Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review
Abstract
:1. Introduction
2. Ophiolitic Sequences in Southern Italy
2.1. The Pollino Massif Serpentinites
2.2. The Gimigliano-Mt. Reventino Serpentinites
3. Analytical Methods
4. Previous Studies and New Findings
4.1. Asbestos Minerals in Serpentinites from the Pollino Massif
4.2. Asbestos Minerals in Serpentinites from Gimigliano-Mt. Reventino
5. Discussion and Conclusions
serpentine + CO2-rich fluid + calcite → talc + dolomite + aqueous fluid
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belluso, E.; Compagnoni, R.; Ferraris, G. Occurrence of Asbestiform Minerals in the Serpentinites of the Piemonte Zone, Western Alps; Giornata di Studio in ricordo del Prof. Stefano Zucchetti; Politecnico di Torino: Torino, Italy, 1994; pp. 57–64. [Google Scholar]
- Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur. J. Mineral. 2006, 18, 319–329. [Google Scholar] [CrossRef]
- Hendrickx, M. Naturally occurring asbestos in eastern Australia: A review of geological occurrence, disturbance and mesothelioma risk. Environ. Geol. 2009, 57, 909–926. [Google Scholar] [CrossRef]
- Vignaroli, G.; Ballirano, P.; Belardi, G.; Rossetti, F. Asbestos fibre identification vs. evaluation of asbestos hazard in ophiolitic rock mélanges, a case study from the Ligurian Alps (Italy). Environ. Earth Sci. 2013, 72, 3679–3698. [Google Scholar] [CrossRef]
- Bloise, A.; Punturo, R.; Catalano, M.; Miriello, D.; Cirrincione, R. Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: The monitoring example of selected sites in Calabria (southern Italy). Ital. J. Geosci. 2016, 135, 268–279. [Google Scholar] [CrossRef]
- Virta, R.L. Mineral Commodity Profiles: Asbestos; USGS Circular 1255-KK; US Geological Survey (USGS): Reston, VA, USA, 2005; p. 56.
- Nichols, M.D.; Young, D.; Davis, G. Guidelines for Geologic Investigations of Naturally Occurring Asbestos in California; Special publication; California Geological Survey Public Information Offices: Los Angeles, CA, USA, 2002; p. 124.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, and World Health Organization. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs; World Health Organization: Geneva, Switzerland, 1987; Volume 1–42. [Google Scholar]
- Mossman, B.T.; Lippmann, M.; Hesterberg, T.W.; Kelsey, K.T.; Barchowsky, A.; Bonner, J.C. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J. Toxicol. Environ. Health 2011, 14, 76–121. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Belluso, E.; Barrese, E.; Miriello, D.; Apollaro, C. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibres. Cryst. Res. Technol. 2009, 44, 590–596. [Google Scholar] [CrossRef]
- Bloise, A.; Barrese, E.; Apollaro, C.; Miriello, D. Flux growth and characterization of Ti- and Ni-doped forsterite single crystals. Cryst. Res. Technol 2009, 44, 463–468. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Fornero, E.; Rinaudo, C.; Barrese, E.; Cappella, S. Influence of synthesis condition on growth of Ni-doped chrysotile. Microporous Mesoporous Mater. 2010, 132, 239–245. [Google Scholar] [CrossRef]
- Bloise, A.; Barca, D.; Gualtieri, A.F.; Pollastri, S.; Belluso, E. Trace elements in hazardous mineral fibres. Environ. Pollut. 2016, 216, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Loreto, C.; Carnazza, M.L.; Cardile, V.; Libra, M.; Lombardo, L.; Malaponte, G.; Martinez, G.; Musumeci, G.; Papa, V.; Cocco, L. Mineral fiber-mediated activation of phosphoinositide-specific phospho-lipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. Int. J. Oncol. 2009, 34, 371–376. [Google Scholar]
- Pugnaloni, A.; Giantomassi, F.; Lucarini, G.; Capella, S.; Bloise, A.; Di Primo, R.; Belluso, E. Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: An in vitro pilot study. Acta Histochem. 2013, 115, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Gueguen, E.; Doglioni, C.; Fernandez, M. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 1998, 298, 259–269. [Google Scholar] [CrossRef]
- Cello, G.; Mazzoli, S. Apennine tectonics in southern Italy: A review. J. Geodyn. 1999, 27, 191–211. [Google Scholar] [CrossRef]
- Doglioni, C.; Gueguen, E.; Harabaglia, P.; Mongelli, F. On the origin of west-directed subduction zones and applications to the western Mediterranean. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Horváth, F., Séranne, M., Eds.; Special Publications Geological Society: London, UK, 1999; Volume 156, pp. 541–561. [Google Scholar]
- Punturo, R.; Bloise, A.; Critelli, T.; Catalano, M.; Fazio, E.; Apollaro, C. Environmental implications related to natural asbestos occurrences in the ophiolites of the Gimigliano-Mount Reventino Unit (Calabria, Southern Italy). Int. J. Environ. Res. 2015, 9, 405–418. [Google Scholar]
- Campopiano, A.; Olori, A.; Spadafora, A.; Rosaria Bruno, M.; Angelosanto, F.; Iannò, A.; Iavicoli, S. Asbestiform minerals in ophiolitic rocks of Calabria (southern Italy). Int. J. Environ. Health Res. 2018, 28, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Fuoco, I.; Vespasiano, G.; De Rosa, R.; Cofone, F.; Miriello, D.; Bloise, A. Geochemical and mineralogical characterization of tremolite asbestos contained in the Gimigliano-Mount Reventino Unit (Calabria, south Italy). J. Mediterr. Earth Sci. 2018, 1, 5–15. [Google Scholar]
- Knott, S.D. The Liguride Complex of southern Italy—A Cretaceous to Paleogene accretionary wedge. Tectonophysics 1987, 142, 217–226. [Google Scholar] [CrossRef]
- Knott, S.D. Structure, kinematics and metamorphism of the Liguride complex, southern Apennines, Italy. J. Struct. Geol. 1994, 16, 1107–1120. [Google Scholar] [CrossRef]
- Monaco, C.; Tansi, C.; Tortorici, L.; De Francesco, A.M.; Morten, L. Analisi geologico-strutturale dell’Unità del Frido al confine calabro-lucano (Appennino Meridionale). Mem. Soc. Geol. Ital. 1991, 47, 341–353. [Google Scholar]
- Monaco, C.; Tortorici, L. Tectonic role of ophiolite-bearing terranes in building of the Southern Apennines orogenic belt. Terra Nova 1995, 7, 153–160. [Google Scholar] [CrossRef]
- Cirrincione, R.; Monaco, C. Evoluzione tettonometamorfica dell’Unità del Frido (Appennino Meridionale). Mem. Soc. Geol. Ital. 1996, 51, 83–92. [Google Scholar]
- Tortorici, L.; Catalano, S.; Monaco, C. Ophiolite-bearing melanges in southern Italy. Geol. J. 2009, 44, 153–166. [Google Scholar] [CrossRef]
- Sansone, M.T.C.; Rizzo, G.; Mongelli, G. Petrochemical characterization of mafic rocks from Ligurian ophiolites, southern Apennines. Int. Geol. Rev. 2011, 53, 130–156. [Google Scholar] [CrossRef]
- Laurita, S.; Prosser, G.; Rizzo, G.; Langone, A.; Tiepolo, M.; Laurita, A. Geochronological study of zircons from continental crust rocks in the Frido Unit (Southern Apennines). Int. J. Earth Sci. 2014, 104, 179–203. [Google Scholar] [CrossRef]
- Dichicco, M.C.; Laurita, S.; Paternoster, M.; Rizzo, G.; Sinisi, R.; Mongelli, G. Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study. Energy Procedia 2015, 76, 477–486. [Google Scholar] [CrossRef]
- Dichicco, M.C.; De Bonis, A.; Mongelli, G.; Rizzo, G.; Sinisi, R. Naturally occurring asbestos in the southern Apennines: Quick µ-Raman Spectroscopy identification as a tool of environmental control. In Proceedings of the 13th International Conference on Protection and Restoration of the Environment, Mykonos Island, Greece, 3–8 July 2016. [Google Scholar]
- Dichicco, M.C.; De Bonis, A.; Mongelli, G.; Rizzo, G.; Sinisi, R. μ-Raman spectroscopy and X-ray diffraction of asbestos’ minerals for geo-environmental monitoring: The case of the southern Apennines natural sources. Appl. Clay Sci. 2017, 141, 292–299. [Google Scholar] [CrossRef]
- Dichicco, M.C.; Laurita, S.; Sinisi, R.; Battiloro, R.; Rizzo, G. Environmental and Health: The Importance of Tremolite Occurence in the Pollino Geopark (Southern Italy). Geosciences 2018, 8, 98. [Google Scholar] [CrossRef]
- Dichicco, M.C.; Castiñeiras, P.; Galindo Francisco, C.; González Acebrón, L.; Grassa, F.; Laurita, S.; Paternoster, M.; Rizzo, G.; Sinisi, R.; Mongelli, G. Genesis of carbonate-rich veins in the serpentinites at the Calabria-Lucania boundary (southern Apennines). Rend. Online Soc. Geol. Ital. 2018, 44, 143–149. [Google Scholar] [CrossRef]
- Rizzo, G.; Laurita, S.; Altenberger, U. The Timpa delle Murge ophiolitic gabbros, southern Apennines: Insights from petrology and geochemistry and consequences to the geodynamic setting. Period. Mineral. 2018, 87, 5–20. [Google Scholar]
- Mazzeo, F.C.; Zanetti, A.; Aulinas, M.; Petrosino, M.; Arienzo, I.; D’Antonio, M. Evidence for an intra-oceanic affinity of the serpentinized peridotites from the Mt. Pollino ophiolites (southern Ligurian Tethys): Insights into the peculiar tectonic evolution of the southern Apennines. Lithos 2017, 284, 367–380. [Google Scholar] [CrossRef]
- Vitale, S.; Fedele, L.; Tramparulo, F.; Ciarcia, S.; Mazzoli, S.; Novellino, A. Structural and petrological analyses of the Frido Unit (southern Italy): New insights into the early tectonic evolution of the southern Apennines-Calabrian Arc system. Lithos 2013, 168–169, 219–235. [Google Scholar] [CrossRef]
- Sansone, M.T.C.; Prosser, G.; Rizzo, G.; Tartarotti, P. Spinel peridotites of the Frido unit ophiolites (southern Apennines Italy): Evidence for oceanic evolution. Period Miner. 2012, 81, 35–59. [Google Scholar]
- Sansone, M.T.C.; Tartarotti, P.; Prosser, G.; Rizzo, G. From ocean to subduction: The polyphase metamorphic evolution of the Frido unit metadolerite dykes (southern Apennine, Italy). Multiscale structural analysis devoted to the reconstruction of tectonic trajectories in active margins. J. Virtual. Explor. Electron. Ed. 2012, 41, 3. [Google Scholar]
- Sansone, M.T.C.; Rizzo, G. Pumpellyite veins in the metadolerite of the Frido unit (southern Apennines-Italy). Period. Mineral. 2012, 81, 75–92. [Google Scholar]
- Spadea, P. Calabria-Lucania ophiolites. Boll. Geofis. Teorica Appl. 1994, 36, 271–281. [Google Scholar]
- Laurita, S.; Rizzo, G. Blueschist metamorphism of metabasite dykes in the serpentinites of the Frido Unit, Pollino Massif. Rend. Online Soc. Geol. Ital. 2018, 45, 129–135. [Google Scholar] [CrossRef]
- Alvarez, W. Structure of the Monte Reventino greenschist folds: A contribution to untangling the tectonic-transport history of Calabria, a key element in Italian tectonics. J. Struct. Geol. 2005, 27, 1355–1378. [Google Scholar] [CrossRef]
- Liberi, F.; Piluso, E. Tectonometamorphic evolution of the ophiolites sequences from Northen Calabrian Arc. Ital. J. Geosci. 2009, 128, 483–493. [Google Scholar]
- Ogniben, L. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol. Ital. 1969, 8, 453–763. [Google Scholar]
- Ogniben, L. Schema Geologico della Calabria in base ai dati odierni. Geol. Rom. 1973, XII, 243–585. [Google Scholar]
- Piluso, E.; Cirrincione, R.; Morten, L. Ophiolites of the Calabrian Peloritani Arc and their relationships with the Crystalline Basement, Catena Costiera and Sila Piccola, Calabria, Southern Italy. GLOM 2000 Excursion Guide-Book 2000, 25, 117–140. [Google Scholar]
- Pezzino, A.; Angi, G.; Fazio, E.; Fiannacca, P.; Lo Giudice, A.; Ortolano, G.; Punturo, R.; Cirrincione, R.; De Vuono, E. Alpine metamorphism in the aspromonte massif: Implications for a new framework for the southern sector of the Calabria-Peloritani Orogen, Italy. Int. Geol. Rev. 2008, 50, 423–441. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fazio, E.; Heilbronner, R.; Kern, H.; Mengel, K.; Ortolano, G.; Pezzino, A.; Punturo, R. Microstructure and elastic anisotropy of naturally deformed leucogneiss from a shear zone in Montalto (southern Calabria, Italy). Geol. Soc. Lond. Spec. Publ. 2010, 332, 49–68. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S.; Fedele, L.; Tramparulo, F. The Ligurian oceanic successions in southern Italy: The key to decrypting the first orogenic stages of the southern Apennines-Calabria chain system. Tectonophysics 2018. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Dichicco, M.C. Genesis of Carbonate-Rich Veins in the Serpentinites Outcropping at the Calabria-Lucania Boundary (Southern Apennines). Ph.D. Thesis, University of Basilicata, Potenza, Italy, 10 April 2018, unpublished. [Google Scholar]
- Raudsepp, M.; Turnock, A.C.; Hawthorne, F.C.; Sherriff, B.L.; Hartman, J.S. Characterization of synthetic pargasitic amphiboles (NaCa2Mg4M3+Si6Al2O22(OH, F)2; M3+ = Al, Cr, Ga, Fe, Sc, In) by infrared spectroscopy, Rietveld structure refinement, and 27Al, 29Si, and 19F MAS NMR spectroscopy. Am. Mineral. 1987, 72, 580–593. [Google Scholar]
- Ballirano, P.; Andreozzi, G.B.; Belardi, G. Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health. Am. Mineral. 2008, 93, 1349–1355. [Google Scholar] [CrossRef]
- Pacella, A.; Ballirano, P.; Cametti, G. Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. Eur. J. Mineral. 2016, 28, 257–264. [Google Scholar] [CrossRef]
- Dichicco, M.C.; Laurita, S.; Mongelli, G.; Rizzo, G.; Sinisi, R. Environmental problems related to serpentinites in the Pollino Geopark (Southern Appennine). In 89° Congresso congiunto SGI-SIMP, Rendiconti Online; Società Geologica Italiana: Catania, Italy, 2018; p. 578. [Google Scholar]
- Skogby, H.; Rossman, G.R. The intensity of amphibole OH bands in the infrared absorption spectrum. Phys. Chem. Miner. 1991, 18, 64–68. [Google Scholar] [CrossRef]
- Campopiano, A.; Olori, A.; Cannizzaro, A.; Ianno, A.; Capone, P.P. Quantification of tremolite in friable material coming from Calabrian ophiolitic deposits by infrared spectroscopy. J. Spectroscop. 2015, 2015, 974902. [Google Scholar] [CrossRef]
- Boschi, C.; Früh-Green, G.L.; Escartín, J. Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: An overview. Ofioliti 2006, 31, 129–140. [Google Scholar]
- Moore, D.E.; Rymer, M.J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 2007, 448, 795. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, H.J. Introduzione ai Minerali che Costituiscono le Rocce; Zanichelli Editore S.P.A.: Modena, Italy, 1994. [Google Scholar]
- Garcìa-Casco, A.; Torres-Roldán, R.L.; Milla, G.; Millán, P.; Schneider, J. Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction? J. Metamorph. Geol. 2002, 20, 581–598. [Google Scholar] [CrossRef]
- Deschamps, F.; Guillot, S.; Godard, M.; Andreani, M.; Hattori, K. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 2011, 23, 171–178. [Google Scholar] [CrossRef]
- Bucher, K.; Frey, M. Petrogenesis of Metamorphic Rocks; Springer-Verlag: Berlin, Germany, 2002; 341p. [Google Scholar]
- Comba, P.; Gianfagna, A.; Paoletti, L. Pleural Mesothelioma Cases in Biancavilla are Related to a New Fluoro-Edenite Fibrous Amphibole. Arch. Environ. Health Int. J. 2003, 58, 229–232. [Google Scholar] [CrossRef]
Locality | Texture | Mineral Assemblage | Fibrous Minerals |
---|---|---|---|
Pollino Massif 1 | Pseudomorphic texture and mylonitic-cataclastic structures | Srp ± Mag ± Tr-Act- Ed *-Hbl ± Clc ± Cpx ± Spl ± Ttn ± Cal ± Dol ± Tlc ± Qz | Tremolite, antigorite, chrysotile, edenite* |
Gimigliano-Mt. Reventino 2 | Protogranular texture | Srp ± Mag ± Tr-Act ± Chl ± Cpx ± Spl ± Cal ± Tlc | Tremolite, antigorite, chrysotile |
Locality | Serpentine | Magnetite | Amphibole | Carbonate | Pyroxene | Talc | Quartz | Titanite | Spinel | Clinochlore |
---|---|---|---|---|---|---|---|---|---|---|
Pollino Massif 1 | +++ | ++ | ++ | ++ | + | + | + | + | ++ | ++ |
Gimigliano-Mt. Reventino 2 | +++ | + | ++ | + | + | + | – | – | + | ++ |
N. Analysis | 73 | 76 | 77 | 78 | 79 | 91 | 109 | 130 | 98 | 102 |
---|---|---|---|---|---|---|---|---|---|---|
Oxides (wt%) | - | - | - | - | - | - | - | - | - | - |
SiO2 | 54.588 | 57.392 | 55.674 | 52.04 | 53.735 | 57.547 | 55.015 | 57.337 | 51.657 | 55.263 |
P2O5 | 0.031 | n.d. | n.d. | 0.01 | 0.016 | 0.028 | 0.024 | 0.057 | n.d. | 0.005 |
TiO2 | 0.158 | 0.011 | 0.059 | 0.433 | 0.268 | 0.075 | 0.059 | n.d. | 0.482 | 0.065 |
Al2O3 | 2.798 | 0.479 | 1.559 | 5.282 | 3.543 | 1.369 | 2.509 | n.d. | 5.484 | 1.871 |
Cr2O3 | 0.224 | 0.007 | 0.092 | 0.425 | 0.486 | 0.009 | 0.225 | n.d. | 0.502 | 0.006 |
MnO | 0.138 | 0.089 | 0.045 | 0.026 | 0.119 | 0.082 | 0.082 | 0.022 | 0.03 | 0.17 |
FeO | 3.925 | 3.147 | 2.475 | 3.231 | 3.064 | 2.663 | 2.401 | 2.012 | 2.871 | 7.065 |
NiO | 0.108 | 0.09 | 0.05 | 0.082 | 0.076 | 0.045 | n.d. | n.d. | 0.139 | 0.05 |
MgO | 23.1 | 23.415 | 24.408 | 22.602 | 23.236 | 23.524 | 23.623 | 23.445 | 21.81 | 20.999 |
CaO | 11.427 | 13.574 | 12.845 | 11.959 | 12.063 | 12.273 | 12.523 | 13.653 | 12.421 | 9.68 |
Na2O | 1.192 | 0.09 | 0.459 | 1.187 | 1.144 | 0.358 | 0.813 | 0.07 | 1.296 | 1.995 |
K2O | 0.002 | n.d. | 0.014 | 0.008 | 0.014 | 0.014 | 0.016 | 0.022 | 0.028 | 0.015 |
F | n.d. | 0.093 | n.d. | 0.039 | 0.023 | n.d. | 0.037 | 0.032 | n.d. | n.d. |
Cl | n.d. | 0.018 | 0.019 | 0.004 | 0.02 | 0.011 | 0.006 | 0.01 | 0.027 | 0.003 |
Sum | 97.691 | 98.362 | 97.695 | 97.311 | 97.792 | 97.996 | 97.316 | 96.645 | 96.741 | 97.186 |
Final wt% values | ||||||||||
MnO | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.02 | 0.00 | 0.00 |
Mn2O3 | 0.15 | 0.00 | 0.05 | 0.03 | 0.13 | 0.00 | 0.09 | 0.00 | 0.03 | 0.19 |
FeO | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.54 | 0.00 | 0.35 | 0.00 | 0.00 |
Fe2O3 | 4.36 | 3.39 | 2.75 | 3.59 | 3.41 | 2.36 | 2.67 | 1.85 | 3.19 | 7.85 |
H2O+ | 2.14 | 2.14 | 2.17 | 2.05 | 2.10 | 2.18 | 2.15 | 2.18 | 2.05 | 2.15 |
Sum | 100.28 | 100.88 | 100.15 | 99.74 | 100.26 | 100.42 | 99.76 | 99.03 | 99.12 | 100.14 |
Species | Tr | Tr | Tr | Tr | Tr | Tr | Tr | Tr | Mg-Fe-Hbl | Mg-Fe-Hbl |
Formula Assignments T (ideally 8 apfu) | ||||||||||
Si | 7.493 | 7.800 | 7.619 | 7.207 | 7.389 | 7.813 | 7.561 | 7.907 | 7.209 | 7.628 |
Al | 0.453 | 0.077 | 0.251 | 0.792 | 0.574 | 0.185 | 0.406 | 0.000 | 0.791 | 0.304 |
Ti | 0.016 | 0.001 | 0.006 | 0.000 | 0.028 | 0.000 | 0.006 | 0.000 | 0.000 | 0.007 |
Fe3+ | 0.036 | 0.123 | 0.123 | 0.000 | 0.008 | 0.000 | 0.025 | 0.090 | 0.000 | 0.061 |
T subtotal | 8.000 | 8.001 | 7.999 | 8.000 | 8.000 | 8.000 | 7.999 | 8.000 | 8.000 | 8.000 |
Formula Assignments C (ideally 5 apfu) | ||||||||||
Cr | 0.024 | 0.001 | 0.010 | 0.047 | 0.053 | 0.001 | 0.024 | 0.000 | 0.055 | 0.001 |
Mn3+ | 0.016 | 0.000 | 0.005 | 0.003 | 0.014 | 0.000 | 0.010 | 0.000 | 0.004 | 0.020 |
Fe3+ | 0.414 | 0.225 | 0.160 | 0.374 | 0.344 | 0.241 | 0.251 | 0.102 | 0.335 | 0.755 |
Ni | 0.012 | 0.010 | 0.006 | 0.009 | 0.008 | 0.005 | 0.000 | 0.000 | 0.016 | 0.006 |
Mg | 4.534 | 4.744 | 4.819 | 4.452 | 4.581 | 4.711 | 4.715 | 4.820 | 4.429 | 4.219 |
C subtotal | 5.000 | 5.001 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 4.965 | 5.001 | 5.001 |
Formula Assignments B (ideally 2 apfu) | ||||||||||
Mg | 0.193 | 0.000 | 0.160 | 0.214 | 0.182 | 0.050 | 0.125 | 0.000 | 0.108 | 0.102 |
Ca | 1.681 | 1.977 | 1.840 | 1.775 | 1.777 | 1.785 | 1.844 | 2.000 | 1.857 | 1.432 |
Na | 0.126 | 0.023 | 0.000 | 0.011 | 0.041 | 0.094 | 0.031 | 0.000 | 0.035 | 0.467 |
B subtotal | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 1.999 | 2.000 | 2.000 | 2.000 | 2.001 |
Formula Assignments A (from 0 to 1 apfu) | ||||||||||
Ca | 0.000 | 0.000 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 | 0.017 | 0.000 | 0.000 |
Na | 0.191 | 0.000 | 0.122 | 0.308 | 0.264 | 0.000 | 0.186 | 0.019 | 0.316 | 0.067 |
K | 0.000 | 0.000 | 0.002 | 0.001 | 0.002 | 0.002 | 0.003 | 0.004 | 0.005 | 0.003 |
A subtotal | 0.191 | 0.000 | 0.168 | 0.309 | 0.266 | 0.002 | 0.189 | 0.040 | 0.321 | 0.070 |
Sum T,C,B,A | 15.191 | 15.002 | 15.167 | 15.309 | 15.266 | 15.001 | 15.188 | 15.005 | 15.322 | 15.072 |
N. Analysis | 50 | 51 | 57 | 58 | 61 | 63 | 68 | 69 | 70 | 77 | 78 |
---|---|---|---|---|---|---|---|---|---|---|---|
Oxides (wt %) | |||||||||||
SiO2 | 53.347 | 54.451 | 53.069 | 53.452 | 53.387 | 54.129 | 52.799 | 52.955 | 54.293 | 51.264 | 53.878 |
P2O5 | 0.009 | 0.020 | 0.022 | 0.057 | 0.013 | 0.014 | 0.006 | 0.015 | 0.002 | 0.010 | 0.051 |
TiO2 | 0.006 | 0.006 | 0.017 | 0.025 | 0.000 | 0.012 | 0.041 | 0.012 | 0.021 | 0.002 | 0.023 |
Al2O3 | 0.958 | 0.259 | 1.529 | 0.858 | 0.747 | 0.486 | 2.709 | 0.785 | 0.382 | 1.869 | 0.388 |
Cr2O3 | 0.015 | 0.000 | 0.016 | 0.000 | 0.024 | 0.013 | 0.000 | 0.006 | 0.003 | 0.000 | 0.007 |
MnO | 0.151 | 0.061 | 0.184 | 0.082 | 0.036 | 0.124 | 0.120 | 0.124 | 0.137 | 0.147 | 0.124 |
FeO | 1.257 | 1.269 | 2.303 | 1.767 | 1.342 | 1.852 | 2.233 | 1.961 | 1.435 | 2.037 | 2.852 |
NiO | 0.014 | 0.043 | 0.000 | 0.050 | 0.061 | 0.000 | 0.000 | 0.048 | 0.026 | 0.000 | 0.010 |
MgO | 17.680 | 17.076 | 16.512 | 16.917 | 17.506 | 16.720 | 16.332 | 16.704 | 17.101 | 17.066 | 16.990 |
CaO | 23.640 | 25.340 | 24.529 | 24.833 | 24.716 | 25.228 | 24.079 | 24.949 | 25.507 | 24.555 | 25.405 |
Na2O | 0.102 | 0.057 | 0.145 | 0.091 | 0.071 | 0.076 | 0.118 | 0.062 | 0.102 | 0.040 | 0.056 |
K2O | 0.046 | 0.028 | 0.036 | 0.037 | 0.007 | 0.000 | 0.014 | 0.026 | 0.000 | 0.018 | 0.005 |
F | 0.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.024 | 0.020 | 0.000 | 0.000 | 0.013 | 0.000 |
Cl | 0.023 | 0.016 | 0.073 | 0.028 | 0.014 | 0.011 | 0.016 | 0.002 | 0.013 | 0.013 | 0.007 |
Sum | 97.24 | 98.63 | 98.43 | 98.19 | 97.92 | 98.68 | 98.48 | 97.65 | 99.02 | 97.02 | 99.80 |
Final wt % values | |||||||||||
Mn2O3 | 0.17 | 0.07 | 0.21 | 0.09 | 0.04 | 0.14 | 0.13 | 0.14 | 0.15 | 0.16 | 0.14 |
Fe2O3 | 1.40 | 1.41 | 2.56 | 1.96 | 1.49 | 2.06 | 2.48 | 2.18 | 1.60 | 2.26 | 3.17 |
H2O+ | 2.12 | 2.11 | 2.08 | 2.10 | 2.11 | 2.10 | 2.09 | 2.10 | 2.10 | 2.09 | 2.09 |
Sum | 99.52 | 100.88 | 100.79 | 100.49 | 100.19 | 101.00 | 100.83 | 99.98 | 101.30 | 99.36 | 102.22 |
Species | Ed | Ed | Ed | Ed | Ed | Ed | Ed | Ed | Ed | Ed | Ed |
Formula Assignments T (ideally 8 apfu) | |||||||||||
Si | 7.573 | 7.647 | 7.485 | 7.552 | 7.553 | 7.607 | 7.421 | 7.532 | 7.605 | 7.351 | 7.516 |
P | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 | n.d. | 0.001 | n.d. | 0.001 | 0.003 |
Al | 0.160 | 0.043 | 0.254 | 0.143 | 0.125 | 0.080 | 0.449 | 0.132 | 0.063 | 0.316 | 0.064 |
Ti | 0.001 | 0.001 | 0.002 | 0.003 | n.d. | 0.001 | 0.004 | 0.001 | 0.002 | n.d. | 0.002 |
Fe3+ | 0.149 | 0.149 | 0.258 | 0.209 | 0.159 | 0.218 | 0.126 | 0.233 | 0.168 | 0.244 | 0.333 |
T subtotal | 7.884 | 7.841 | 8.000 | 7.910 | 7.838 | 7.907 | 8.000 | 7.899 | 7.838 | 7.912 | 7.918 |
Formula Assignments C (ideally 5 apfu) | |||||||||||
Cr | 0.002 | n.d. | 0.002 | n.d. | 0.003 | 0.001 | n.d. | 0.001 | n.d. | n.d. | 0.001 |
Mn3+ | 0.018 | 0.007 | 0.022 | 0.010 | 0.004 | 0.015 | 0.014 | 0.015 | 0.016 | 0.018 | 0.015 |
Fe3+ | n.d. | n.d. | 0.014 | n.d. | n.d. | n.d. | 0.137 | n.d. | n.d. | n.d. | n.d. |
Ni | 0.002 | 0.005 | n.d. | 0.006 | 0.007 | n.d. | n.d. | 0.005 | 0.003 | n.d. | 0.001 |
Mg | 3.742 | 3.575 | 3.472 | 3.563 | 3.692 | 3.503 | 3.422 | 3.542 | 3.571 | 3.648 | 3.533 |
C subtotal | 3.764 | 3.587 | 3.510 | 3.579 | 3.706 | 3.519 | 3.573 | 3.563 | 3.590 | 3.666 | 3.550 |
Formula Assignments B (ideally 2 apfu) | |||||||||||
Ca | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
B subtotal | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
Formula Assignments A (from 0 to 1 apfu) | |||||||||||
Ca | 1.596 | 1.813 | 1.707 | 1.759 | 1.747 | 1.799 | 1.626 | 1.802 | 1.828 | 1.773 | 1.797 |
Na | 0.028 | 0.016 | 0.040 | 0.025 | 0.019 | 0.021 | 0.032 | 0.017 | 0.028 | 0.011 | 0.015 |
K | 0.008 | 0.005 | 0.006 | 0.007 | 0.001 | n.d. | 0.003 | 0.005 | n.d. | 0.003 | 0.001 |
A subtotal | 1.632 | 1.834 | 1.753 | 1.791 | 1.767 | 1.820 | 1.661 | 1.824 | 1.856 | 1.787 | 1.813 |
Sum T,C,B,A | 15.280 | 15.262 | 15.263 | 15.280 | 15.311 | 15.246 | 15.234 | 15.286 | 15.284 | 15.365 | 15.281 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dichicco, M.C.; Paternoster, M.; Rizzo, G.; Sinisi, R. Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review. Fibers 2019, 7, 24. https://doi.org/10.3390/fib7030024
Dichicco MC, Paternoster M, Rizzo G, Sinisi R. Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review. Fibers. 2019; 7(3):24. https://doi.org/10.3390/fib7030024
Chicago/Turabian StyleDichicco, Maria Carmela, Michele Paternoster, Giovanna Rizzo, and Rosa Sinisi. 2019. "Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review" Fibers 7, no. 3: 24. https://doi.org/10.3390/fib7030024
APA StyleDichicco, M. C., Paternoster, M., Rizzo, G., & Sinisi, R. (2019). Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review. Fibers, 7(3), 24. https://doi.org/10.3390/fib7030024