Research Progress on the Preparation and Tribological Properties of Self-Lubricating Coatings Fabricated on Light Alloys
Abstract
1. Introduction
2. Methods
- Literature Search Strategy: The search scope covers three core academic databases, namely ScienceDirect, Web of Science, and Scopus. The search keywords are set as “light alloys”, “self-lubricating coatings”, “Micro-arc oxidation”, “Additive manufacturing”, and “tribological properties”. Relevant literature is obtained through combined keyword searches, with the publication year limited to the past decade, so as to incorporate the maximum number of published research findings in this field.
- Literature Screening Process: A two-step screening method is adopted to determine the final included literature. The first step is preliminary screening, which involves rapid examination based on titles and abstracts: studies are excluded directly if their titles clearly involve non-light alloy materials, non-self-lubricating coating systems, or fail to focus on the optimization of tribological properties such as friction coefficient; studies are also preliminarily excluded if their abstracts indicate that the research type is non-experimental or non-review (e.g., theoretical hypotheses, conference abstracts), the research objects and methods deviate from the theme of “self-lubricating coatings on light alloys”, or key tribological performance data (e.g., friction coefficient, wear rate) are not mentioned; studies that meet the inclusion criteria based on their titles and abstracts proceed to the secondary screening stage.
- The second step is secondary screening. After obtaining the full texts of the studies that passed the preliminary screening, the core contents such as research background, research objects, materials and methods, experimental data, and conclusions are studied one by one, and verified strictly in accordance with the inclusion criteria: Confirm whether the research objects are light alloys such as aluminum, magnesium, titanium and their alloys, and whether the research direction focuses on the preparation process and tribological properties of self-lubricating coatings; Check whether the research methods conform to academic standards and whether complete experimental processes (e.g., coating preparation parameters, tribological test schemes) and original data are provided; studies are excluded if there is incomplete data (e.g., lack of key experimental conditions or performance indicators), defects in research design (e.g., no control group set, insufficient repeated experiments), or inconsistency between the actual research content and the title/abstract (e.g., theme deviation, mismatch between data and conclusions); studies that fully meet the inclusion criteria are marked as “included literatures” and enter the subsequent data extraction stage.
- Data Extraction and Verification: A structured framework is used to extract key information from the included studies. A data extraction table is constructed based on the logic of “preparation method-material composition-experimental conditions-performance indicators-research conclusions”, covering contents such as tribological test conditions (e.g., counter body material, load, sliding speed, environmental medium), tribological performance indicators (e.g., friction coefficient, specific wear rate), and core research conclusions. Meanwhile, double cross-validation is conducted on the extracted data: On the one hand, the consistency of data under different experimental conditions in the same literature is verified (e.g., whether the variation trends of friction coefficient and wear rate corresponding to different concentrations of self-lubricating particles conform to the laws of materials science); On the other hand, the performance data of the same or similar preparation methods and material systems in different studies are compared, and the potential causes of data differences (e.g., differences in experimental equipment accuracy, temperature and humidity of test environment, details of sample preparation process) are analyzed; If data extraction errors are found, the original studies are reconsulted for correction to ensure data accuracy.
- Literature Evaluation and Classification: Based on the extracted standardized data, the included studies are classified and organized according to preparation methods, covering mainstream processes such as micro-arc oxidation, additive manufacturing, physical vapor deposition/chemical vapor deposition, and spraying. The research progress of various preparation technologies in the field of self-lubricating coatings on light alloys is summarized, respectively.
3. Preparation Methods of Self-Lubricating Coatings
3.1. Micro-Arc Oxidation
3.1.1. One-Step Preparation
3.1.2. Two-Step Preparation
3.2. Additive Manufacturing
3.2.1. Laser Powder Bed Fusion
3.2.2. Laser Cladding
3.3. Deposition Technology
3.3.1. Physical Vapor Deposition
3.3.2. Spraying
3.4. Other Methods
4. Future Perspectives and Outlook
- Traditional self-lubricating materials demonstrate limitations in high-temperature stability and oxidation resistance, making them inadequate for the demanding wear-resistant requirements in high-temperature environments such as aerospace and nuclear energy. Therefore, the development of novel high-temperature self-lubricating coatings will constitute a key research direction in the future.
- Further investigation is necessary to understand the effects of different element dopants on coating properties. From a microscopic perspective, it is crucial to clarify the underlying mechanisms by which element doping influences coating performance. Concurrently, comprehensive studies on the behavior of coatings in real-world engineering applications should be conducted. This will provide a stronger theoretical and practical foundation for the engineering deployment of such coatings.
- Nanomaterials exhibit significant potential for application in self-lubricating coatings across a broad temperature range. Due to their large specific surface area and high reactivity, nanomaterials can effectively reduce the friction coefficient during the friction process and promote the formation of a more stable lubricating film. This not only introduces a novel strategy for enhancing lubrication performance but also contributes to improved coating stability, thus meriting substantial academic attention and further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2019, 133, 206–223. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Dai, S.; Zhu, L. Research Progress in Electrospark Deposition Coatings on Titanium Alloy Surfaces: A Short Review. Coatings 2023, 13, 1473. [Google Scholar] [CrossRef]
- Sánchez, G.; Veleva, L.; Flores, E. Initial Stages of Al-AM60-Modified Surface of Magnesium Alloy Activity Exposed to Simulated Marine Environment. Coatings 2025, 15, 661. [Google Scholar] [CrossRef]
- Korzekwa, J.; Jarząbek, A.; Bara, M.; Niedźwiedź, M.; Cwynar, K.; Oleszak, D. Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys. Materials 2025, 18, 3471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388. [Google Scholar] [CrossRef] [PubMed]
- Ciulli, E. Vastness of Tribology Research Fields and Their Contribution to Sustainable Development. Lubricants 2024, 12, 33. [Google Scholar] [CrossRef]
- Kumar, R.; Antonov, M. Self-lubricating materials for extreme temperature tribo-applications. Mater. Today Proc. 2021, 44, 4583–4589. [Google Scholar] [CrossRef]
- Antony Jose, S.; Lapierre, Z.; Williams, T.; Hope, C.; Jardin, T.; Rodriguez, R.; Menezes, P.L. Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives. Coatings 2025, 15, 878. [Google Scholar] [CrossRef]
- Kasar, A.K.; Jose, S.A.; D’Souza, B.; Menezes, P.L. Fabrication and Tribological Performance of Self-Lubricating Porous Materials and Composites: A Review. Materials 2024, 17, 3448. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, G.W.; Batchelor, A.W. 9—Solid Lubrication and Surface Treatments. In Engineering Tribology, 5th ed.; Stachowiak, G.W., Batchelor, A.W., Eds.; Butterworth-Heinemann: Oxford, UK, 2025; pp. 429–474. [Google Scholar]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Hedayati, H.; Mofidi, A.; Al-Fadhli, A.; Aramesh, M. Solid Lubricants Used in Extreme Conditions Experienced in Machining: A Comprehensive Review of Recent Developments and Applications. Lubricants 2024, 12, 69. [Google Scholar] [CrossRef]
- Wang, X.; Hua, K.; Wang, Y.; Cao, Y.; Sun, J.; Ma, Q.; Feng, T.; Wang, H. Synergistically achieving low friction and high wear resistance over wide-temperature-range in a composite coating for ceramic matrix composites. J. Eur. Ceram. Soc. 2025, 45, 117678. [Google Scholar] [CrossRef]
- Wang, C.; Meng, W.; Zheng, Y.; Meng, F. Experimental study on tribological performances of Graphite/MoS2 thermal sprayed composite coating on 9310 alloy steel. Surf. Coat. Technol. 2025, 504, 132037. [Google Scholar] [CrossRef]
- Yang, X.; Du, Y.; Du, H.; Tang, Z. Tribocorrosion behavior of magnetron-sputtered MoS2-TiCr composite coatings. Ceram. Int. 2025, 51, 32211–32223. [Google Scholar] [CrossRef]
- Ma, H.; Wang, P.; Guo, Q.; He, J.; Luo, K.; Wu, N.; Luo, F. Effect of MoS2 addition on the wear mechanism of laser cladding AISI M2 coatings. J. Mater. Res. Technol. 2024, 33, 5565–5575. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, S.; Wu, R.; Ma, X.; Pang, M.; Yu, Z.; Wang, G.; Zhang, J.; Krit, B.; Betsofen, S.; et al. Enhancing tribological performance of micro-arc oxidation coatings on Mg-Li alloy with h-BN incorporation. Ceram. Int. 2025, 51, 13760–13771. [Google Scholar] [CrossRef]
- Lakkannavar, V.; Yogesha, K.B.; Prasad, C.D.; Tiwari, A.; Vanitha, K.; Soni, P.K. Evaluation of mechanical, metallurgical, and hot corrosion-erosion behavior of plasma sprayed Ni22Cr10Al0.8Y/30%Cr3C2/10%h-BN/10%Mo composite coating. Surf. Coat. Technol. 2025, 497, 131730. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Li, T.; Du, J.; Guo, L.; Hu, K. Fabrication and characterization of self-lubricating anti-wear 316L stainless steel/h-BN composite coatings on Q235 substrate via laser cladding. Opt. Laser Technol. 2025, 180, 111564. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, R.; Hu, M.; Wu, X.; Du, Y.; Ge, Y.; Yang, C.; Jiang, B.; Yang, R. Self-cleaning Al2O3-PTFE composite coatings on aluminum alloy with enhanced superhydrophobicity, corrosion and wear resistance. Ceram. Int. 2025, 51, 35483–35495. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, C.; Wu, H.; Yao, L.; Mahapatra, M.; Xu, Y. Graphite-Enhanced PTFE/PEEK composite coating for improved friction and wear resistance. Appl. Surf. Sci. 2025, 700, 163214. [Google Scholar] [CrossRef]
- Fu, L.; Fu, B.; Zhou, M.; Du, S.; Zhang, Y.; Shan, Q.; Hua, L.; Ding, Z.; Zhang, G. Study on metal nanoparticles-PDA interface modification and its effect on the tribology behavior of PTFE self-lubricating coating materials. Appl. Surf. Sci. 2025, 693, 162839. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Luo, Y.; Wu, H.; Guo, S.; Qiu, J. Achieving enhanced interfacial adhesion and highly oriented structure in PA6/Graphite composites for excellent tribological performance. Compos. Sci. Technol. 2022, 229, 109719. [Google Scholar] [CrossRef]
- Fan, S.; Chen, Y.; Wu, J.; Xiao, S.; Chen, G.; Chu, P.K. Structure, superlubricity, applications, and chemical vapor deposition methods of graphene solid lubricants. Tribol. Int. 2024, 198, 109896. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, T.; Li, Y.; He, Y.; Shi, Y. Two-dimensional (2D) graphene nanosheets as advanced lubricant additives: A critical review and prospect. Mater. Today Commun. 2021, 29, 102755. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, S.; Mukherjee, B.; Singh, P.; Islam, A.; Keshri, A.K. Microstructural, mechanical and marine water tribological properties of plasma-sprayed graphene nanoplatelets reinforced Al2O3-40 wt% TiO2 coating. J. Eur. Ceram. Soc. 2022, 42, 2892–2904. [Google Scholar] [CrossRef]
- Yin, H.; Yang, J.; Zhang, Y.; Crilly, L.; Jackson, R.L.; Lou, X. Carbon nanotube (CNT) reinforced 316L stainless steel composites made by laser powder bed fusion: Microstructure and wear response. Wear 2022, 496–497, 204281. [Google Scholar] [CrossRef]
- Huang, S.J.; Abbas, A.; Ballóková, B. Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy. J. Mater. Res. Technol. 2019, 8, 4273–4286. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Zhao, G.; Ruan, Y.; Wang, G.; Ding, Q. Effects of Graphene Oxide on Tribological Properties of Micro-Arc Oxidation Coatings on Ti-6Al-4V. Coatings 2023, 13, 1967. [Google Scholar] [CrossRef]
- Singh, S.; Han, T.; Chen, X.; Zhang, C. Assessment of the tribological potential of self-lubricating alumina composites impregnated with Ti3C2Tx-MXene and MoS2. Wear 2025, 571, 205798. [Google Scholar] [CrossRef]
- Sun, Q.; Song, J.; Li, J.; Lin, P.; Dong, Y.; Su, Y.; Fan, H.; Hu, L.; Zhang, Y. Tribological behavior of h-BN/Al2O3 self-lubricating composites in extreme environments—Part I: Lubricating behavior and ultra-low friction coefficient mechanism in air environments from room temperature to 1200 °C. Tribol. Int. 2025, 201, 110251. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, X.; Blawert, C.; Zheludkevich, M.L.; Zhang, T.; Wang, F. Formation of self-lubricating PEO coating via in-situ incorporation of PTFE particles. Surf. Coat. Technol. 2018, 337, 379–388. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Wang, X.; Gao, A.; Gong, L.; Zeng, S.; Li, S.; Liu, M.; Chen, Y. Friction and wear behavior of 3D printed graphite/SiC composite self-lubricating materials with multi-materials and structures. Tribol. Int. 2025, 204, 110487. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, X.; Chen, X.; Zhang, J.; Jing, L.; Wu, Y.; Yu, S. Tribological properties and self-lubrication mechanism of in-situ grown graphene reinforced nickel matrix composites in ambient air. Wear 2022, 496–497, 204308. [Google Scholar] [CrossRef]
- Wang, M.; Wang, A.; Zhao, W.; Meng, X.; Peng, X.; Wang, J. The ion diffusion-directed self-assembled graphene oxide coating and its synergistic lubrication mechanism against environmental moisture. Tribol. Int. 2024, 191, 109182. [Google Scholar] [CrossRef]
- Furlan, K.P.; de Mello, J.D.B.; Klein, A.N. Self-lubricating composites containing MoS2: A review. Tribol. Int. 2018, 120, 280–298. [Google Scholar] [CrossRef]
- Lu, Z.; Lin, Q.; Cao, Z.; Li, W.; Gong, J.; Wang, Y.; Hu, K.; Hu, X. MoS2 Nanomaterials as Lubricant Additives: A Review. Lubricants 2023, 11, 527. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J.; Liu, T. Al2O3/LaPxOy/MoS2 composite coating with better wear and corrosion resistance in-situ prepared by micro-arc oxidation. Appl. Surf. Sci. 2025, 702, 163353. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Chen, Y.; Zhao, Q.; Xu, Y.; Zhang, F.; Zhan, H.; Wang, S.; Li, H.; Hao, J.; et al. Controllable in situ fabrication of self-lubricating nanocomposite coating for light alloys. Scr. Mater. 2022, 211, 114493. [Google Scholar] [CrossRef]
- Yuan, J.; Yao, Y.; Zhuang, M.; Du, Y.; Wang, L.; Yu, Z. Effects of Cu and WS2 addition on microstructural evolution and tribological properties of self-lubricating anti-wear coatings prepared by laser cladding. Tribol. Int. 2021, 157, 106872. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Jiang, B.; Chen, Y.; Zhang, Z.; Lu, K.; Liang, X. Enhancing corrosion and wear resistance of a 7075 aluminum alloy via depositing TC4 coating. J. Mater. Res. Technol. 2024, 32, 1736–1748. [Google Scholar] [CrossRef]
- Wang, X.; Luo, J.; Li, Y.; Mou, H.; Tong, Y.; Cai, Z.; Xing, Z.; Wei, S.; Yu, Y. Properties of laser cladding (NiCoCr)94Al3Ti3-cBN-hBN hard self-lubricating ceramic coating. Ceram. Int. 2024, 50, 13761–13769. [Google Scholar] [CrossRef]
- Xu, T.Z.; Zhang, S.; Wang, Z.Y.; Zhang, C.H.; Zhang, D.X.; Wang, M.; Wu, C.L. Wear behavior of graphite self-lubricating Babbitt alloy composite coating on 20 steel prepared by laser cladding. Eng. Fail. Anal. 2022, 141, 106698. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, D.; Li, M.; Zhou, K.; Liu, Y.; Wu, J.; Fan, K.; Zhang, X.; Abdel Wahab, M. High-temperature tribological properties of APS-sprayed CoCrNiW wear-resistant coating and NiCoCrAlYTa/Cu/Mo self-lubricating coating. Tribol. Int. 2025, 209, 110682. [Google Scholar] [CrossRef]
- Mukhtar, S.H.; Wani, M.F.; Sehgal, R.; Sharma, M.D. Nano-mechanical and nano-tribological characterisation of self-lubricating MoS2 nano-structured coating for space applications. Tribol. Int. 2023, 178, 108017. [Google Scholar] [CrossRef]
- Pan, H.; Lu, H.; Zhang, Z.; Fan, Z.; Liu, Z.; Zhi, S. Investigation on the growth mechanism and properties of AO-PEO composite coating on 304 stainless steel prepared by two-step process. Surf. Coat. Technol. 2025, 509, 132230. [Google Scholar] [CrossRef]
- Nisar, S.S.; Choe, H.-C. Exploring the surface characteristics and corrosion resistance of MoS2-Zn-doped TiO2 coatings on Ti-6Al-4V via plasma electrolytic oxidation technique for dental implant. Surf. Coat. Technol. 2025, 498, 131795. [Google Scholar] [CrossRef]
- Gamba, M.; Cristoforetti, A.; Fedel, M.; Ceriani, F.; Ormellese, M.; Brenna, A. Plasma Electrolytic Oxidation (PEO) coatings on aluminum alloy 2024: A review of mechanisms, processes, and corrosion resistance enhancement. Appl. Surf. Sci. Adv. 2025, 26, 100707. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Zhang, Y.; Lian, G.; Cao, Q.; Que, L. A comparative study on microstructure and tribological characteristics of Mo2FeB2/WC self-lubricating composite coatings with addition of WS2, MoS2, and h-BN. Mater. Des. 2023, 225, 111581. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Yu, B.; Cai, M.; Yu, Q.; Zhou, F. Research Progress on the Wear and Corrosion Resistant Plasma Electrolytic Oxidation Composite Coatings on Magnesium and Its Alloys. Coatings 2023, 13, 1189. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J.; Sun, S. Microstructure and self-lubricating property of a novel Al2O3/La2P4O13/MoS2 composite layer in-situ prepared by micro-arc oxidation. Wear 2025, 568–569, 205968. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Zhang, S.; Hou, L.; Kim, K.H. One-step fabrication of wear resistant and friction-reducing Al2O3/MoS2 nanocomposite coatings on 2A50 aluminum alloy by plasma electrolytic oxidation with MoS2 nanoparticle additive. Surf. Coat. Technol. 2025, 497, 131796. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Jiang, H.; Chen, L.; Han, D.; Hu, X.; Qiu, L. Tribological behavior and wear mechanism of TiO2/MoS2 nanocomposite coatings fabricated on TC6 alloys by micro-arc oxidation and duplex surface technologies. Surf. Coat. Technol. 2025, 510, 132227. [Google Scholar] [CrossRef]
- He, J.; Xie, F.; Wu, X.; Li, L.; Luo, R.; Yang, H.; Wang, S. Preparation and friction wear performance of ZrO2/MoS2 PEO composite coating. Tribol. Int. 2025, 202, 110312. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zou, Y.; Chen, G.; Wang, Y.; Ye, Z.; Ouyang, J.; Jia, D.; Zhou, Y. Enhanced tribological performance of TiO2-hBN/CNT double-layer coating by CNT-assisted plasma electrolytic oxidation with nanoparticles addition. Tribol. Int. 2024, 198, 109885. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Ji, R.; Xu, M.; Ye, Z.; Shao, W.; Wang, S.; Zou, Y.; Wang, Y.; Ouyang, J.; et al. TiO2-hBN nanocomposite coating with excellent wear and corrosion resistance on Ti6Al4V alloy prepared by plasma electrolytic oxidation. Surf. Coat. Technol. 2024, 494, 131471. [Google Scholar] [CrossRef]
- Zhao, X.; Song, J.; Lin, J.; Wang, G.; Zhao, G. Enhancing Tribological Performance of Micro-Arc Oxidation Coatings on 6061 Aluminum Alloy with h-BN Incorporation. Coatings 2024, 14, 771. [Google Scholar] [CrossRef]
- Qi, X.; Gao, H.; He, Y.; Su, X.; Jiang, B.; Song, R. A self-sealing and lubricating MAO/TiO2/PTFE composite coating fabricated by microarc oxidation on a 6063 aluminum alloy for wear and corrosion resistance. J. Alloys Compd. 2025, 1017, 179163. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J. Self-lubricating properties of Al2O3/MoS2/CePO4 composite layers in-situ prepared by micro arc oxidation on 6082-T6 alloy. Mater. Today Commun. 2024, 40, 110137. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Zhang, J. Effect of ZrO2 particle on the performance of micro-arc oxidation coatings on Ti6Al4V. Appl. Surf. Sci. 2015, 342, 183–190. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Shen, D.; Zhang, Z.; Yang, R. Microstructures and tribological properties of MoS2 overlayers on MAO Al alloy. Tribol. Int. 2023, 181, 108348. [Google Scholar] [CrossRef]
- Zhou, R.; Huang, S.; Cao, J.; Hu, M.; Yuan, X.; Du, Y.; Hao, J.; Ge, Y.; Yang, C.; Jiang, B. Steam-hydrothermal growth of cauliflower-like MoS2 on microarc oxidized aluminum for enhancing lubrication. Surf. Interfaces 2025, 72, 107094. [Google Scholar] [CrossRef]
- Liang, F.; Yang, E.; Jia, N.; Li, W.; Zhao, X.; Yang, R. Effect of NaAlO2 Co-Electrical Parameters on the Wear Resistance of MAO/MoS2 Self-Lubricating Composite Coatings. Materials 2025, 18, 1825. [Google Scholar] [CrossRef]
- Liu, A.; Gao, S.; Du, S.; Lu, H.; Guo, J. Enhancing PEO coating on TC6 alloy through in-situ synthesis of MoSe2—Towards more efficient wear-reducing lubrication and wear resistance. Tribol. Int. 2024, 193, 109409. [Google Scholar] [CrossRef]
- Chen, J.; Bai, Z.; Xu, J.; Li, W.; Jia, E.; Wang, J. Preparation and tribological properties of MAO-PVA/PTFE self-lubricating composite coating on aluminum alloy surface. J. Coat. Technol. Res. 2024, 21, 293–305. [Google Scholar] [CrossRef]
- Lu, C.; Shi, P.; Yang, J.; Jia, J.; Xie, E.; Sun, Y. Effects of surface texturing on the tribological behaviors of PEO/PTFE coating on aluminum alloy for heavy-load and long-performance applications. J. Mater. Res. Technol. 2020, 9, 12149–12156. [Google Scholar] [CrossRef]
- Ren, L.; Wang, T.; Chen, Z.; Li, Y.; Qian, L. Self-Lubricating PEO–PTFE Composite Coating on Titanium. Metals 2019, 9, 170. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, J.; Zhao, N.; Chen, Z.; Zhao, Z. A Review of Wear in Additive Manufacturing: Wear Mechanism, Materials, and Process. Lubricants 2024, 12, 321. [Google Scholar] [CrossRef]
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G. Surface modification of Ti6Al4V alloy via advanced coatings: Mechanical, tribological, corrosion, wetting, and biocompatibility studies. J. Alloys Compd. 2024, 989, 174418. [Google Scholar] [CrossRef]
- Miao, W.-J.; Wang, S.-Q.; Wang, Z.-H.; Wu, F.-B.; Zhang, Y.-Z.; Ouyang, J.-H.; Wang, Y.-M.; Zou, Y.-C. Additive Manufacturing of Advanced Structural Ceramics for Tribological Applications: Principles, Techniques, Microstructure and Properties. Lubricants 2025, 13, 112. [Google Scholar] [CrossRef]
- Shah, R.; Pai, N.; Rosenkranz, A.; Shirvani, K.; Marian, M. Tribological Behavior of Additively Manufactured Metal Components. J. Manuf. Mater. Process. 2022, 6, 138. [Google Scholar] [CrossRef]
- Qin, H.; Xu, R.; Lan, P.; Wang, J.; Lu, W. Wear Performance of Metal Materials Fabricated by Powder Bed Fusion: A Literature Review. Metals 2020, 10, 304. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, W.; Fang, W.; Yi, Y. Tribology properties of additively manufactured Ti6Al4V alloy after heat treatment. Tribol. Int. 2023, 185, 108485. [Google Scholar] [CrossRef]
- Bozkurt, Y.B. Effects of processing parameters on the tribocorrosion behaviour of AISI 316L fabricated by laser powder bed fusion (L-PBF). Mater. Today Commun. 2025, 47, 113131. [Google Scholar] [CrossRef]
- Gómez-Ortega, A.; Pinilla-Bedoya, J.A.; Ortega-Portilla, C.; Félix-Martínez, C.; Mondragón-Rodríguez, G.C.; Espinosa-Arbeláez, D.G.; Pérez-Barrera, J.; González-Carmona, J.M.; Franco Urquiza, E.A. The Scratch Resistance of a Plasma-Assisted DUPLEX-Treated 17-4 Precipitation-Hardened Stainless Steel Additively Manufactured by Laser Powder Bed Fusion. Coatings 2024, 14, 605. [Google Scholar] [CrossRef]
- Wang, B.; Lai, W.; Li, S.; Huang, S.; Zhao, X.; You, D.; Tong, X.; Li, W.; Wang, X. Self-lubricating coating design strategy for titanium alloy by additive manufacturing. Appl. Surf. Sci. 2022, 602, 154333. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.; Li, S.; Huang, S.; Lai, W.; You, D.; Tu, X.; Li, W.; Wang, X. Self-lubricating coating with zero weight loss performance on additively manufactured Ti-6Al-4V. Surf. Coat. Technol. 2022, 447, 128847. [Google Scholar] [CrossRef]
- Liu, F.-H.; Ji, F.-Q.; Pang, M. Study on the effect of TiC/B on the performance of laser cladding in-situ fabricating wear-resistant self-lubricating coatings. Mater. Today Commun. 2024, 41, 110675. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. A Review to the Laser Cladding of Self-Lubricating Composite Coatings. Lasers Manuf. Mater. Process. 2016, 3, 67–99. [Google Scholar] [CrossRef]
- Liu, K.; Yan, H.; Zhang, P.; Zhao, J.; Yu, Z.; Lu, Q. Wear Behaviors of TiN/WS2 + hBN/NiCrBSi Self-Lubricating Composite Coatings on TC4 Alloy by Laser Cladding. Coatings 2020, 10, 747. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Y.; Yang, S.; Yin, X.; Chen, S.; Liu, C. Microstructure and wear resistance of laser cladding Ti-Al-Ni-Si composite coatings. Surf. Coat. Technol. 2022, 445, 128727. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, S.; Lu, H.; Li, W. Process optimization, microstructure characterization, and tribological performance of Y2O3 modified Ti6Al4V-WC gradient coating produced by laser cladding. Surf. Coat. Technol. 2024, 478, 130496. [Google Scholar] [CrossRef]
- Kermani, F.; Shoja Razavi, R.; Zangenemadar, K.; Borhani, M.; Gavahian, M. Optimization of single-pass geometric characteristics of IN718 by fiber laser via linear regression and response surface methodology. J. Mater. Res. Technol. 2023, 24, 274–289. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Yang, L.; Sun, R.; Zhang, T.; Yang, X. Research and progress of laser cladding on engineering alloys: A review. J. Manuf. Process. 2021, 66, 341–363. [Google Scholar] [CrossRef]
- Wen, M.; Jiang, B.; Duan, X.; Xiang, D. Research Progress on Microstructure, Mechanical Properties, and Strengthening Mechanisms of In Situ-Synthesized Ceramic-Reinforced Titanium Matrix Composite Coatings via Laser Cladding. Coatings 2025, 15, 815. [Google Scholar] [CrossRef]
- Zhao, X.; Lyu, P.; Fang, S.; Li, S.; Tu, X.; Ren, P.; Liu, D.; Chen, L.; Xiao, L.; Liu, S. Microstructure and Wear Behavior of Ti-xFe-SiC In Situ Composite Ceramic Coatings on TC4 Substrate from Laser Cladding. Materials 2024, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Ding, H.; Sun, L.; Cao, Y.; Li, X.; Wu, H.; Wang, H. Enhancing high-temperature fretting wear resistance of TC21 titanium alloys by laser cladding self-lubricating composite coatings. J. Alloys Compd. 2024, 977, 173360. [Google Scholar] [CrossRef]
- Ding, H.; Hua, K.; Sun, L.; Cao, Y.; Li, X.; Wu, H.; Zhou, Q.; Wang, H. Variable cycle fretting conditions meditated wear behavior and mechanism in a self-lubricating composite coating on TC21 titanium alloy substrate. Tribol. Int. 2024, 197, 109742. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, Z.; Hu, J.; Hou, Y.; Zheng, H. Laser cladding-spraying fabrication of Al/Ni/WC@SMP-MoS2 composite coating with enhanced anti-corrosion and self-lubricating property. Surf. Coat. Technol. 2025, 503, 132017. [Google Scholar] [CrossRef]
- Torres, H.; Pichelbauer, K.; Budnyk, S.; Schachinger, T.; Gachot, C.; Rodríguez Ripoll, M. A Ni-Bi self-lubricating Ti6Al4V alloy for high temperature sliding contacts. J. Alloys Compd. 2023, 944, 169216. [Google Scholar] [CrossRef]
- Tan, X.; Li, J.; Meng, K.; Zhai, H. Microstructures and visible-infrared optical properties of diamond-like carbon films deposited by magnetron sputtering. Diam. Relat. Mater. 2023, 133, 109724. [Google Scholar] [CrossRef]
- Min, J.; Yuan, W.; Chen, Y.; Lan, Y.; Yan, M.; Liu, H.; Cheng, X.; Dai, L. Preparation and Thermal Stability of AlMoON Based Solar Selective Absorption Coating. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2024, 39, 854–862. [Google Scholar] [CrossRef]
- Li, G.; Lü, W.; Liu, S.; Li, C.; Zhou, Y.; Wang, Q. Multilayer-growth of TiAlN/WS self-lubricating composite coatings with high adhesion and their cutting performance on titanium alloy. Compos. Part B Eng. 2021, 211, 108620. [Google Scholar] [CrossRef]
- Raghav, R.; Mulik, R.S. Comparative analysis over microstructural, mechanical properties and cutting performance of TiN, TiVN coatings deposited by magnetron sputtering on SiAlON ceramic tool insert. Surf. Coat. Technol. 2024, 480, 130570. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Aghdam, P.H. Impact Resistance and Properties of (Cr,Al,Si)N Coatings Deposited by Gas Flow Sputtering with Pulsed DC Supply. Adv. Eng. Mater. 2022, 24, 2101021. [Google Scholar] [CrossRef]
- He, Q.; DePaiva, J.M.; Kohlscheen, J.; Veldhuis, S.C. A study of mechanical and tribological properties as well as wear performance of a multifunctional bilayer AlTiN PVD coating during the ultra-high-speed turning of 304 austenitic stainless steel. Surf. Coat. Technol. 2021, 423, 127577. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, S.; Zhang, M.; Zhang, S.; Li, W. Corrosion resistance and biocompatibility of silica coatings on AZ31 magnesium alloy via magnetron sputtering. Mater. Today Commun. 2024, 41, 110890. [Google Scholar] [CrossRef]
- Yu, S.; Sun, Y.; Tong, B.; Wang, T.; Wang, C.; Zhang, G. Fretting wear behavior of NbMoCrTixAly high entropy alloy films prepared by magnetron sputtering on Ti6Al4V titanium alloy. J. Alloys Compd. 2025, 1034, 181367. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Tailor, S. Self-lubricating composite coatings: A review of deposition techniques and material advancement. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Zou, S.; Luo, Z.; Li, Y.; Yuan, L.; Tang, Y.; Zhou, J.; Li, H. Effect of Arc Current on the Microstructure of AlTiN-Coated Tools and Milling of 304 Stainless Steel. Coatings 2024, 14, 704. [Google Scholar] [CrossRef]
- Horikawa, N.; Guennec, B.; Kashi, T.; Miyajima, T.; Kinoshita, T.; Okamura, S.; Sakaida, A.; Kawano, Y.; Iwai, Y. Industrial Arc Ion Plating and Unbalanced Magnetron Sputtering Coating Deposition: Static and Fatigue Performances of TiAlN-Coated SKH51 Tool Steel. J. Mater. Eng. Perform. 2022, 31, 8808–8822. [Google Scholar] [CrossRef]
- Tsou, H.-K.; Chi, M.-H.; Hung, Y.-W.; Chung, C.-J.; He, J.-L. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application. BioMed Res. Int. 2015, 2015, 328943. [Google Scholar] [CrossRef]
- Cui, M.; Ding, X.; Lian, Y.; Wu, Y.; Jiao, J.; Cheng, Y.; Yang, J.; Zhang, J.; Sun, Y. Effect of nitrogen flow rates on the structural and properties of TiVCrNiSi(N) high entropy coating deposited by arc ion plating. Surf. Coat. Technol. 2025, 499, 131868. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Zhang, Y.; Jia, B.; Xu, W.; Liu, X.; Ji, L.; Wang, A.; Sun, C.; Li, H. Effect of O2/Ar ratio on the microstructure and tribological properties of Y2O3 films by multi-arc ion plating. Ceram. Int. 2024, 50, 43032–43043. [Google Scholar] [CrossRef]
- Kong, F.; Luan, J.; Xie, F.; Zhang, Z.; Evaristo, M.; Cavaleiro, A. The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review. Coatings 2024, 14, 828. [Google Scholar] [CrossRef]
- Salerno, E.; Casotti, D.; Gualtieri, E.; Ballestrazzi, A.; Gazzadi, G.C.; Bolelli, G.; Lusvarghi, L.; Rota, A.; Valeri, S.; Paolicelli, G. Friction and wear characteristics of DLC-terminated coatings deposited on AlSi10Mg alloy produced by Additive Manufacturing. Surf. Coat. Technol. 2024, 494, 131422. [Google Scholar] [CrossRef]
- Hussein, M.A.; Adesina, A.Y.; Kumar, A.M.; Sorour, A.A.; Ankah, N.; Al-Aqeeli, N. Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Film. 2020, 709, 138183. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Lü, W.; Liu, S.; Deng, J.; Wang, Q. High-temperature resistance and self-lubricating TiAlTaCN nanocomposite hard coating by synergistic interaction of TiAlN(C) and TaN(C) phases. Corros. Sci. 2024, 227, 111687. [Google Scholar] [CrossRef]
- Dang, C.; Li, J.; Wang, Y.; Chen, J. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating. Appl. Surf. Sci. 2016, 386, 224–233. [Google Scholar] [CrossRef]
- Islam, K.S.; Chowdhury, N.; Islam, R.; Mitra, P.; Dutta, A.; Supal, A.R. Nanomaterial-based thermal spray coating technology: A review. Heliyon 2025, 11, e43389. [Google Scholar] [CrossRef]
- Habib, K.A.; Cano, D.L.; Serrano-Mira, J.; Rayón, E.; Abellán-Nebot, J.V.; Dosta, S. Tribology behaviour of graphene-modified nanostructured Al2O3/3% TiO2 coatings under boundary and mixed lubrication conditions. Wear 2024, 548–549, 205381. [Google Scholar] [CrossRef]
- Wrona, A.; Czechowska, K.; Bilewska, K.; Czerny, M.; Czech, A.; Lis, M.; Brudny, A.; Muzia, G.; Jaworska, L. Microstructure and Chemical Stability of Al2O3-ZrO2-ReB2 Composite Coatings Obtained by Air Plasma Spraying. Materials 2025, 18, 3363. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Rai, H.; Pandey, K.K.; Keshri, A.K.; Gosvami, N.N. Improving Tribological Properties of Al alloys via Robust One Step Graphene Coatings using Plasma Spraying. Tribol. Lett. 2023, 71, 42. [Google Scholar] [CrossRef]
- Shikalov, V.S.; Vidyuk, T.M.; Ukhina, A.V.; Batraev, I.S.; Filippov, A.A.; Usynin, S.Y. Microstructure and properties of self-lubricating Cu-NiP-C coatings produced by high-pressure cold spray. Surf. Coat. Technol. 2025, 496, 131718. [Google Scholar] [CrossRef]
- Li, W.; Cao, C.; Yin, S. Solid-state cold spraying of Ti and its alloys: A literature review. Prog. Mater. Sci. 2020, 110, 100633. [Google Scholar] [CrossRef]
- Vaz, R.F.; Garfias, A.; Albaladejo, V.; Sanchez, J.; Cano, I.G. A Review of Advances in Cold Spray Additive Manufacturing. Coatings 2023, 13, 267. [Google Scholar] [CrossRef]
- Wang, H.; Li, P.; Guo, W.; Ma, G.; Wang, H. Copper-Based Composite Coatings by Solid-State Cold Spray Deposition: A Review. Coatings 2023, 13, 479. [Google Scholar] [CrossRef]
- Chen, W.; Yu, Y.; Ma, J.; Zhu, S.; Liu, W.; Yang, J. Low-Pressure Cold Spraying of Copper–Graphite Solid Lubricating Coatings on Aluminum Alloy 7075-T651. J. Therm. Spray Technol. 2019, 28, 1688–1698. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, W.; Wang, Y. A self-lubricating composite coating on 6061 aluminum alloy surface with an intermediate anodised layer. Surf. Coat. Technol. 2025, 513, 132483. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, R.; Bi, X.; Yan, M.; Cheng, J.; Gu, J. Review on numerical simulation of ultrasonic impact treatment (UIT): Present situation and prospect. J. Mater. Res. Technol. 2024, 30, 1319–1340. [Google Scholar] [CrossRef]
- Gu, B.; Chu, J.; Wang, Y.; Xu, G.; Gao, L.; Yang, Y.; Hu, Y.; Zhang, H. Effects of ultrasonic impact treatment on the corrosion resistance of laser-cladded CrMnFeCoNi high-entropy alloy coatings. Surf. Coat. Technol. 2024, 489, 131102. [Google Scholar] [CrossRef]
- Hua, S.-W.; Pang, M.; Ji, F.-Q.; Chen, J.; Liu, G. Microstructure and tribological properties of Ti2AlC-B particle-enhanced self-lubricating coatings on Ti6Al4V by ultrasonic impact treatment and laser cladding. Mater. Today Commun. 2023, 34, 105165. [Google Scholar] [CrossRef]
- Chen, X.; Xie, X.; Zou, T.; Zhang, Y.; Liang, Z. Simultaneous fabrication of Ti-MoS2 self-lubricating coatings and gradient structures to improve the wear resistance of AZ91D alloys. Surf. Coat. Technol. 2024, 477, 130306. [Google Scholar] [CrossRef]
Substrate | Particle | Friction Parameters | COF | Wear Rate | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Concentration | Load | Environment | Time | Speed | Matrix | Composite Coating | Matrix | MAO Coating | Composite Coating | ||
6082 | MoS2 | - | 3 N | RT | 30 min | 120 mm/min | 0.51 | 0.42 | - | - | 0.77 × 10−3 mm3/N·m | [51] |
2A50 | 4 g/L | 300 g | RT | 60 min | 200 r/min | - | 0.1 | - | - | 5.28 × 10−1 mm3/N·m | [52] | |
TC6 | - | 3 N | RT | 30 min | 120 mm/min | - | 0.079 | 2.69 × 10−4 mm3/N·m | 0.13 × 10−4 mm3/N·m | 0.210 × 10−4 mm3/N·m | [53] | |
TC21 | 8 g/L | 40 N | - | - | - | - | - | - | - | [54] | ||
TC4 | h-BN | 20 g/L | 2 N | - | - | 5 rpm/s | - | 0.11 | - | - | - | [55] |
10 g/L | 2 N | RT | - | 300 r/min | 0.54 | 0.28 | - | 4.3 × 10−4 mm3/N·m | [56] | |||
6061 | 2 g/L | 300 g | RT | 30 min | 400 r/min | - | 0.1 | - | 4.0 × 10−5 mm3/N·m | 2.6 × 10−6 mm3/N·m | [57] | |
6063 | PTFE | - | 4.9 N | - | 30 min | 336 r/min | - | 0.28 | - | - | - | [58] |
6082 | CePO4 | - | 5 N | RT | 10 min | 0.22 m/s | - | 0.05 | - | 13.75 × 10−3 mm3/N·m | 2.41 × 10−3 mm3/N·m | [59] |
Post-Treatment | Substrate | Type | Friction Parameters | COF | Wear Rate | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Load | Environment | Time | Speed | MAO Coating | Composite Coating | MAO Coating | Composite Coating | ||||
CS | TC6 | MoS2 | 3 N | RT | 30 min | 120 mm/min | 0.523 | 0.245 | 0.13 × 10−4 mm3/N·m | 0.646 × 10−4 mm3/N·m | [53] |
MS | TC6 | 3 N | RT | 30 min | 120 mm/min | 0.523 | 0.099 | 0.13 × 10−4 mm3/N·m | 0.201 × 10−4 mm3/N·m | [53] | |
HT | 6063 | 4 N | RT | 60 min | 224 rpm/min | - | 0.222 | - | 2.94 × 10−7 mm3/N·m | [61] | |
Pure Al | 4 N | 15 °C | 60 min | 200 r/min | 0.45 | 0.23 | - | - | [62] | ||
TC4 | 20 N | - | 90 min | 224 rpm/min | 0.4 | 0.13 | - | - | [63] | ||
TC6 | MoSe2 | 3 N | RT | 15 min | 1 cm/s | - | 0.17 | 0.9 × 10−3 mm3/N·m | 0.6 × 10−3 mm3/N·m | [64] | |
Impregnation | 6061 | PTFE | 5 N | RT | 20 min | 2 cm/s | 0.55 | 0.139 | - | - | [65] |
VI | 2024 | 10 N | - | - | - | 0.68 | 0.11 | - | - | [66] | |
IS | Pure Ti | 4 N | RT | - | - | 0.65 | 0.10 | 7.02 × 10−5 mm3/N·m | 1.34 × 10−5 mm3/N·m | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, R.; Yang, Z.; Cheng, J.; Zhang, H.; Cui, X.; Nong, Z. Research Progress on the Preparation and Tribological Properties of Self-Lubricating Coatings Fabricated on Light Alloys. Coatings 2025, 15, 1104. https://doi.org/10.3390/coatings15091104
Zhang R, Li R, Yang Z, Cheng J, Zhang H, Cui X, Nong Z. Research Progress on the Preparation and Tribological Properties of Self-Lubricating Coatings Fabricated on Light Alloys. Coatings. 2025; 15(9):1104. https://doi.org/10.3390/coatings15091104
Chicago/Turabian StyleZhang, Ruimeng, Rui Li, Zhen Yang, Jiayi Cheng, Hongliang Zhang, Xue Cui, and Zhisheng Nong. 2025. "Research Progress on the Preparation and Tribological Properties of Self-Lubricating Coatings Fabricated on Light Alloys" Coatings 15, no. 9: 1104. https://doi.org/10.3390/coatings15091104
APA StyleZhang, R., Li, R., Yang, Z., Cheng, J., Zhang, H., Cui, X., & Nong, Z. (2025). Research Progress on the Preparation and Tribological Properties of Self-Lubricating Coatings Fabricated on Light Alloys. Coatings, 15(9), 1104. https://doi.org/10.3390/coatings15091104