Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation and Pretreatment
2.2. UMAO
2.3. Hydrothermal Treatment (HT)
2.4. Structural Characterization
2.5. In Vitro Bioactivity Evaluation
2.6. Materials Studio Simulation
3. Results
3.1. Microstructure of MAO, UMAO, MAO-450-HT, and UMAO-450-HT
3.2. TEM Analysis of UMAO-450-HT
3.3. XPS Analysis of UMAO-450-HT
3.4. Bioactivity of MAO-450, UMAO-450, MAO-450-HT, and UMAO-450-HT
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. Rep. 2004, 473, 49–121. [Google Scholar] [CrossRef]
- Van Noort, R. Titanium: The implant material of today. J. Mater. Sci. 1987, 22, 3801–3811. [Google Scholar] [CrossRef]
- Frosch, K.-H.; Stürmer, K.M. Metallic biomaterials in skeletal repair. Eur. J. Trauma 2006, 32, 149–159. [Google Scholar] [CrossRef]
- Xu, L.J.; Chen, Y.Y.; Liu, Z.H.; Kong, F.T. The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J. Alloys Compd. 2006, 453, 320–324. [Google Scholar] [CrossRef]
- Song, Y.; Xu, D.; Yang, R.; Li, D.; Wu, W.; Guo, Z. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater. Sci. Eng. A 1999, 260, 269–274. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.; Chakraborty, M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Mater. Sci. Eng. A 2007, 489, 419–425. [Google Scholar] [CrossRef]
- Topuz, M.; Yigit, O.; Kaseem, M.; Dikici, B. Synthesis of implantable ceramic coatings and their properties. In Advanced Ceramic Coatings for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 53–86. [Google Scholar]
- Zakaria, M.Y.; Sulong, A.B.; Muhamad, N.; Raza, M.R.; Ramli, M.I. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview. Mater. Sci. Eng. 2019, 97, 884–895. [Google Scholar] [CrossRef]
- Zeng, Y.; Pei, X.; Yang, S.; Qin, H.; Cai, H.; Hu, S.; Sui, L.; Wan, Q.; Wang, J. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf. Coat. Technol. 2016, 286, 72–79. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Zhao, L. Antibacterial, angiogenic, and osteogenic activities of Ca, P, Co, F, and Sr compound doped titania coatings with different Sr content. Sci. Rep. 2019, 9, 14203. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Liu, P.; Qi, S.; Li, W.; Zhang, K.; Chen, X. Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications. J. Alloys Compd. 2023, 948, 169773. [Google Scholar] [CrossRef]
- Du, Q.; Wei, D.; Wang, Y.; Cheng, S.; Liu, S.; Zhou, Y.; Jia, D. The effect of applied voltages on the structure, apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface. Bioact. Mater. 2018, 3, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Tardelli, C.D.J.; Reis, D.C.A. The antibacterial activity and osteoblastic viability of bioactive polymeric coatings on titanium surfaces for dental implants: A systematic review of in vitro studies. J. Drug Deliv. Sci. Technol. 2025, 106, 106684. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Han, Y. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing. Appl. Surf. Sci. 2016, 361, 190–198. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhu, R.-F.; Lu, Y.-P.; Xiao, G.-Y.; Ma, X.-N.; Li, Y. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation. Appl. Surf. Sci. 2013, 282, 271–280. [Google Scholar] [CrossRef]
- Liu, F.; Xu, J.; Wang, F.; Zhao, L.; Shimizu, T. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf. Coat. Technol. 2010, 204, 3294–3299. [Google Scholar] [CrossRef]
- Wei, D.; Du, Q.; Wang, S.; Cheng, S.; Wang, Y.; Li, B.; Jia, D.; Zhou, Y. Rapid fabrication, microstructure, and in vitro and in vivo investigations of a high-performance multilayer coating with external, flexible, and silicon-doped hydroxyapatite nanorods on titanium. ACS Biomater. Sci. Eng. 2019, 5, 4244–4262. [Google Scholar] [CrossRef]
- Zhao, Q.-M.; Yang, H.-L.; Liu, Z.-T.; Gu, X.-F.; Li, C.; Feng, D.-H. Fabrication of hydroxyapatite on pure titanium by micro-arc oxidation coupled with microwave-hydrothermal treatment. J. Mater. Sci. Mater. Med. 2015, 26, 88. [Google Scholar] [CrossRef]
- Lin, D.J.; Fuh, L.J.; Chen, C.Y.; Chen, W.C.; Lin, J.H.C.; Chen, C.C. Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process. Mater. Sci. Eng. 2019, 952, 236–247. [Google Scholar] [CrossRef]
- Bykova, A.D.; Markov, M.A.; Kuznetsov, Y.; Kravchenko, I.N.; Belyakov, A.N.; Makarov, A.M. Effect of Electrolyte Composition on the Structure and Tribological Properties of Ceramic Coatings Obtained by Micro-Arc Oxidation. Refract. Ind. Ceram. 2024, 64, 541–549. [Google Scholar] [CrossRef]
- Qu, L.; Li, M.; Liu, M. Microstructure and corrosion resistance of ultrasonic micro-arc oxidation biocoatings on magnesium alloy. J. Adv. Ceram. 2013, 2, 227–234. [Google Scholar] [CrossRef]
- Qu, L.; Li, M.; Liu, M.; Zhuang, M. In vitro Degradation of Medical Magnesium Alloy Coated by Ultrasonic Micro-Arc Oxidation. Rare Met. Mater. Eng. 2014, 43, 96–100. [Google Scholar]
- Komarova, E.G.; A Kazantseva, E.; Sedelnikova, M.B.; Sharkeev, Y.P. Influence of ultrasonic field during micro-arc oxidation on the structure and properties of calcium phosphate coatings. J. Phys. Conf. Ser. 2019, 1393, 012098. [Google Scholar] [CrossRef]
- Komarova, E.G.; Kazantseva, E.A.; Akimova, E.B.; Uvarkin, P.V. Adhesion and Cohesion of Three-Dimensional Porous Calcium Phosphate Coatings on Titanium Deposited by Ultrasound-Assisted Micro-Arc Oxidation Method. Russ. Phys. J. 2024, 67, 747–755. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, S.; Zhang, X.; Lu, X.; Dong, Z. Construction of multi-layered Zn-modified TiO2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. Mater. Sci. Eng. C 2021, 131, 112487. [Google Scholar] [CrossRef]
- Molaei, M.; Fattah-Alhosseini, A.; Keshavarz, M.K. Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti. J. Asian Ceram. Soc. 2019, 7, 247–255. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Y.; Xi, F.; Zhang, X.; Kang, Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front. Bioeng. Biotechnol. 2023, 11, 1282590. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, Y.; Fu, S.; Wu, Y.; Lu, X.; Yang, L.; Liu, H.; Dong, Z. Synthesis, microstructure, anti-corrosion property and biological performances of Mn-incorporated Ca-P/TiO2 composite coating fabricated via micro-arc oxidation. Mater. Sci. Eng. C 2020, 117, 111321. [Google Scholar] [CrossRef]
- Du, Q.; Wei, D.; Wang, S.; Cheng, S.; Wang, Y.; Li, B.; Jia, D.; Zhou, Y. Rapidly formation of the highly bioactive surface with hydroxyapatite crystals on the titania micro arc oxidation coating by microwave hydrothermal treatment. Appl. Surf. Sci. 2019, 487, 708–718. [Google Scholar] [CrossRef]
- Du, Q.; Wei, D.; Wang, S.; Cheng, S.; Wang, Y.; Li, B.; Jia, D.; Zhou, Y. TEM analysis and in vitro and in vivo biological performance of the hydroxyapatite crystals rapidly formed on the modified microarc oxidation coating using microwave hydrothermal technique. Chem. Eng. J. 2019, 373, 1091–1110. [Google Scholar] [CrossRef]
- Yang, J.Y.; Zhao, Y.B.; Dai, J.W.; Han, L.Y.; Dong, Q.S.; Zhang, L.; Bai, J.; Xue, F.; Chu, P.K.; Chu, C.L. Fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy. Surf. Coatings Technol. 2023, 452, 129125. [Google Scholar] [CrossRef]
Reagent Name | Content (g/L or mL/L) | Purity |
---|---|---|
EDTA-2Na | 15 | >98% |
Ca(CH3COO)2·H2O | 8.8 | >98% |
Ca(H2PO4)2·H2O | 6.3 | >98% |
Na2SiO3·9H2O | 7.1 | >98% |
NaOH | 5 | >98% |
Specimen | Anatase (101)/ Ti (101) | Rutile (110)/ Ti (101) | Anatase (110)/ Ti (101) | H2Ti5O11·H2O(110)/ Anatase (101) |
---|---|---|---|---|
MAO | 3.10 | 0.53 | - | - |
UMAO | 1.27 | 0.22 | - | - |
MAO-450-HT | - | 0.07 | 0.72 | 0.60 |
UMAO-450-HT | - | 0.13 | 1.31 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Q.; Zhai, Q.; Cheng, S.; Lin, Y.; Wei, D.; Wang, Y.; Zhou, Y. Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment. Coatings 2025, 15, 666. https://doi.org/10.3390/coatings15060666
Du Q, Zhai Q, Cheng S, Lin Y, Wei D, Wang Y, Zhou Y. Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment. Coatings. 2025; 15(6):666. https://doi.org/10.3390/coatings15060666
Chicago/Turabian StyleDu, Qing, Qiang Zhai, Su Cheng, Yudong Lin, Daqing Wei, Yaming Wang, and Yu Zhou. 2025. "Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment" Coatings 15, no. 6: 666. https://doi.org/10.3390/coatings15060666
APA StyleDu, Q., Zhai, Q., Cheng, S., Lin, Y., Wei, D., Wang, Y., & Zhou, Y. (2025). Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment. Coatings, 15(6), 666. https://doi.org/10.3390/coatings15060666