-20.2 | Thailand | MT622765 | This study | MW459233 | This study | MW459208 | This study |
X. siamensis | SWUF17-20.3 | Thailand | MT622766 | This study | - | - | - | - |
X. siamensis | SWUF17-20.4 | Thailand | MT622767 | This study | - | - | - | - |
X. siamensis | SWUF17-20.6 | Thailand | MT622768 | This study | - | - | - | - |
X. sihanonthii | SWUF18-5.1 | Thailand | MT622784 | This study | MW459241 | This study | MW459221 | This study |
X. sihanonthii | SWUF18-1.3 | Thailand | MT622785 | This study | MW459242 | This study | MW459222 | This study |
X. striata | HAST 304 | Taiwan | GU300089 | [2] | GQ478224 | [2] | GQ421284 | [2] |
X. subescharoidea | HAST 660 | Taiwan | GU324754 | [2] | GQ502708 | [8] | GQ853043 | [8] |
X. subescharoidea | HAST 99060401-1188 | Taiwan | MN655980 | [8] | MN656984 | [8] | MN656986 | [8] |
X. subintraflava | SWUF16-4.3 | Thailand | MT622762 | This study | MW459230 | This study | MW459204 | This study |
X. subintraflava | SWUF16-11.1 | Thailand | MT622763 | This study | - | - | MW459205 | This study |
X. subintraflava | SWUF17-9.2 | Thailand | MT622758 | This study | - | - | - | - |
X. subintraflava | SWUF17-13.1 | Thailand | MT622759 | This study | - | - | - | - |
X. subintraflava | SWUF17-22.2 | Thailand | MT622764 | This study | MW459231 | This study | MW459206 | This study |
X. subintraflava | SWUF17-24.2 | Thailand | MT622757 | This study | MW459232 | This study | MW459207 | This study |
X. subintraflava | SWUF18-9.1 | Thailand | MT622760 | This study | - | - | - | - |
X. subintraflava | SWUF18-9.2 | Thailand | MT622761 | This study | - | - | - | - |
X. terricola | YMJ 1375 | Taiwan | MF577042 | [25] | MF577044 | [25] | MF577045 | [25] |
X. thienhirunae | SWUF16-6.2 | Thailand | MT622770 | This study | MW459235 | This study | MW459210 | This study |
X. thienhirunae | SWUF16-7.2 | Thailand | MT622772 | This study | - | - | - | - |
X. thienhirunae | SWUF16-10.1 | Thailand | MT622773 | This study | - | - | MW459211 | This study |
X. thienhirunae | SWUF17-44.1 | Thailand | MT622771 | This study | - | - | MW459212 | This study |
X. venustula | HAST 88113002 | Taiwan | GU300091 | [2] | GQ487699 | [2] | GQ421287 | [2] |
X. vinacea | SWUF18-2.1 | Thailand | MT622781 | This study | MW459239 | This study | MW459219 | This study |
X. vinacea | SWUF18-2.3 | Thailand | MT622782 | This study | - | - | - | - |
X. vinacea | SWUF18-2.10 | Thailand | MT622783 | This study | MW459240 | This study | MW459220 | This study |
X. sp. 1 | HAST 642 | Taiwan | GU324759 | [2] | GQ502719 | [2] | GQ853054 | [2] |
X. sp. 3 | HAST 722 | Taiwan | GU324756 | [2] | GQ502712 | [2] | GQ853047 | [2] |
X. sp. 4 | HAST 646 | Taiwan | GU324757 | [2] | GQ502715 | [2] | GQ853050 | [2] |
X. sp. 5 | HAST 650 | Taiwan | GU324758 | [2] | GQ502716 | [2] | GQ853051 | [2] |
Xylaria sp. | ASMC3 | Vietnam | EU164404 | [22] | - | - | - | - |
Xylaria sp. | AAG5 | Africa | EU164400 | [22] | - | - | - | - |
Xylaria sp. | HNHB | China | FN812862 | Unpublished | - | - | - | - |
Xylaria sp. | D12 | China | KC414236 | Unpublished | - | - | - | - |
Xylaria sp. | TF37 | China | MN526593 | Unpublished | - | - | - | - |
Xylaria sp. | 4-E7-2 | China | FN812842 | Unpublished | - | - | - | - |
Xylariaceae sp. | 342.D | South Africa | FJ425676 | [26] | - | - | - | - |
Xylariaceae sp. | 341 | South Africa | FJ425675 | [26] | - | - | - | - |
1. Ascospores with a median germ pore, (3.6–)3.9–4.7(–5) × (2.35–)2.5–3.2(–3.5) µm | X. escharoidea |
1. Ascospores with a germ slit | 2 |
2. Stromata usually repeatedly branched, with prominent perithecial mounds, ascospores shorter than 6 µm | 3 |
2. Stromata unbranched or sparingly branched, perithecia naked or presenting either inconspicuous or conspicuous perithecial mounds | 4 |
3. Stromatal surface white when immature, becoming blackish at maturity; ascospores ellipsoid-inequilateral, germ slit straight spore-length or nearly on flattened side, 5.0–6.0 × 2.5–3.5 µm | X. siamensis |
3. Stromatal surface dull coloured, becoming blackish at maturity; ascospores short fusoid-inequilateral, 3.5–5.0 × 2.0–3.0 µm | X. atrodivaricata * |
4. Ascospores > 10 µm, germ slit straight full spore-length | 5 |
4. Ascospores < 10 µm, germ slit straight 3/4 or full spore-length | 7 |
5. Stromal surface whitish to greyish with black ostioles; ascospores blackish-brown,(11–)14.0–19.4 × (6.5–)7.0–10.0 µm | X. tanganyikaensis * |
5. Stromatal surface blackish-brown to black with black ostioles; ascospores light brown, brown to dark brown, frequently < 14 µm | 6 |
6. Perithecia immersed, usually with prominent perithecial mounds; ascospores ellipsoid-inequilateral with narrowly rounded ends, (10–)10.8–12.3(–13.2) × 4.5–6(–6.4) µm; apical apparatus 4–4.5 × 2–3 µm | X. conica |
6. Perithecia naked or nearly so; ascospores ellipsoid-inequilateral with narrowly rounded ends, some pinched at the ends,10.3–11.6(–12) × 4.8–5.6 µm; apical apparatus 1.5–2 × 2–3 µm | X. ischnostroma |
7. Stromatal surface white at maturity; ascospores 5.4–6(–6.3) × 2.4–3.0 µm, straight germ slit nearly spore-length on convex side | X. reinkingii var. microspora |
7. Stromatal surface other than white, usually dull coloured at maturity | 8 |
8. Stromata usually more or less cylindrical, often exceeding 3 mm in diameter | 9 |
8. Stromata usually slender, fusiform to cylindrical, rarely exceeding 3 mm in diameter | 12 |
9. Stromatal surface blackish-brown to black or dark brick; ascospores mostly longer than 5 µm | 10 |
9. Stromatal surface ochraceous to fawn, luteous, greyish or dull black; ascospores mostly shorter than 5 µm | 11 |
10. Perithecia presenting very conspicuous mounds, blackish-brown; ostioles conic-papillate; ascospores 7.5–9.5 × (3.2–)3.5–4.5 µm | X. sihanonthii |
10. Perithecia immersed, brown; ostioles papillate; ascospores 6.7–8 × 2.8–3.7 µm | X. vinacea |
11. Stromata acuminate at the apex, unbranched, ochraceous to yellowish-brown on surface; ascospores inequilateral, 4–5 × 1.8–2.5 µm | X. acuminatilongissima * |
11. Stromata usually blunt or, infrequently, mucronate at the apex, greyish-brown on surface; ascospores slightly inequilateral to nearly equilateral, 3.5–5 × 2–3 µm | X. nigripes * |
12. Ascospores mostly > 5 µm | 13 |
12. Ascospores mostly < 5 µm | 14 |
13. Stromata very thin, 0.5–1 mm broad; perithecia naked or so on, hairy; ascospores 5.8–6.8 × 2.7–3.2 µm | X. minima |
13. Stromata slender, perithecia immersed, forming conspicuous mounds, without hair; ascospores (4.5–)5–6.2 × 2.2–3 µm | X. fulvescens |
14. Ascospores short, fusoid, pinched at the ends | 15 |
14. Ascospores ellipsoid-inequilateral to nearly equilateral with narrowly rounded ends | 16 |
15. Perithecia 0.3–0.7 mm diameter, 3–4 ostioles/mm; ostioles conic-papillate; ascospores fusoid with pinched ends, 4–5(–5.7) × (2.5–)3–3.8 µm; germ slit of half-full ascospore length | X. chaiyaphumensis |
15. Perithecia 0.5–0.8 mm diameter, 2–3 ostioles/mm; ostioles conic-papillate; ascospores fusoid with pinched ends, 4–5.2(–5.7) × 2.7–4 µm; germ slit full ascospore length | X. thienhirunae |
16. Stromatal surface longitudinally wrinkled with long stipes, unbranched with fertile parts; ascospores 3.5–5 × 1.8–2.5 µm | X. subintraflava |
16. Stromatal surface wrinkled with acuminate at apex, without fertile parts, unbranched or two-branched at apex; ascospores (3.2–)3.8–5 × (1.8–)2–2.5 µm | X. margaretae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangsawat, N.; Ju, Y.-M.; Phosri, C.; Whalley, A.J.S.; Suwannasai, N. Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand. Biology 2021, 10, 575. https://doi.org/10.3390/biology10070575
Wangsawat N, Ju Y-M, Phosri C, Whalley AJS, Suwannasai N. Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand. Biology. 2021; 10(7):575. https://doi.org/10.3390/biology10070575
Chicago/Turabian StyleWangsawat, Niwana, Yu-Ming Ju, Cherdchai Phosri, Anthony J. S. Whalley, and Nuttika Suwannasai. 2021. "Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand" Biology 10, no. 7: 575. https://doi.org/10.3390/biology10070575
APA StyleWangsawat, N., Ju, Y. -M., Phosri, C., Whalley, A. J. S., & Suwannasai, N. (2021). Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand. Biology, 10(7), 575. https://doi.org/10.3390/biology10070575