Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods
Abstract
1. Introduction
2. Experimental Information
2.1. Sample Preparation
2.2. Microstructure and Surface Observation
2.3. Mechanical Properties
2.4. Tribological Properties
- C—wear mark perimeter (mm);
- S—average area of wear track (mm2);
- F—normal load (N);
- L—sliding distance (mm).
Parameter Category | Experimental Parameters | Method/Value |
---|---|---|
Substrate | Material and Size | WC (60 × 60 × 4 mm), Si (100) |
Deposition Environment | Base Pressure | <1.0 × 10−4 Pa |
Layer Structure | Adhesion Layer | Mo (150 nm) |
Deposition Process | Modulation Period (Λ) | 20, 40, 60 nm (Mo2N/Ag-SiNx) |
Total Film Thickness | ~2 µm | |
Target Power (Mo/Ag-Si) | 1.5 kW/0.2 kW | |
Sputtering Gas Flow (Ar/N2) | 70 sccm (Ar: 0.38 Pa, N2: 0.12 Pa) | |
Deposition Rate (Mo2N/Ag-SiNx) | 0.6 nm/s/0.4 nm/s | |
Substrate Rotation Speed | 10 rpm | |
Characterization | X-ray Diffraction (XRD) | Shimadzu-6000 |
Transmission Electron Microscopy (TEM) | JEOL JEM-2100F | |
Mechanical Testing | Nanoindentation | 3 mN load, Berkovich tip |
Tribological Testing | Ball-on-disk Test | 5 N load, Al2O3 ball (9.5 mm), 50 rpm |
3. Results and Discussion
3.1. Microstructure of the Multilayer Films
3.2. Mechanical Properties of the Multilayer Films
3.3. Tribological Properties of the Multilayer Films
4. Conclusions
- (i)
- The multilayered Mo2N/Ag–SiNx self-lubricating films were successfully fabricated using DC magnetron sputtering with a fixed modulation ratio of 2:1. Varying the modulation period between 20, 40, and 60 nm resulted in well-defined multilayer structures, comprising fcc-Mo2N in the Mo2N layers and a combination of fcc-Ag and amorphous SiNx in the Ag–SiNx layers. The alternating deposition of these layers introduced residual compressive stress and strong interfacial bonding, which contributed to the structural stability of the films.
- (ii)
- The multilayer architecture significantly enhanced the mechanical performance of the films. All multilayer variants exhibited hardness values exceeding 21 GPa, attributable to interface strengthening and the residual compressive stress induced by the layered structure. This represents a marked improvement over the monolayer Mo2N and Ag–SiNx films.
- (iii)
- The multilayer films demonstrated superior tribological performance at room temperature compared with their monolayer counterparts, particularly in terms of wear resistance. The improvement was primarily due to the synergistic effect of the modulation layers, the relatively high hardness, and the formation of self-lubricating MoO3 tribo-phases during sliding. These features highlight the potential of the multilayer Mo2N/Ag–SiNx films for industrial applications, including cutting tools and molds.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swain, B.; Yang-Wallentin, R. Achieving sustainable development goals: Predicaments and strategies. Int. J. Sustain. Dev. World Ecol. 2020, 27, 96–106. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Ning, X.; Fan, J.; Li, L. Microstructure and thermal cycling behavior of Mo (Si, Al)2 dispersed GYYSZ multilayer composite coatings on molybdenum substrate under extreme environmental conditions. Surf. Coat. Technol. 2025, 512, 132400. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Yu, L.; Ji, K.; Li, D. A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106762. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Hong, H.; Kim, S.S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct. 2021, 266, 113864. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H.A.; Darras, B. Sustainable cooling and lubrication strategies in machining processes: A comparative study. Procedia Manuf. 2019, 33, 786–793. [Google Scholar] [CrossRef]
- Wu, T.; Blawert, C.; Serdechnova, M.; Karlova, P.; Dovzhenko, G.; Wieland, D.C.F.; Stojadinovic, S.; Vasilic, R.; Wang, L.; Wang, C.; et al. Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti6Al4V alloy. Appl. Surf. Sci. 2022, 595, 153523. [Google Scholar] [CrossRef]
- Studeny, Z.; Krbata, M.; Dobrocky, D.; Eckert, M.; Ciger, R.; Kohutiar, M.; Mikus, P. Analysis of Tribological Properties of Powdered Tool Steel M390 and M398 in Contact with Al2O3. Materials 2022, 15, 7562. [Google Scholar] [CrossRef]
- Sartori, S.; Ghiotti, A.; Bruschi, S. Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys. Wear 2017, 376–377, 107–114. [Google Scholar] [CrossRef]
- Krbata, M.; Eckert, M.; Majerik, J.; Barenyi, I. Wear Behaviour of High Strength Tool Steel 90MnCrV8 in Contact with Si3N4. Matals 2020, 10, 756. [Google Scholar] [CrossRef]
- Moussaoui, A.; Abboudi, A.; Aissani, L.; Belgroune, A.; Cheriet, A.; Alhussein, A.; Rtimi, S. Effect of Mo addition on the mechanical and tribological properties of magnetron sputtered TiN films. Surf. Coat. Technol. 2023, 470, 129862. [Google Scholar] [CrossRef]
- Rajput, S.S.; Upadhyay, C.; Gangopadhyay, S.; Fernandes, F. High-temperature tribological behaviour and machining performance of self-lubricant CrAlNAg coatings for dry milling operations. Tribol. Int. 2024, 198, 109824. [Google Scholar] [CrossRef]
- Chetan; Ghosh, S.; Rao, P.V. Application of sustainable techniques in metal cutting for enhanced machinability: A review. J. Clean. Prod. 2015, 100, 17–34. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Clemens, H.; Fischer, F.D. Materials science-based guidelines to develop robust hard thin film materials. Prog. Mater. Sci. 2024, 146, 101323. [Google Scholar] [CrossRef]
- Naveed, M.; Qadir, A. Effect of plasma process parameters on the wear behavior of High-Power Pulsed Magnetron Sputtering Deposited Magnetron Sputtering Deposited Aluminum Titanium Nitride coating. Open Ceram. 2025, 21, 100746. [Google Scholar] [CrossRef]
- Netto, T.R.; Evans, A.K.; Goddard, D.T.; Cooper, J.L.; Kelly, P. Effects of sample bias on wear resistance of magnetron sputtered chromium coated zirconium alloy. Surf. Coat. Technol. 2025, 498, 131847. [Google Scholar] [CrossRef]
- Zuo, B.; Yu, L.; Xu, J. The new nanocapsule structure and cyclic tribological properties of Mo2N/Ag/Si3N4 nanocomposite film. Ceram. Int. 2023, 49, 38982–38994. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Sun, L.; Yang, J.; Mei, S.; Xiong, X.; Fang, Q.; Chen, Z.; Liu, Y. Microstructures and tribological properties of MoS2/Mo2N multilayer gradient films deposited by reactive magnetron sputtering. J. Mater. Res. Technol. 2024, 31, 1507–1517. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, R.; Liu, S.; Yu, L.; Xu, J.; Geng, Y. Enhancement of the tribological behavior of self-lubricating nanocomposite Mo2N/Cu films by adding the amorphous SiNx. Surf. Coat. Technol. 2021, 423, 127565. [Google Scholar] [CrossRef]
- Bouaouina, B.; Besnard, A.; Abaidia, S.E.; Airoudj, A.; Bensouici, F. Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R. F. magnetron discharge. Surf. Coat. Technol. 2018, 333, 32–38. [Google Scholar] [CrossRef]
- Liang, B.; Hsieu, F.; Wu, F. Modulation effect on mechanical properties of nanolayered MoN/MoSiN coatings. Surf. Coat. Technol. 2022, 436, 128278. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Huang, C.; Guillon, M.; Wu, F. Input power effect on microstructure and mechanical properties of Mo-Si-N multilayer coatings. Surf. Coat. Technol. 2020, 383, 125222. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, X.; Yu, L.; Chen, C.; Han, H.; Bian, S.; Zuo, B.; Zhao, L.; Xu, J. In-situ tribo-induced formation of superb lubricious carbon-based tribofilms on the catalytical active MoN-Ag film surfaces. Tribol. Int. 2024, 196, 109715. [Google Scholar] [CrossRef]
- Sube, T.; Kommer, M.; Fenker, M.; Hader, B.; Albrecht, J. Reduced friction on γ-Mo 2 N coatings deposited by high power impulse magnetron sputtering on microstructured surfaces. Tribol. Int. 2017, 106, 41–45. [Google Scholar] [CrossRef]
- Pappacena, K.E.; Singh, D.; Ajayi, O.O.; Routbort, J.L.; Erilymaz, O.L.; Demas, N.G.; Chen, G. Residual stresses, interfacial adhesion and tribological properties of MoN/Cu composite coatings. Wear 2012, 278–279, 62–70. [Google Scholar] [CrossRef]
- Zhou, R.; Ju, H.; Liu, S.; Zhao, Z.; Xu, J.; Yu, L.; Qian, H.; Jia, S.; Song, R.; Shen, J. The influences of Ag content on the friction and wear properties of TiCN-Ag films. Vacuum 2022, 196, 110719. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Paudel, Y.; Simonson, W.J.; Ge, Q.; Kohli, P.; Muratore, C.; Voevodin, A.A. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surf. Coat. Technol. 2009, 203, 1304–1309. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Z.; Zhang, P.; Lin, S.; He, M.; Wang, X.; Lu, S.; Wu, X. FeCrMnVSix high entropy alloy coatings with improved high temperature tribological properties via synergistic effect of in situ-formed SiO2 and bimetallic oxides. Tribol. Int. 2023, 189, 108980. [Google Scholar] [CrossRef]
- Gulbinski, W.; Suszko, T. Thin films of Mo2N/Ag nanocomposite-the structure, mechanical and tribological properties. Surf. Coat. Technol. 2006, 201, 1469–1476. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Su, F.; Li, Z.; Chen, Y.; Xu, Z. Microstructure and tribological performance of adaptive MoN-Ag nanocomposite coatings with various Ag contents. Wear 2022, 488–489, 204170. [Google Scholar] [CrossRef]
- Liu, C.; Ju, H.; Yu, L.; Xu, J.; Geng, Y.; He, W.; Jiao, J. Tribological Properties of Mo2N Films at Elevated Temperature. Coatings 2019, 9, 734. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Blanchet, T.A.; Gall, D. CrN-Ag nanocomposite coatings: High-temperature tribological response. Wear 2010, 269, 125–131. [Google Scholar] [CrossRef]
- Chang, C.; Huang, C.; Lin, C.; Yang, F.; Tang, J. Mechanical properties of amorphous and crystalline CrN/CrAlSiN multilayer coating fabricated using HPPMS. Surf. Interfaces 2022, 31, 102064. [Google Scholar] [CrossRef]
- Gupta, A. X-ray and neutron studies of nanoscale atomic diffusion in thin films and multilayers. Appl. Surf. Sci. 2009, 256, 552–557. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, X.; Zhao, J. P-type transparent conducting SnO2: Zn film derived from thermal diffusion of Zn/SnO2/Zn multilayer thin films. Surf. Coat. Technol. 2012, 206, 4356–4361. [Google Scholar] [CrossRef]
- Hu, X.; Qiu, L.; Pan, X.; Zhang, J.; Li, X.; Zhang, S.; Dong, C. Nitrogen diffusion mechanism, microstructure and mechanical properties of thick Cr/CrN multilayer prepared by arc deposition system. Vacuum 2022, 199, 110902. [Google Scholar] [CrossRef]
- Ju, H.; Guo, J.; Yu, L.; Xu, J.; Luan, J. Enhancement of the mechanical and tribological properties of self-lubricant Mo2N-Ag composite film by adding amorphous SiNx. Ceram. Int. 2024, 50, 8463–8571. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, R.; Luan, J.; Yu, L.; Xu, J.; Zuo, B.; Yang, J.; Geng, Y.; Zhao, L.; Fernandes, F. Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties. Mater. Des. 2022, 223, 111128. [Google Scholar] [CrossRef]
- Ju, H.; Huang, K.; Luan, J.; Geng, Y.; Yang, J.; Xu, J. Evaluation under temperature cycling of the tribological properties of Ag-SiNx films or green tribological applications. Ceram. Int. 2023, 49, 30115–30124. [Google Scholar] [CrossRef]
- Janssen, G.; Abdalla, M.; Keulen, F.; Pujada, B.; Venrooy, B. Cerebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Film. 2009, 517, 1858. [Google Scholar] [CrossRef]
- Kraghelsky, I.V. Calculation of Wear Rate. J. Fluids Eng. 1965, 87, 785–790. [Google Scholar] [CrossRef]
- Xi, Y.; Gao, K.; Pang, X.; Yang, H.; Xiong, X.; Li, H.; Volinsky, A.A. Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceram. Int. 2017, 43, 11992–11997. [Google Scholar] [CrossRef]
- Ju, H.; Luan, J.; Wang, Y.; Bondarev, A.; Evaristo, M.; Geng, Y.; Xu, J.; Cavaleiro, A.; Fernandes, F. Mutual promotion on the mechanical and tribological properties of the nacre-like self-lubricant film designed for demanding green tribological applications. Friction 2025, 13, 9440963. [Google Scholar] [CrossRef]
- Luan, J.; Kong, F.; Xu, J.; Fernandes, F.; Evaristo, M.; Dong, S.; Cavaleiro, A.; Ju, H. Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films. Mater. Des. 2024, 248, 113489. [Google Scholar] [CrossRef]
- Chen, P.; Wang, W.; Wu, Y. Experimental investigation of thin film stress by Stoney’ formula. Measurement 2019, 143, 39–50. [Google Scholar] [CrossRef]
- Tillmann, W.; Grisales, D.; Stangier, D.; Thomann, C.; Debus, J.; Nienhaus, A.; Apel, D. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surf. Coat. Technol. 2021, 406, 126664. [Google Scholar] [CrossRef]
- Yadav, A.; Bajtošová, L.; Cieslar, M.; Fikar, J. Two-phase model for inverse Hall-Petch effect in nanocrystalline thin film: Atomistic simulation study. Acta Mater. 2024, 276, 120084. [Google Scholar] [CrossRef]
- Dai, X.; Wen, M.; Huang, K.; Wang, X.; Yang, L.; Wang, J.; Zhang, K. Toward low friction in water for Mo2N/Ag coatings by tailoring the wettability. Appl. Surf. Sci. 2018, 447, 886–893. [Google Scholar] [CrossRef]
- Gulbinski, W.; Suszko, T.; Sienicki, W.; Warcholinski, B. Tribological properties of silver-and copper-doped transition metal oxide coatings. Wear 2003, 254, 129–135. [Google Scholar] [CrossRef]
- Nicotra, G.; Spinella, C.; La Magna, A.; Bongiorno, C.; Rimini, E. Quantitative study of the Si/SiO2 phase separation in substoichiometric silicon oxide films. Mater. Sci. Eng. B 2009, 159–160, 80–82. [Google Scholar] [CrossRef]
- Gulbinki, W.; Suszko, T. Thin films of MoO3-Ag2O binary oxides-the high temperature lubricants. Wear 2006, 261, 867–873. [Google Scholar] [CrossRef]
- Zhu, B.; Shang, L.; Bian, Y.; Li, W.; Shao, L.; Zhang, C. Enhancement mechanism of HVOF interlayers on ta-C film load-bearing and wear resistance. Surf. Coat. Technol. 2025, 508, 132158. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, W.; Qiu, Z.; Lin, S.; Zheng, Z.; Zeng, D.C. Improved load-bearing capacity of Mo-doped Ti-N coatings: Effects of Mo alloying and GB plasticity. Surf. Coat. Technol. 2021, 424, 127630. [Google Scholar] [CrossRef]
- Song, H.; Zhang, H.; Yang, S.; Nan, Y.; Mu, Y.; Chu, W.; Yang, K.; Li, H.; Pang, M.; Jiang, N.; et al. Multi-layer design for the diamond coating with anti-tribocorrosive properties under high load-bearing in simulated seawater environment. Diam. Relat. Mater. 2025, 155, 112270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, J.; Wang, L.; Dong, S.; Ferreira, F.; Fernandes, F.; Mo, C.; Cavaleiro, A.; Ju, H. Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods. Coatings 2025, 15, 1080. https://doi.org/10.3390/coatings15091080
Luan J, Wang L, Dong S, Ferreira F, Fernandes F, Mo C, Cavaleiro A, Ju H. Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods. Coatings. 2025; 15(9):1080. https://doi.org/10.3390/coatings15091080
Chicago/Turabian StyleLuan, Jing, Lei Wang, Songtao Dong, Fábio Ferreira, Filipe Fernandes, Changpan Mo, Albano Cavaleiro, and Hongbo Ju. 2025. "Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods" Coatings 15, no. 9: 1080. https://doi.org/10.3390/coatings15091080
APA StyleLuan, J., Wang, L., Dong, S., Ferreira, F., Fernandes, F., Mo, C., Cavaleiro, A., & Ju, H. (2025). Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods. Coatings, 15(9), 1080. https://doi.org/10.3390/coatings15091080