Assessment of Serpentine Group Minerals in Soils: A Case Study from the Village of San Severino Lucano (Basilicata, Southern Italy)
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. TEM Characterization
4.2. Thermal Analysis Characterization
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Asbestos and Other Natural Mineral Fibers. Environmental Health Criteria, 53; World Health Organization: Geneva, Switzerland, 1986; p. 194. [Google Scholar]
- National Institute for Occupational Safety and Health (NIOSH). Asbestos and Other Elongated Mineral Particles: State of the Science and Roadmap for Research; Current Intelligence Bulletin, June 2008-Revised Draft; National Institute for Occupational Safety and Health (NIOSH): Washington, DC, USA, 2008.
- Punturo, R.; Cirrincione, R.; Pappalardo, G.; Mineo, S.; Fazio, E.; Bloise, A. Preliminary laboratory characterization of serpentinite rocks from Calabria (southern Italy) employed as stone material. J. Mediterr. Earth Sci. 2018, 10, 79–87. [Google Scholar]
- International Agency for Research on Cancer (IARC). Asbestos (Chrysotile, Amosite, Crocidolite, Tremolite, Actinolite, and Anthophyllite) IARC Monographs. Arsenic, Metals, Fibers and Dusts; International Agency for Research on Cancer: Lyon, France, 2009; pp. 147–167. [Google Scholar]
- Harper, M. 10th Anniversary critical review: naturally occurring asbestos. J. Environ. Monit. 2008, 10, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Compagnoni, R.; Ferraris, G.; Fiora, L. Balangeorite, a new fibrous silicate related to gageite from Balangero, Italy. Am. Mineral. 1983, 68, 214–219. [Google Scholar]
- Ballirano, P.; Pacella, A.; Bloise, A.; Giordani, M.; Mattioli, M. Thermal Stability of Woolly Erionite-K and Considerations about the Heat-Induced Behaviour of the Erionite Group. Minerals 2018, 8, 28. [Google Scholar] [CrossRef]
- Gianfagna, A.; Ballirano, P.; Bellatreccia, F.; Bruni, B.; Paoletti, E.; Oberti, R. Characterization of amphibole fibers linked to mesothelioma in the area of Biancavilla, eastern Sicily, Italy. Mineralog. Mag. 2003, 67, 1221–1229. [Google Scholar] [CrossRef]
- Cardile, V.; Lombardo, L.; Belluso, E.; Panico, A.; Capella, S.; Balazy, M. Toxicity and Carcinogenicity Mechanisms of Fibrous Antigorite. Int. J. Environ. Res. Public Health 2007, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F. Mineral Fibers: Crystalchemistry, Chemical-Physicalproperties, Biological Interaction and Toxicity; European Mineralogical Union and Mineralogical Society of Great Britain and Ireland: London, UK, 2017; p. 533. [Google Scholar]
- Pugnaloni, A.; Giantomassi, F.; Lucarini, G.; Capella, S.; Bloise, A.; Di Primio, R.; Belluso, E. Cytotoxicityinduced by exposure to natural and synthetic tremolite asbestos: An in vitro pilot study. Acta Histochem. 2013, 115, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Catalano, M.; Barrese, E.; Gualtieri, A.F.; Gandolfi, N.B.; Capella, S.; Belluso, E. TG/DSC study of the thermal behaviour of hazardous mineral fibers. J. Therm. Anal. Calorim. 2016, 123, 2225–2239. [Google Scholar] [CrossRef]
- Bloise, A.; Punturo, R.; Catalano, M.; Miriello, D.; Cirrincione, R. Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: The monitoring example of selected sites in Calabria (southern Italy). Ital. J. Geosci. 2016, 135, 268–279. [Google Scholar] [CrossRef]
- Censi, P.; Zuddas, P.; Randazzo, L.A.; Tamburo, E.; Speziale, S.; Cuttitta, A.; Punturo, R.; Santagata, R. Source and nature of inhaled atmospheric dust from trace element analyses of human bronchial fluids. Environ. Sci. Technol. 2011, 45, 6262–6267. [Google Scholar] [CrossRef] [PubMed]
- Censi, P.; Tamburo, E.; Speziale, S.; Zuddas, P.; Randazzo, L.A.; Punturo, R.; Aricò, P. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout. J. Hazard. Mater. 2011, 186, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Barca, D.; Gualtieri, A.F.; Pollastri, S.; Belluso, E. Trace elements in hazardous mineral fibres. Environ. Pollut. 2016, 216, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Punturo, R.; Bloise, A.; Critelli, T.; Catalano, M.; Fazio, E.; Apollaro, C. Environmental implications related to natural asbestos occurrences in the ophiolites of the Gimigliano-Mount Reventino Unit (Calabria, southern Italy). Int. J. Environ. Res. 2015, 9, 405–418. [Google Scholar]
- Acosta, A.; Pereira, M.D.; Shaw, D.M.; Bea, F. Serpentinización de la peridotita de Ronda (cordillera Betica) comorespuesta a la interacción con fluidosricos en volátiles: comportamiento del boro. Rev. Soc. Geol. Esp. 1997, 10, 99–106. [Google Scholar]
- Burragato, F.; Comba, P.; Baiocchi, V.; Palladino, D.M.; Simei, S.; Gianfagna, A.; Pasetto, R. Geo-volcanological, mineralogical and environmental aspects of quarry materials related to pleural neoplasm in the area of Biancavilla, Mount Etna (Eastern Sicily, Italy). Environ. Geol. 2005, 47, 855–868. [Google Scholar] [CrossRef]
- Constantopoulos, S.H. Environmental mesothelioma associated with tremolite asbestos: Lessons from the experiences of Turkey, Greece, Corsica, New Caledonia and Cyprus. Regul. Toxicol. Pharmacol. 2008, 52, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.D.; Peinado, M.; Blanco, J.A.; Yenes, M. Geochemical characterization of serpentinites at cabo ortegal, northwestern Spain. Can. Mineral. 2008, 46, 317–327. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Critelli, T.; Catalano, M.; Apollaro, C.; Miriello, D.; Barrese, E. Amphibole asbestos and other fibrous minerals in the meta-basalt of the Gimigliano-Mount Reventino Unit (Calabria, south-Italy). Rend Online Soc Geol It. 2012, 21, 847–848. [Google Scholar]
- Navarro, R.; Pereira, D.; Gimeno, A.; Barrio, S.D. Verde Macael: A Serpentinite Wrongly Referred to as a Marble. Geosciences 2013, 3, 102–113. [Google Scholar] [CrossRef]
- Gaggero, L.; Sanguineti, E.; Yus González, A.; Militello, G.M.; Scuderi, A.; Parisi, G. Airborne asbestos fibers monitoring in tunnel excavation. J. Environ. Manag. 2017, 196, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Worliczek, E. Naturally occurring asbestos: The perception of rocks in the mountains of New Caledonia. In Environmental Transformations and Cultural Responses: Ontologies, Discourses, and Practices in Oceania; Dürr, E., Pascht, A., Eds.; Springer: Berlin, Germany, 2017; pp. 187–214. [Google Scholar]
- Bloise, A.; Catalano, M.; Critelli, T.; Apollaro, C.; Miriello, D. Naturally occurring asbestos: Potential for human exposure, San Severino Lucano (Basilicata, Southern Italy). Environ. Earth Sci. 2017, 76, 648. [Google Scholar] [CrossRef]
- Bernardini, P.; Schettino, B.; Sperduto, B.; Giannadrea, F.; Burragato, F.; Castellino, N. Tre Casi di mesotelioma pleurico ed inquinamento ambientale da rocce affioranti di tremolite in Lucania. GIMLE 2003, 25, 408–411. [Google Scholar]
- Burragato, F.; Mastacchi, R.; Papacchini, L.; Rossini, F.; Sperduto, B. Mapping of risks due to particulates of natural origin containing fibrous tremolite: The case of Seluci di Lauria (Basilicata, Italy). In Proceedings of the 1st General Assembly, Nice, France, 25–30 April 2004. [Google Scholar]
- Pasetto, R.; Bruni, B.; Bruno, C.; Cauzillo, G.; Cavone, D.; Convertini, L.; De Mei, B.; Marconi, A.; Montagano, G.; Musti, M.; et al. Mesotelioma pleurico ed esposizione ambientale a fibre minerali: Il caso di un’area rurale in Basilicata. Ann. Ist. Super. Sanita. 2004, 40, 251–265. [Google Scholar] [PubMed]
- Punturo, R.; Ricchiuti, C.; Mengel, K.; Apollaro, C.; De Rosa, R.; Bloise, A. Serpentinite-derived soils in southern Italy: Potential for hazardous exposure. J. Mediterr. Earth Sci. 2018, 10, 51–61. [Google Scholar]
- Monaco, C.; Tortorici, L. Tettonica estensionale quaternaria nell’Arco Calabro e in Sicilia orientale. Studi Geologici Camerti 1995, 2, 351–362. [Google Scholar]
- Monaco, C.; Tortorici, L.; Paltrinieri, W. Structural evolution of the Lucanian Apennines, southern Italy. J. Struct. Geol. 1998, 20, 617–638. [Google Scholar] [CrossRef]
- Vezzani, L. La Formazione del Frido (Neocomiano- Aptiano) tra il Pollino e il Sinni. Geol. Rom. 1969, 8, 129–176. [Google Scholar]
- Amodio Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglioncino, A.; Perrone, V. L’ arco Calabro Peloritano nell’ orogene Appenninico-Maghrebide. Mem. Soc. Geol. It. 1976, 17, 1–60. [Google Scholar]
- Vezzani, L. La sezione tortoniana di Perosa sul fiume Sinni presso Episcopia (Potenza). Geol. Rom. 1966, 5, 263–290. [Google Scholar]
- Sansone, M.T.C.; Rizzo, G.; Mongelli, G. Petrochemical characterization of mafic rocks from the Ligurian ophiolites, Southern Apennines. Int. Geol. Rev. 2011, 53, 130–156. [Google Scholar] [CrossRef]
- Rizzo, G.; Cristi Sansone, M.T.; Perri, F.; Laurita, S. Mineralogy and petrology of the metasedimentary rocks from the frido unit (southern apennines, Italy). Period. Mineral. 2016, 85, 153–168. [Google Scholar]
- Sansone, M.T.C.; Prosser, G.; Rizzo, G.; Tartarotti, P. Spinel-peridotites of the frido unit ophiolites (southern apennine-italy): Evidence for oceanic evolution. Period. Mineral. 2012, 81, 35–59. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Bloise, A.; Barrese, E.; Apollaro, C.; Miriello, D. Flux growth and characterization of Ti and Ni doped forsterite single crystals. Cryst. Res. Technol. 2009, 44, 463–468. [Google Scholar] [CrossRef]
- Bloise, A.; Catalano, M.; Gualtieri, A.F. Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment. Minerals 2018, 8, 135. [Google Scholar] [CrossRef]
- Bloise, A.; Kusiorowski, R.; Gualtieri, A.F. The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos. Minerals 2018, 8, 274. [Google Scholar] [CrossRef]
- Ballirano, P.; Bloise, A.; Gualtieri, A.F.; Lezzerini, M.; Pacella, A.; Perchiazzi, N.; Dogan, M.; Dogan, A.U. The Crystal Structure of Mineral Fibers. In Mineral Fibers: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; Gualtieri, A.F., Ed.; European Mineralogical Union: London, UK, 2017; Volume 18, pp. 17–53. [Google Scholar]
- Bloise, A.; Kusiorowski, R.; Lassinantti Gualtieri, M.; Gualtieri, A.F. Thermal behaviour of mineral fibers. In Mineral Fibers: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; Gualtier, A.F., Ed.; European Mineralogical Union: London, UK, 2017; Volume 18, pp. 215–252. [Google Scholar]
- Loomis, D.; Dement, J.; Richardson, D.; Wolf, S. Asbestos fibre dimensions and lung cancer mortality among workers exposed to chrysotile. Occup. Environ. Med. 2010, 67, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Yuen, S.R.; Ashley, R. Short, thin asbestos fibersc ontribute to the development of human malignant mesothelioma: Pathological evidence. Int. J. Hyg. Environ. Health 2005, 208, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.; Castranova, V.; Donaldson, K.; Fubini, B.; Hadley, J.; Hesterberg, T.; Kane, A.; Lai, D.; McConnell, E.E.; Muhle, H.; et al. Testing of fibrous particles: Short-term assays and strategies. Inhal. Toxicol. 2005, 17, 497–537. [Google Scholar] [CrossRef] [PubMed]
- Stanton, M.F.; Layard, M.; Tegeris, A.; Miller, E.; May, M.; Morgan, E.; Smith, A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous mineral. J. Natl. Cancer. Inst. 1981, 67, 965–975. [Google Scholar] [PubMed]
- Dichicco, M.C.; Laurita, S.; Sinisi, R.; Battiloro, R.; Rizzo, G. Environmental and Health: The Importance of Tremolite Occurence in the Pollino Geopark (Southern Italy). Geosciences 2018, 8, 98. [Google Scholar] [CrossRef]
- Bellomo, D.; Gargano, C.; Guercio, A.; Punturo, R.; Rimoldi, B. Workers’ risks in asbestos contaminated natural sites. J. Mediterr. Earth Sci. 2018, 10, 97–106. [Google Scholar]
Sample | Site Description | Longitude (East) | Latitude (North) | Phases Detected |
---|---|---|---|---|
Spol1 | At the entrance of the Village | 597,417 | 4,429,775 | Ctl, PS, Ant, Tr (Di, Qtz, Mnt-Chl) * |
Spol2 | At the entrance of the Village | 597,405 | 4,430,523 | Ctl, f-Ant (Di, Qtz, Mnt-Chl, Tr) * |
Spol3 | Road cut outside the Village | 597,808 | 4,430,474 | Ctl, PS, Liz, f-Ant (Di, Qtz, Mnt-Chl, Tr) * |
Spol5 | Road cut outside the Village | 597,270 | 4,431,103 | Ctl, Liz, Ant (Di, Qtz, Mnt-Chl, Tr, Chm, Ms) * |
Spol7 | Road cut outside the Village | 597,323 | 4,431,363 | Ctl, Tr, (Di, Qtz, Mnt-Chl, Chm) * |
Spol8 | Road cut within the Village | 597,223 | 4,430,711 | Ctl, PS, Ant (Di, Qtz, Mnt-Chl, Tr, Chm) * |
Spol10 | Road cut within the Village | 596,890 | 4,430,715 | Ctl, PS, Ant (Di, Qtz, Mnt-Chl, Tr, Chm, Mo) * |
Spol11 | Road cut within the Village | 596,890 | 4,430,715 | Ctl, PS (Di, Qtz, Mnt, Tr, Chm) * |
Samples | Spol1 | Spol2 | Spol3 | Spol5 | Spol7 | Spol8 | Spol10 | Spol11 |
---|---|---|---|---|---|---|---|---|
DSC | ||||||||
Chl | 563 en(w) | |||||||
Ctl | 636 en(s) | 621 en(s) | 638 en(s) | 612 en(w) | 645 en(w) | 634 en(s) | 637 en(s) | 630 en(s) |
Fo | 822 ex(ss) | 824 ex(ss) | 821 ex(ss) | 844 ex(s) | 821 ex(ss) | 821 ex(ss) | 822 ex(ss) | 822 ex(ss) |
DTG | ||||||||
Chl | 564 en(vw) | 563 en(w) | ||||||
Ctl | 637 en(ss) | 619 en(s) | 638 en(s) | 614 en(w) | 647 en(ss) | 634 en(s) | 639 en(ss) | 631 en(ss) |
PS | 679 en(vw) | 686 en(vw) | 677 en(vw) | 688 en(vw) | 679 en(vw) | |||
Liz | 736 en(sh) | 744 en(sh) | ||||||
Ant | 774 en(sh) | 784 en(vw) | 784 en(sh) | 790 en(w) | 778 en(sh) | 770 en(sh) |
Spol1 | Spol2 | ||
T range (°C) | TG loss % | T range (°C) | TG loss % |
<110 | 3.57 | <110 | 3.30 |
TOT loss at 1000 | 17.44 | TOT loss at 1000 | 14.80 |
Spol3 | Spol5 | ||
T range (°C) | TG loss % | T range (°C) | TG loss % |
<110 | 1.47 | <110 | 3.94 |
TOT loss at 1000 | 13.13 | TOT loss at 1000 | 12.08 |
Spol7 | Spol8 | ||
T range (°C) | TG loss % | T range (°C) | TG loss % |
<110 | 2.16 | <110 | 2.39 |
TOT loss at 1000 | 12.24 | TOT loss at 1000 | 14.90 |
Spol10 | Spol11 | ||
T range (°C) | TG loss % | T range (°C) | TG loss % |
<110 | 1.96 | <110 | 2.78 |
TOT loss at 1000 | 15.40 | TOT loss at 1000 | 15.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punturo, R.; Ricchiuti, C.; Bloise, A. Assessment of Serpentine Group Minerals in Soils: A Case Study from the Village of San Severino Lucano (Basilicata, Southern Italy). Fibers 2019, 7, 18. https://doi.org/10.3390/fib7020018
Punturo R, Ricchiuti C, Bloise A. Assessment of Serpentine Group Minerals in Soils: A Case Study from the Village of San Severino Lucano (Basilicata, Southern Italy). Fibers. 2019; 7(2):18. https://doi.org/10.3390/fib7020018
Chicago/Turabian StylePunturo, Rosalda, Claudia Ricchiuti, and Andrea Bloise. 2019. "Assessment of Serpentine Group Minerals in Soils: A Case Study from the Village of San Severino Lucano (Basilicata, Southern Italy)" Fibers 7, no. 2: 18. https://doi.org/10.3390/fib7020018
APA StylePunturo, R., Ricchiuti, C., & Bloise, A. (2019). Assessment of Serpentine Group Minerals in Soils: A Case Study from the Village of San Severino Lucano (Basilicata, Southern Italy). Fibers, 7(2), 18. https://doi.org/10.3390/fib7020018