Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Norway maple

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4664 KiB  
Article
Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits
by Agnieszka Laskowska, Anna Piwek, Karolina Lipska, Teresa Kłosińska, Katarzyna Rybak and Piotr Boruszewski
Coatings 2025, 15(7), 813; https://doi.org/10.3390/coatings15070813 - 11 Jul 2025
Viewed by 334
Abstract
The aim of the study was to determine the relationship between selected features of wood and the surface properties after sanding operations. Woods presenting different anatomical structures, i.e., ring-porous hardwood (European oak) and diffuse-porous hardwood (Norway maple), were used in the study. The [...] Read more.
The aim of the study was to determine the relationship between selected features of wood and the surface properties after sanding operations. Woods presenting different anatomical structures, i.e., ring-porous hardwood (European oak) and diffuse-porous hardwood (Norway maple), were used in the study. The wood surfaces were finished by sanding with aluminum oxide sandpapers of different grits: P60, P120, P180, and P240. It was shown that among the analyzed factors (wood species, anatomical section, measurement direction, and sandpaper grit size) and the interactions between them, the direction of measurement had the greatest influence (47%) on the Ra parameter values for oak wood. The sandpaper grit determined 22% of the Ra parameter variability. The measurement direction and the grit size of the sandpaper were identified as the most influential factors affecting the Rsm parameter values. Comparable patterns were observed in the case of Norway maple wood. Due to its diffuse-porous structure, the roughness of maple wood was less affected by the sandpaper grit compared to that of oak wood. Wood species had the greatest influence, increased from 41% to 71% when examining the contact angle at phase boundary wood-water after 3 s and 30 s. Sandpaper grit showed the greatest impact on the contact angles at the wood–diiodomethane phase boundary. This impact was practically at the same level after testing the contact angles after 3 s (27%) and after 30 s (28%). Wood species determined the color parameters, being responsible for 93% of the L* parameter, 50% of parameter a*, and 78% of parameter b*. The influence of sandpaper grit on the a* and b* parameter values was at a low level, i.e., 4%. SEM micrographs revealed the diverse structural characteristics of the wood following the sanding process. Full article
Show Figures

Figure 1

26 pages, 7042 KiB  
Article
Thermodynamic Stability of Clay Minerals in Boreal Forest Soil and Its Relationship to the Properties of Soil Organic Matter
by Igor V. Danilin, Yulia G. Izosimova, Ruslan A. Aimaletdinov and Inna I. Tolpeshta
Minerals 2025, 15(4), 430; https://doi.org/10.3390/min15040430 - 20 Apr 2025
Viewed by 420
Abstract
This paper assesses the thermodynamic stability of clay minerals in the upper organo-mineral horizon of podzolic soil, as well as in the rhizosphere of Norway spruce (Picea abies (L.) H. Karst.) and Norway maple (Acer platanoides L.). Moreover, it determines the [...] Read more.
This paper assesses the thermodynamic stability of clay minerals in the upper organo-mineral horizon of podzolic soil, as well as in the rhizosphere of Norway spruce (Picea abies (L.) H. Karst.) and Norway maple (Acer platanoides L.). Moreover, it determines the impact of soil organic matter on the thermodynamic stability of clay minerals. Calculations of ΔGf and the saturation index (SI) for clay minerals in laboratory experiments simulating soil conditions without soil moisture outflow allowed us to find out that the thermodynamic stability of clay minerals decreased in the series kaolinite > illite > vermiculite > chlorite. In the rhizosphere of spruce, kaolinite, vermiculite and illite have the lowest, and in the soil under maple-the highest thermodynamic stability, which is associated with differences in the properties of soil organic matter of rhizospheres of different tree species. Laboratory experiments on the sorption of soil humic acid (HA) on clay minerals demonstrated that sorbed HA decreased the thermodynamic stability of biotite and increased the thermodynamic stability of kaolinite and muscovite. Thermodynamic stability of clay minerals decreased with increased proportion of sorbed thermolabile organic matter. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

19 pages, 2090 KiB  
Article
Plywood Manufacturing Using Various Combinations of Hardwood Species
by Marcus Cordier, Nils Johannsen, Bettina Kietz, Dirk Berthold and Carsten Mai
Forests 2025, 16(4), 622; https://doi.org/10.3390/f16040622 - 2 Apr 2025
Viewed by 568
Abstract
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia [...] Read more.
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia spp.), Norway maple (Acer platanoides), European hornbeam (Carpinus betulus), Sycamore maple (Acer pseudoplatanus), mountain ash (Sorbus aucuparia), and European beech (Fagus sylvatica) with phenol–formaldehyde adhesive, and they were compared to silver birch (Betula pendula) plywood as a reference. The raw densities of the test panels varied between 0.85 and 1.04 times the reference density (795 kg m−3). Flexural strengths (the modulus of rupture, MOR) ranged from 68 N mm−2 to 104 N mm−2 for a parallel fibre orientation and 44 N mm−2 to 61 N mm−2 for a perpendicular fibre orientation of the top layers. The modulus of elasticity (MOE) ranged from 7160 N mm−2 to 11,737 N mm−2 for the parallel fibre orientation and from 4366 N mm−2 to 5575 N mm−2 for the perpendicular orientation. The tensile shear strength varied between 0.91 and 1.69 times the reference (1.49 N mm−2). The thickness swelling after 24 h was higher in all variants than the reference (6.4%), with factors between 1.39 and 1.64. A significant effect was observed when layers with a lower density were arranged on the outside and those with a higher density in the core, resulting in a more uniform density distribution across the cross-section after hot pressing. This created a levelling effect on mechanical and physical properties, especially the modulus of rupture (MOR) and the modulus of elasticity (MOE). Overall, the evaluated hardwood combinations demonstrated comparable properties to the birch reference and industrially produced birch plywood. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

17 pages, 11177 KiB  
Article
Phenological, Physiological, and Ultrastructural Analyses of ‘Green Islands’ on Senescent Leaves of Norway Maple (Acer platanoides L.)
by Violetta Katarzyna Macioszek, Kamila Chalamońska, Jakub Oliwa, Aleksandra Maria Staszak and Mirosław Sobczak
Plants 2025, 14(6), 909; https://doi.org/10.3390/plants14060909 - 14 Mar 2025
Cited by 1 | Viewed by 670
Abstract
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green [...] Read more.
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green spots observed on senescent Norway maple (Acer platanoides L.) leaves were still alive and photosynthetically active. The appearance of ‘green islands’ on the leaves of young Norway maple trees was observed from the autumn of 2019 to 2022 in an urban forest (Bialystok, eastern Poland). However, in the late summer (September) of 2023 and 2024, mostly tar spots caused by the fungus Rhytisma spp. on maple leaves could be observed, with only a few leaves having ‘green island’ symptoms. The percentage of ‘green island’ areas on senescent leaves observed during the 4 years (2019–2022) was influenced by a year of sampling (p < 0.001). A non-destructive physiological analysis of chlorophyll, flavonoids, and nitrogen balance index (NBI) in leaves revealed that these parameters were significantly lower in ‘green islands’ than in the summer leaves, but higher than in the senescent yellow area of the autumn leaves. In the case of anthocyanins, their level was significantly higher in ‘green islands’ than in yellow areas, although, in the summer leaves, anthocyanins were undetectable. The amount of chlorophyll and most photosynthetic parameters were significantly (p < 0.05) reduced in the ‘green islands’ of the senescent leaves compared to the mature green leaves. However, these parameters were significantly higher in the ‘green islands’ than in senescent yellow leaves. Carotenoid content in the ‘green island’ and yellow areas of senescent leaves were at the same level, twice as higher than in summer leaves. Green mature leaves and the ‘green islands’ on senescent leaves had the same structure and anatomy. The main differences concerned the chloroplasts, which were smaller and had less grana and starch grains, but had more plastoglobuli in ‘green island’ cells. The cells building the mesophyll in the yellow area of the leaf deteriorated and their chloroplasts collapsed. Epiphytes were present on the adaxial epidermis surface in all types of samples. Full article
Show Figures

Figure 1

18 pages, 1576 KiB  
Article
Response of Tree Seedlings to a Combined Treatment of Particulate Matter, Ground-Level Ozone, and Carbon Dioxide: Primary Effects
by Valentinas Černiauskas, Iveta Varnagirytė-Kabašinskienė, Ieva Čėsnienė, Emilis Armoška and Valda Araminienė
Plants 2025, 14(1), 6; https://doi.org/10.3390/plants14010006 - 24 Dec 2024
Viewed by 816
Abstract
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone [...] Read more.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O3), and carbon dioxide (CO2) concentrations, on young seedlings of five tree species: Scots pine (Pinus sylvestris L.); Norway spruce (Picea abies (L.) H.Karst.); silver birch (Betula pendula Roth); small-leaved lime (Tilia cordata Mill.); and Norway maple (Acer platanoides L.). The main objectives of this paper were to evaluate the seedling stem growth response and the biochemical response of seedling foliage to pollutant exposure. Four treatments were performed on two- to three-year-old seedlings of the selected tree species: with PM (0.4 g per seedling) under combined O3 = 180 ppb + CO2 = 650 ppm; without PM under combined O3 = 180 ppb + CO2 = 650 ppm; with PM (0.4 g per seedling) under combined O3 < 40–45 ppb + CO2 < 400 ppm; and without PM under combined O3 < 40–45 ppb + CO2 < 400 ppm. Scots pine and Norway maple showed no changes in growth (stem height and diameter) and biochemical parameters (photosynthetic pigments, total polyphenol content (TPC), total flavonoids content (TFC), and total soluble sugars (TSS)), indicating a neutral response to the combined PM, O3, and CO2 treatment. The chlorophyll response to PM alone and in combination with elevated O3 and CO2 exposure varied, with silver birch increasing, Norway maple—neutral to increasing, Scots pine—neutral to decreasing, and Norway spruce and small-leaved lime—decreasing. The TPC indicated stress responses in Scots pine, small-leaved lime, and Norway maple under increased combined O3 and CO2 and in Norway spruce under single PM treatment. Hence, Scots pine and Norway maple seedlings showed greater resistance to increased PM under combined O3 and CO2 with minimal change in growth, while silver birch seedlings showed adaptation potential with increasing chlorophyll under simulated pollutant stress. Full article
Show Figures

Figure 1

19 pages, 7115 KiB  
Article
Fallen Leaves as a Substrate for Biogas Production
by Agnieszka Wysocka-Czubaszek and Robert Czubaszek
Energies 2024, 17(23), 6038; https://doi.org/10.3390/en17236038 - 1 Dec 2024
Cited by 1 | Viewed by 1486
Abstract
Fallen leaves in cities are often treated as waste; therefore, they are collected, transported outside urban areas, and composted, which contributes to greenhouse gas (GHG) emissions. Instead of this conventional management approach, fallen leaves could be utilized as a feedstock in biogas production, [...] Read more.
Fallen leaves in cities are often treated as waste; therefore, they are collected, transported outside urban areas, and composted, which contributes to greenhouse gas (GHG) emissions. Instead of this conventional management approach, fallen leaves could be utilized as a feedstock in biogas production, helping to reduce GHG emissions, increase renewable energy generation, and provide fertilizer. The aim of this study was to compare the mono-digestion of fallen leaves from three tree species commonly found in parks and along streets—northern red oak (Quercus rubra L.), small-leaved lime (Tilia cordata Mill.), and Norway maple (Acer platanoides L.)—in both wet and dry anaerobic digestion (AD) systems. A biochemical methane potential (BMP) test was conducted in batch assays for each of the three substrates in both AD technologies at a temperature of 38 ± 1 °C. The highest specific methane yield (SMY) was obtained from Quercus leaves in wet AD technology, with a methane yield of 115.69 ± 4.11 NL kgVS−1. The lowest SMY (55.23 ± 3.36 NL kgVS−1) was observed during the dry AD of Tilia leaves. The type of technology had no significant impact on the SMY of Acer and Tilia leaves; however, the methane yield from Quercus leaves in wet AD was significantly higher (p < 0.05) than that from dry AD. Studies on the use of fallen leaves from Tilia cordata, Quercus rubra, and Acer platanoides as substrates in mono-digestion technology have shown their limited suitability for biogas production. Nevertheless, this feedstock may be more effectively used as a co-substrate, mainly due to the low concentrations of ammonia (NH3) and hydrogen sulfide (H2S) in the biogas produced from these leaves, both of which are considered inhibitors of the AD process. Full article
(This article belongs to the Special Issue Advanced Bioenergy, Biomass and Waste Conversion Technologies)
Show Figures

Figure 1

24 pages, 13172 KiB  
Article
Alterations in the Anatomy and Ultrastructure of Leaf Blade in Norway Maple (Acer platanoides L.) Growing on Mining Sludge: Prospects of Using This Tree Species for Phytoremediation
by Magdalena Krzesłowska, Mirosław Mleczek, Aleksander Luboński, Karolina Weręża, Adam Woźny, Piotr Goliński and Sławomir Samardakiewicz
Plants 2024, 13(10), 1295; https://doi.org/10.3390/plants13101295 - 8 May 2024
Cited by 3 | Viewed by 1523
Abstract
Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, [...] Read more.
Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, the nature and scale of alterations in leaf architecture at the tissue and cellular levels occurring in Norway maple growing on mining sludge originating from a copper mine in Lubin (Poland). The substrate differs from other mine wastes, e.g., calamine or serpentine soils, due to an extremely high level of arsenic (As). Alterations in leaf anatomy predominantly included the following: (1) a significant increase in upper epidermis thickness; (2) a significant decrease in palisade parenchyma width; (3) more compact leaf tissue organization; (4) the occurrence of two to three cell layers in palisade parenchyma in contrast to one in the control; (5) a significantly smaller size of cells building palisade parenchyma. At the cellular level, the alterations included mainly the occurrence of local cell wall thickenings—predominantly in the upper and lower epidermis—and the symptoms of accelerated leaf senescence. Nevertheless, many chloroplasts showed almost intact chloroplast ultrastructure. Modifications in leaf anatomy could be a symptom of alterations in morphogenesis but may also be related to plant adaptation to water deficit stress. The occurrence of local cell wall thickenings can be considered as a symptom of a defence strategy involved in the enlargement of apoplast volume for toxic elements (TE) sequestration and the alleviation of oxidative stress. Importantly, the ultrastructure of leaf cells was not markedly disturbed. The results suggested that Norway maple may have good phytoremediation potential. However, the general shape of the plant, the significantly smaller size of leaves, and accelerated senescence indicated the high toxicity of the mining sludge used in this experiment. Hence, the phytoremediation of such a substrate, specifically including use of Norway maple, should be preceded by some amendments—which are highly recommended. Full article
(This article belongs to the Special Issue Phytoremediation and Plant Morphophysiology in Contaminated Areas)
Show Figures

Figure 1

18 pages, 1891 KiB  
Article
Properties of Forest Tree Branches as an Energy Feedstock in North-Eastern Poland
by Mariusz Jerzy Stolarski, Natalia Wojciechowska, Mateusz Seliwiak and Tomasz Krzysztof Dobrzański
Energies 2024, 17(8), 1975; https://doi.org/10.3390/en17081975 - 22 Apr 2024
Cited by 6 | Viewed by 1368
Abstract
Tree branches from forest tree harvesting for the timber industry are an important energy feedstock. Solid biofuel in the form of wood chips, produced from branches, is an excellent renewable energy source for generating heat and electricity. However, the properties of wood chips [...] Read more.
Tree branches from forest tree harvesting for the timber industry are an important energy feedstock. Solid biofuel in the form of wood chips, produced from branches, is an excellent renewable energy source for generating heat and electricity. However, the properties of wood chips as a solid biofuel produced from forest tree branches can vary greatly depending on the species from which they have been produced. Therefore, this study aimed to assess the thermophysical properties and elemental composition of fresh branches harvested from nine tree species (pedunculate oak, silver birch, European ash, common aspen, grey alder, Norway maple, Scots pine, European larch and Norway spruce) over three consecutive years (2020–2022). The branches of the tree species most commonly found in Polish forests (Scots pine) were characterized by the highest heating value (an average of 20.74 GJ Mg−1 DM), the highest carbon content (an average of 55.03% DM), the lowest ash (an average of 0.60% DM) and nitrogen contents (an average of 0.32% DM), and low sulfur (an average of 0.017% DM) and chlorine contents (an average of 0.014% DM). A cluster analysis showed that the branches of all three coniferous tree species (Scots pine, Norway spruce and European larch) formed one common cluster, indicating similar properties. The branches of the European ash were characterized by the lowest wood moisture content (an average of 37.19% DM) and thus the highest lower heating value (an average of 10.50 GJ Mg−1). During the three years of the study, the chlorine and ash contents of the branches of the tree species under study exhibited the highest variability. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

12 pages, 2186 KiB  
Article
Analysis of Height Growth Suggests Moderate Growth of Tilia cordata and Acer platanoides at the Native Hemiboreal Stands in Latvia
by Ilze Matisone, Guntars Šņepsts, Dārta Kaupe, Sebastian Hein, Raitis Rieksts-Riekstiņš and Āris Jansons
Forests 2024, 15(1), 7; https://doi.org/10.3390/f15010007 - 19 Dec 2023
Cited by 1 | Viewed by 1706
Abstract
In the Eastern Baltics, climatic changes are expected to alter forest composition favouring broadleaved species. The height growth of trees influences the productivity of stands and the competitiveness of species, particularly in mixed sites, thus emphasising the necessity for accurate projections. Accordingly, height [...] Read more.
In the Eastern Baltics, climatic changes are expected to alter forest composition favouring broadleaved species. The height growth of trees influences the productivity of stands and the competitiveness of species, particularly in mixed sites, thus emphasising the necessity for accurate projections. Accordingly, height models are paramount for projecting productivity and yields of stands. As tree height growth dynamics vary regionally, regional or even local models are needed. Based upon 214 National Forest Inventory plots and 510 individual canopy trees, dominant height growth for small-leaved lime (Tilia cordata Mill.) and Norway maple (Acer platanoides L.) in Latvia were analysed. Height growth was modelled using a generalised algebraic difference approach, testing several non-linear equations. The Sloboda (for lime) and Hossfeld I (for maple) models showed the best fit and were the most realistic, predicting slower initial and middle-age (maturing period) growth, yet also displayed higher asymptotes compared to Western Europe. The predicted height at the age of 80 years was 14–33 m and 13–34 m for lime and maple, accordingly. A longer establishment period and later growth culmination suggest longer rotation, highlighting the assessment of long-term risks. In this case, supplementation of the models with climatic effects appears advantageous. Full article
(This article belongs to the Special Issue Forest Growth Modeling in Different Ecological Conditions)
Show Figures

Figure 1

13 pages, 2474 KiB  
Article
The Influence of Water Extraction Parameters in Subcritical Conditions and the Shape of the Reactor on the Quality of Extracts Obtained from Norway Maple (Acer platanoides L.)
by Piotr Kamiński, Marcin Gruba, Zygmunt Fekner, Katarzyna Tyśkiewicz and Zbigniew Kobus
Processes 2023, 11(12), 3395; https://doi.org/10.3390/pr11123395 - 9 Dec 2023
Cited by 3 | Viewed by 1556
Abstract
The Box–Behnken experimental design was used to investigate the effect of subcritical water extraction parameters such as temperature, process duration, and extractor shape on the extract composition and antioxidant activity of Norway maple (Acer platanoides L.) bark extracts. Spectrophotometric (UV-Vis) techniques were [...] Read more.
The Box–Behnken experimental design was used to investigate the effect of subcritical water extraction parameters such as temperature, process duration, and extractor shape on the extract composition and antioxidant activity of Norway maple (Acer platanoides L.) bark extracts. Spectrophotometric (UV-Vis) techniques were employed to evaluate the total polyphenols (TPC) and flavonoids (TFC). The DPPH radical scavenging method was used to evaluate the antioxidant activity of the extracts. The yield of the process was evaluated through the utilization of response surface methodology (RSM). The total polyphenol and flavonoid contents, together with antioxidant activity, are highly dependent on water temperature. The influence of changes in the process duration and the shape of the pressure cell was not observed. A temperature increase from 110 °C to 170 °C caused a 8.9-fold increase in the polyphenol content, 7.2-fold increase in the flavonoid content, and 12.6-fold increase in the antioxidant activity. The highest values for polyphenols, flavonoids, and antioxidant activity occurred at a temperature of 170 °C, which is the upper limit of the temperature variability range for these studies. This study demonstrates the importance of the appropriate selection of extraction parameters in order to obtain the desired chemical composition of the extract. Full article
(This article belongs to the Special Issue Current Trends in Food and Food Byproducts Processing)
Show Figures

Figure 1

12 pages, 12649 KiB  
Article
Effect of Two Different Ageing Exposures on the Colour Stability of Transparent Polyurethane Finishing
by Gabriela Slabejová, Zuzana Vidholdová and Mária Šmidriaková
Polymers 2023, 15(15), 3313; https://doi.org/10.3390/polym15153313 - 5 Aug 2023
Cited by 2 | Viewed by 1466
Abstract
This paper deals with the influence of dark and light exposure on the colour change of a transparent two-component polyurethane surface finish. The surface finish with polyacrylic and aldehyde resin was applied to the surfaces of untreated and hydrothermally treated European beech, alder, [...] Read more.
This paper deals with the influence of dark and light exposure on the colour change of a transparent two-component polyurethane surface finish. The surface finish with polyacrylic and aldehyde resin was applied to the surfaces of untreated and hydrothermally treated European beech, alder, Norway maple, and Paper birch wood. The test specimens were deposited indoors for 60 days. The colour values (lightness L*, redness + a*, yellowness + b*, chroma C*, hue angle h°) were expressed in the CIELAB system. The results showed that the colour difference of the finish surfaces of all hydrothermally treated wood species was 27–50% lower after the dark than when exposed to light. In the case of finished untreated wood, the colour difference was 51–73% lower after the dark than light exposure. Only the finished untreated and hydrothermally treated Norway maple wood surfaces showed similar and significant changes after both dark and light exposure. The lower value of the colour difference of the finished hydrothermally treated wood was due to the fact that steaming wood with saturated water steam has a positive effect on the overall colour stability of the finish and partial resistance to the initiation of photolytic reactions caused by light. Full article
(This article belongs to the Special Issue Recent Advances in Polyurethane Materials)
Show Figures

Figure 1

23 pages, 10932 KiB  
Article
Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data
by Qian Li, Baoxin Hu, Jiali Shang and Hui Li
Forests 2023, 14(7), 1392; https://doi.org/10.3390/f14071392 - 7 Jul 2023
Cited by 9 | Viewed by 1988
Abstract
With the wide availability of remotely sensed data from various sensors, fusion-based tree species classification approaches have emerged as a prominent and ongoing research topic. However, most recent studies primarily focused on combining multisource data at the feature level, while few systematically examined [...] Read more.
With the wide availability of remotely sensed data from various sensors, fusion-based tree species classification approaches have emerged as a prominent and ongoing research topic. However, most recent studies primarily focused on combining multisource data at the feature level, while few systematically examined their positive or negative contributions to tree species classification. This study aimed to investigate fusion approaches at the feature and decision levels deployed with support vector machine and random forest algorithms to classify five dominant tree species: Norway maple, honey locust, Austrian pine, white spruce, and blue spruce in individual crowns. Spectral, textural, and structural features derived from multispectral imagery (MSI), a very high-resolution panchromatic image (PAN), and LiDAR data were systematically exploited to assess their contributions to accurate classifications. Among the various classification schemes that were explored, both feature- and decision-level fusion approaches demonstrated significant improvements in tree species classification compared with the utilization of MSI (0.7), PAN (0.74), or LiDAR (0.8) in isolation. Notably, the decision-level fusion approach achieved the highest overall accuracies (0.86 for SVM and 0.84 for RF) and kappa coefficients (0.82 for SVM and 0.79 for RF). The misclassification analysis of fusion approaches highlighted the potential and flexibility of decision-level fusion in tree species classification. Full article
Show Figures

Figure 1

29 pages, 19607 KiB  
Article
A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)
by Wojciech Durlak, Margot Dudkiewicz and Małgorzata Milecka
Land 2022, 11(11), 1914; https://doi.org/10.3390/land11111914 - 27 Oct 2022
Cited by 4 | Viewed by 4689
Abstract
The sustainable management of urban greenery consists, among others, of the inventory, valuation, and protection of trees of monumental size. This article presents the results of the inspection of 13 large trees growing in the city of Sandomierz, located in south-eastern Poland. The [...] Read more.
The sustainable management of urban greenery consists, among others, of the inventory, valuation, and protection of trees of monumental size. This article presents the results of the inspection of 13 large trees growing in the city of Sandomierz, located in south-eastern Poland. The examined specimens belong to five species: Norway maple (Acer platanoides L.), common ash (Fraxinus excelsior L.), white poplar (Populus alba L.), English oak (Quercus robur L.), and small-leaved lime (Tilia cordata Mill.). The health condition of the trees was assessed using acoustic and electrical tomography, as well as chlorophyll fluorescence tests. Diagnostics employing sound waves and electrical resistivity were crucial in assessing tree health. The data based on chlorophyll fluorescence confirmed the results obtained during tomographic examinations. It was an innovative combination of three non-invasive methods of examining the health condition of trees and their valuation. Economic valuation allows us to reduce to common denominator issues that are often difficult to decide due to different perspectives—expressing the economic value of trees. Calculating the value of trees allowed us to show the city’s inhabitants the value of trees that are of monumental size. Thanks to the cooperation of scientists with the city authorities, an economic plan for trees of monumental size was created, distinguished by an individualized and holistic approach to each specimen covered by the study. The database prepared has a chance to become an effective management instrument used by environmental protection authorities and a source of knowledge and education for the city’s inhabitants. Full article
(This article belongs to the Special Issue Urban Ecosystem Services III)
Show Figures

Figure 1

11 pages, 2511 KiB  
Article
Nature’s Wind Turbines: The Measured Aerodynamic Efficiency of Spinning Seeds Approaches Theoretical Limits
by Timothy C. A. Molteno
Biomimetics 2022, 7(4), 161; https://doi.org/10.3390/biomimetics7040161 - 12 Oct 2022
Cited by 1 | Viewed by 2241
Abstract
This paper describe a procedure to measure experimentally the power coefficient, Cp, of winged seeds, and apply this technique to seeds from the Norway maple (Acer platanoides). We measure Cp=56.9±2% at a tip [...] Read more.
This paper describe a procedure to measure experimentally the power coefficient, Cp, of winged seeds, and apply this technique to seeds from the Norway maple (Acer platanoides). We measure Cp=56.9±2% at a tip speed ratio of 3.21±0.06. Our results are in agreement with previously published CFD simulations that indicate that these seeds—operating in low-Reynolds number conditions—approach the Betz limit (Cp=59.3%) the maximum possible efficiency for a wind turbine. In addition, this result is not consistent with the recent theoretical work of Okulov & Sørensen, which suggests that a single-bladed turbine with a tip-speed ratio of 3.2 can achieve a power efficiency of no more than 30%. Full article
(This article belongs to the Special Issue Biological and Bio-Inspired Fluid Dynamics)
Show Figures

Figure 1

14 pages, 2606 KiB  
Article
Thermal Modification of Spruce and Maple Wood for Special Wood Products
by Anna Danihelová, Zuzana Vidholdová, Tomáš Gergeľ, Lucia Spišiaková Kružlicová and Michal Pástor
Polymers 2022, 14(14), 2813; https://doi.org/10.3390/polym14142813 - 10 Jul 2022
Cited by 12 | Viewed by 2733
Abstract
This article presents a proposal of thermal modification of Norway spruce and sycamore maple for special wood products, mainly for musical instruments. Selected physical and acoustical characteristics (PACHs), including the density (ρ), dynamic modulus of elasticity along the wood grain ( [...] Read more.
This article presents a proposal of thermal modification of Norway spruce and sycamore maple for special wood products, mainly for musical instruments. Selected physical and acoustical characteristics (PACHs), including the density (ρ), dynamic modulus of elasticity along the wood grain (EL), specific modulus (Esp), speed of sound along the wood grain (cL), resonant frequency (fr) and acoustic constant (A), logarithmic decrement (ϑ), loss coefficient (η), acoustic conversion efficiency (ACE), sound quality factor (Q), and the timbre of sound, were evaluated. These two wood species were chosen regarding their use in the production or repair of musical instruments. For the thermal modification, a similar process to the ThermoWood process was chosen. Thermal modification was performed at the temperatures 135 °C, 160 °C and 185 °C. The resonant dynamic method was used to obtain the PACHs. Fast Fourier transform (FFT) was used to analyze the sound produced. The changes in the observed wood properties depended on the treatment temperature. Based on our results of all properties, the different temperature modified wood could find uses in the making of musical instruments or where the specific values of these wood characteristics are required. The mild thermal modification resulted in a decrease in mass, density, and increased speed of sound and dynamic modulus of elasticity at all temperatures of modification. The thermally modified wood showed higher sound radiation and lower loss coefficients than unmodified wood. The modification also influenced the timbre of sound of both wood species. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials II)
Show Figures

Graphical abstract

Back to TopTop