Corrosion Resistance of Ti Coatings, Cr Coatings, and Ti/Cr Multilayer Coatings Prepared on 7050 Aluminum Alloy by Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Coating Deposition
2.3. Microstructural Characterization
2.4. Corrosion Resistance Study
3. Results
3.1. Coating Phase Structure
3.2. Morphology of the Coatings
3.3. Electrochemical Properties
3.4. Corrosion Morphology Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; He, T.; Du, X.; Alexey, V.; Song, M.; Chen, X. Enhanced mechanical properties in 7075 Al alloy fasteners processed by post ECAP-CU aging. Mater. Today Commun. 2025, 45, 112274. [Google Scholar] [CrossRef]
- Jia, D.-S.; He, T.; Song, M.; Huo, Y.-M.; Hu, H.-Y. Effects of equal channel angular pressing and further cold upsetting process to the kinetics of precipitation during aging of 7050 aluminum alloy. J. Mater. Res. Technol. 2023, 26, 5126–5140. [Google Scholar] [CrossRef]
- Berlanga-Labari, C.; Biezma-Moraleda, M.V.; Rivero, P.J. Corrosion of Cast Aluminum Alloys: A Review. Metals 2020, 10, 1384. [Google Scholar] [CrossRef]
- Wang, G.; Sun, W.; Xu, D.; Zhang, M.; Niu, L.; Wang, Y. Effects of rare earth element content on the microstructural properties and corrosion resistance of Al-Zn alloy. Mater. Res. Bull. 2025, 184, 113227. [Google Scholar] [CrossRef]
- Zhang, J.-J.; He, T.; Du, X.-Y.; Alexer, V.; Song, M.; Chen, X.-L.; Li, J. Effect of pre-heat treatment and subsequent ECAP-CU on microstructure and corrosion behavior of 7075 Al alloy fasteners. J. Cent. South Univ. 2025, 32, 2383–2403. [Google Scholar] [CrossRef]
- Li, J.; He, T.; Du, X.-Y.; Vereschaka, A. Enhancing the corrosion resistance of high-strength Al-Zn-Mg-Cu alloys after equal channel angular pressing by developing retrogression and re-aging strategies. Corros. Sci. 2025, 246, 112736. [Google Scholar] [CrossRef]
- Yan, L.; Deng, W.; Wang, N.; Xue, X.; Hua, J.; Chen, Z. Anti-Corrosion Reinforcements Using Coating Technologies—A Review. Polymers 2022, 14, 4782. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, T.; Du, X.; Vereschaka, A.; Sotova, C.; Ding, Y.; Chen, K.; Li, J.; He, P. Influence of Aluminum Alloy Substrate Temperature on Microstructure and Corrosion Resistance of Cr/Ti Bilayer Coatings. Coatings 2025, 15, 891. [Google Scholar] [CrossRef]
- Murmu, U.K.; Roy, A.; Ghosh, A.; Eivani, A.R.; Dutta, M.; Ghosh, M. Evaluating the performance of sputter-deposited Aluminium alloy-based coatings on steel in the light of grain orientation, surface roughness, and corrosion behaviour. Can. Metall. Q. 2022, 61, 251–264. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Z.; Wang, Z.; Tan, S.; Wang, A.; Piao, Z.; Ke, P. Tailored high-temperature corrosion behavior of Cr coatings using high power impulse magnetron sputtering on ZIRLO alloys for accident-tolerant fuel application. Surf. Coat. Technol. 2024, 488, 130941. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Wang, Z.; Cheng, Y.; Ma, G.; Tan, S.; Ke, P.; Wang, A. Oxygen-driven shell-like microstructure: A pathway to high-performance PVD Cr coatings for metal protection. npj Mater. Degrad. 2025, 9, 51. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Lin, C.-H.; Lin, Y.-T.; Chang, J.-T. Effects of Cathode Voltage Pulse Width in High Power Impulse Magnetron Sputtering on the Deposited Chromium Thin Films. Coatings 2020, 10, 542. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Kasar, A.K.; Farooq Khan, M.U.; Menezes, P.L.; Kay, C.M.; Misra, M.; Gupta, R.K. Improvement of Wear, Pitting Corrosion Resistance and Repassivation Ability of Mg-Based Alloys Using High Pressure Cold Sprayed (HPCS) Commercially Pure-Titanium Coatings. Coatings 2021, 11, 57. [Google Scholar] [CrossRef]
- Sun, J.; Han, Y.; Cui, K. Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Mater. Lett. 2008, 62, 3623–3625. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, B.; Wu, Z.; Qi, Z.; Wang, Z. A comparative study on the corrosion behaviour of Al, Ti, Zr and Hf metallic coatings deposited on AZ91D magnesium alloys. Surf. Coat. Technol. 2016, 303, 94–102. [Google Scholar] [CrossRef]
- Yoon, H.W.; Choi, Y.; Yeo, K.H.; Kim, S.G.; Cho, Y.K. Chromium Coatings Applied to Zr Alloy Claddings by Cathodic Arc Ion Plating: Effect of Nitrogen Inclusion on Limiting Columnar Defects. Adv. Eng. Mater. 2024, 26, 2400804. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M.; Bončina, T.; Kek Merl, D. Influence of Growth Defects on the Corrosion Resistance of Sputter-Deposited TiAlN Hard Coatings. Coatings 2019, 9, 511. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Lisovenko, M.A.; Turlybekuly, A.; Buranich, V.V. Protective coatings with nanoscale multilayer architecture: Current state and main trends. Phys.-Uspekhi 2021, 64, 253–279. [Google Scholar] [CrossRef]
- Liu, Z.X.; Li, Y.; Xie, X.H.; Qin, J.; Wang, Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceram. Int. 2021, 47, 25655–25663. [Google Scholar] [CrossRef]
- Çomaklı, O. Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram. Int. 2021, 47, 4149–4156. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, Y.; Chen, S.; Liao, B.; Zhang, S.; Hua, Q.; He, G. Corrosion resistance of AlN monolayer and Al/AlN multilayer deposited by filtered cathodic vacuum arc. Thin Solid Films 2023, 772, 139762. [Google Scholar] [CrossRef]
- Chen, K.; He, T.; Du, X.; Vereschaka, A.; Sotova, C.; Ding, Y.; Li, J. Corrosion Resistance of Ti/Cr Gradient Modulation Period Nanomultilayer Coatings Prepared by Magnetron Sputtering on 7050 Aluminum Alloy. Inorganics 2025, 13, 242. [Google Scholar] [CrossRef]
- Pereira, J.N.; Ott, V.; Afonso, C.R.M.; de Sousa Malafaia, A.M.; Stüber, M.; Greiner, C.; Pinto, H.C. Influence of multilayer nanoarchitecture on phase transformations in the Ti-Cr-Zr system. Surf. Coat. Technol. 2024, 477, 130369. [Google Scholar] [CrossRef]
- Shi, W.; Peng, J.; Xu, Z.; Shen, Q.; Wang, C. Effect of Power on Structural and Mechanical Properties of DC Magnetron Sputtered Cr Coatings. Metals 2023, 13, 691. [Google Scholar] [CrossRef]
- Mutlak, F.A.H.; Taha, A.B.; Nayef, U.M. Synthesis and Characterization of SnO2 on Porous Silicon for Photoconversion. Silicon 2017, 10, 967–974. [Google Scholar] [CrossRef]
- Samuelsson, M.; Lundin, D.; Jensen, J.; Raadu, M.A.; Gudmundsson, J.T.; Helmersson, U. On the film density using high power impulse magnetron sputtering. Surf. Coat. Technol. 2010, 205, 591–596. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Meng, F.; Huang, F. Microstructure and multifunctionality of a 10-μm-thick dense yet smooth Cr(C) coating prepared by low-temperature magnetron sputtering. Surf. Coat. Technol. 2022, 435, 128255. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Bleykher, G.A.; Krivobokov, V.P.; Koishybayeva, Z. High-rate magnetron sputtering with hot target. Surf. Coat. Technol. 2016, 308, 168–173. [Google Scholar] [CrossRef]
- Sun, X.; Chen, L.; Zhou, J. Structure, mechanical and thermal properties of TiAlBN/TiAlN multilayers. Surf. Coat. Technol. 2022, 441, 128512. [Google Scholar] [CrossRef]
- Mohan Kumar, G.; Singh, A.P.; Anupindi, S.; Srivastava, C. Effect of molybdenum partitioning induced lattice strain and surface oxide chemistry on hydrogen permeation and corrosion behavior of Co-Mo coatings. J. Mater. Sci. 2025, 60, 4764–4787. [Google Scholar] [CrossRef]
- He, T.; Valery, Z.; Vereschaka, A.; Keshin, A.; Huo, Y.; Milovich, F.; Sotova, C.; Seleznev, A. Influence of niobium and hafnium doping on the wear and corrosion resistance of coatings based on ZrN. J. Mater. Res. Technol. 2023, 27, 6386–6399. [Google Scholar] [CrossRef]
- Li, J.; He, T.; Du, X.-Y.; Vereschaka, A.; Zhang, J.-J. Regulating hardness homogeneity and corrosion resistance of Al-Zn-Mg-Cu alloy via ECAP combined with inter-pass aging. Mater. Charact. 2024, 218, 114489. [Google Scholar] [CrossRef]
- Natishan, P.M.; O’Grady, W.E. Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review. J. Electrochem. Soc. 2014, 161, C421–C432. [Google Scholar] [CrossRef]
- Inman, S.B.; Sur, D.; Han, J.; Ogle, K.; Scully, J.R. Corrosion behavior of a compositionally complex alloy utilizing simultaneous Al, Cr, and Ti passivation. Corros. Sci. 2023, 217, 111138. [Google Scholar] [CrossRef]
- Kosari Mehr, A.; Kosari Mehr, A.; Babaei, R. Performance of reactively co-sputtered titanium chromium nitride films in artificial saliva: Corrosion protection and reduction in the release of potentially toxic elements. Surf. Coat. Technol. 2021, 427, 127855. [Google Scholar] [CrossRef]
- Peng, S.; Xu, J.; Li, Z.; Jiang, S.; Xie, Z.-H.; Munroe, P. Electrochemical noise analysis of cavitation erosion corrosion resistance of NbC nanocrystalline coating in a 3.5 wt% NaCl solution. Surf. Coat. Technol. 2021, 415, 127133. [Google Scholar] [CrossRef]
- Hacıibrahimoğlu, M.; Bedir, M.; Yavuz, A. Structural and Corrosion Study of Uncoated and Zn-Cu Coated Magnesium-Based Alloy. Metals 2016, 6, 322. [Google Scholar] [CrossRef]
- Won, S.; Seo, B.; Park, J.M.; Kim, H.K.; Song, K.H.; Min, S.-H.; Ha, T.K.; Park, K. Corrosion behaviors of friction welded dissimilar aluminum alloys. Mater. Charact. 2018, 144, 652–660. [Google Scholar] [CrossRef]
- Li, S.; Wei, H.; Zhao, X.; Tang, Y.; Zuo, Y. Failure behavior and life prediction of solvent-free epoxy coatings based on impedance spectroscopy. Electrochim. Acta 2024, 492, 144349. [Google Scholar] [CrossRef]
- Ding, Y.; He, T.; Du, X.; Vereschaka, A.; Sotova, C.; Chen, K.; Li, J.; Wang, Y.; He, P. Effect of Buffer Layer Type on the Mechanical Properties and Corrosion Resistance of Magnetron Sputtered Cr Coatings on 7050 Al Alloy. Coatings 2025, 15, 803. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, R.-Q.; Liu, C.; Wu, Y.-K.; Wang, D.-D.; Liu, X.-T.; Zhang, X.-Z.; Wu, G.-R.; Shen, D.-J. The Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings Fabricated on Aluminum in Silicate Electrolyte. J. Mater. Eng. Perform. 2019, 28, 3652–3660. [Google Scholar] [CrossRef]
- Cui, X.-J.; Ning, C.-M.; Shang, L.-L.; Zhang, G.-A.; Liu, X.-Q. Structure and Anticorrosion, Friction, and Wear Characteristics of Pure Diamond-Like Carbon (DLC), Cr-DLC, and Cr-H-DLC Films on AZ91D Mg Alloy. J. Mater. Eng. Perform. 2019, 28, 1213–1225. [Google Scholar] [CrossRef]
- Ko, J.S.; Lai, C.H.; Long, J.W.; Rolison, D.R.; Dunn, B.; Nelson Weker, J. Differentiating Double-Layer, Psuedocapacitance, and Battery-like Mechanisms by Analyzing Impedance Measurements in Three Dimensions. ACS Appl. Mater. Interfaces 2020, 12, 14071–14078. [Google Scholar] [CrossRef] [PubMed]
- Mahdavian, M.; Attar, M.M. Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies. Corros. Sci. 2006, 48, 4152–4157. [Google Scholar] [CrossRef]
- Martinez, S.; Šoić, I.; Špada, V. Unified equivalent circuit of dielectric permittivity and porous coating formalisms for EIS probing of thick industrial grade coatings. Prog. Org. Coat. 2021, 153, 106155. [Google Scholar] [CrossRef]
- Seechurn, Y.; Wharton, J.A.; Surnam, B.Y.R. Mechanistic modelling of atmospheric corrosion of carbon steel in Port-Louis by electrochemical characterisation of rust layers. Mater. Chem. Phys. 2022, 291, 126694. [Google Scholar] [CrossRef]
- Li, B.; Li, D.; Xia, W.; Zhang, W. Synthesis and characterization of a novel Zn-Ni and Zn-Ni/Si3N4 composite coating by pulse electrodeposition. Appl. Surf. Sci. 2018, 458, 665–677. [Google Scholar] [CrossRef]
- Mouanga, M.; Puiggali, M.; Devos, O. EIS and LEIS investigation of aging low carbon steel with Zn–Ni coating. Electrochim. Acta 2013, 106, 82–90. [Google Scholar] [CrossRef]
- Khazeni, D.; Saremi, M.; Soltani, R. Development of HA-CNTs composite coating on AZ31 Magnesium alloy by cathodic electrodeposition. Part 2: Electrochemical and in-vitro behavior. Ceram. Int. 2019, 45, 11186–11194. [Google Scholar] [CrossRef]
- Abdeen, D.H.; El Hachach, M.; Koc, M.; Atieh, M.A. A Review on the Corrosion Behaviour of Nanocoatings on Metallic Substrates. Materials 2019, 12, 210. [Google Scholar] [CrossRef]
- He, Q.; Liu, D.; Zhou, Y.; Sun, T.-Y.; Huang, L.-F. Nitride coatings for environmental barriers: The key microscopic mechanisms and momentous applications of first-principles calculations. Surf. Sci. Technol. 2024, 2, 24. [Google Scholar] [CrossRef]
- Li, Q.; Cui, X.; Jing, Y.; Xu, W.; Wang, Y.; Chen, Z.; Zhang, Z.; Fang, Y.; Shang, T.; Jin, G. Multi-interface modification induced crack deflection behavior and enhanced fracture resistance in thermal barrier coatings. J. Alloys Compd. 2025, 1031, 181027. [Google Scholar] [CrossRef]
Samples | Ecorr (V) | Icorr (A·cm−2) | (V/dec) | (V/dec) | Rp, calculated values (Ω·cm2) |
---|---|---|---|---|---|
Cr | −0.737 | 9.14 × 10−6 | 0.06 | 2.48 | 1123 |
Ti | −0.773 | 8.50 × 10−7 | 0.04 | 0.88 | 8939 |
Ti/Cr | −0.760 | 3.83 × 10−7 | 0.04 | 0.47 | 12,940 |
Al7050 | −1.216 | 3.46 × 10−5 | 3.30 | 0.15 | 61.8 |
Coating Samples | Rs | CPEf | Rf | CPEQdl | Rct | RL | L | ||
---|---|---|---|---|---|---|---|---|---|
(Ω·cm2) | Y0 (Ω−1·cm−2·sn) | n | (Ω·cm2) | Y0 (Ω−1·cm−2·sn) | n | (Ω·cm2) | (Ω·cm2) | - | |
Cr | 6.816 | 2.11 × 10−3 | 0.614 | 83 | 9.56 × 10−5 | 0.791 | 325 | 1367 | 1345 |
Ti | 7.513 | 1.99 × 10−5 | 0.759 | 116 | 1.77 × 10−3 | 0.717 | 5571 | 1086 | 16,191 |
Ti/Cr | 10.58 | 1.96 × 10−5 | 0.858 | 10,708 | 1.59 × 10−4 | 0.749 | 3100 | 3674 | 31,182 |
Samples | Al (wt.%) | O (wt.%) | Cl (wt.%) | Cr (wt.%) | Ti (wt.%) |
---|---|---|---|---|---|
Cr | 21.71 | 40.30 | 0.42 | 37.55 | 0.01 |
Ti | 58.31 | 34.23 | 0.34 | 0.38 | 6.74 |
Ti/Cr | 44.26 | 44.56 | 0.90 | 5.12 | 5.17 |
Al7050 | 36.54 | 60.10 | 3.18 | 0.05 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; He, T.; Du, X.; Okulov, A.; Sotova, C.; Ding, Y.; Wang, Y.; He, P. Corrosion Resistance of Ti Coatings, Cr Coatings, and Ti/Cr Multilayer Coatings Prepared on 7050 Aluminum Alloy by Magnetron Sputtering. Coatings 2025, 15, 1077. https://doi.org/10.3390/coatings15091077
Chen K, He T, Du X, Okulov A, Sotova C, Ding Y, Wang Y, He P. Corrosion Resistance of Ti Coatings, Cr Coatings, and Ti/Cr Multilayer Coatings Prepared on 7050 Aluminum Alloy by Magnetron Sputtering. Coatings. 2025; 15(9):1077. https://doi.org/10.3390/coatings15091077
Chicago/Turabian StyleChen, Kang, Tao He, Xiangyang Du, Artem Okulov, Catherine Sotova, Yang Ding, Yuqi Wang, and Peiyu He. 2025. "Corrosion Resistance of Ti Coatings, Cr Coatings, and Ti/Cr Multilayer Coatings Prepared on 7050 Aluminum Alloy by Magnetron Sputtering" Coatings 15, no. 9: 1077. https://doi.org/10.3390/coatings15091077
APA StyleChen, K., He, T., Du, X., Okulov, A., Sotova, C., Ding, Y., Wang, Y., & He, P. (2025). Corrosion Resistance of Ti Coatings, Cr Coatings, and Ti/Cr Multilayer Coatings Prepared on 7050 Aluminum Alloy by Magnetron Sputtering. Coatings, 15(9), 1077. https://doi.org/10.3390/coatings15091077