Machining-Induced Surface Integrity Enhancement of Ti-6Al-4V Titanium Alloy via Ultrasonic Vibration Side Milling Under High-Speed Machining and Dry Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Workpieces
2.2. Experimental Setup
2.3. Surface Integrity Characterization
- (1)
- Surface topography and surface roughness
- (2)
- Micro-hardness
- (3)
- Residual stress
3. Results and Discussion
3.1. Surface Topography
3.2. Surface Roughness
3.3. Surface Micro-Hardness
3.4. Surface Residual Stress
4. Conclusions
- (1)
- Under the same cutting speed, due to intermittent cutting and high-frequency ironing, UVSM has better machining quality under dry conditions. With the increase of cutting speed, machining defects of CM and UVSM increase, and the surface quality decreases gradually, which is unfavorable for its service performance.
- (2)
- By comparing the variation in surface roughness during the cutting processes of CM and UVSM, it was found that surface roughness generally increases with cutting speed for the Ti-6Al-4V alloy. However, UVSM was found to significantly improve surface roughness. At v = 60 m/min and fz = 0.02 mm/z, the lowest surface roughness achieved by UVSM was 0.521 μm, 28.83% lower than the 0.732 μm achieved by CM.
- (3)
- Increases in cutting speed result in rises in the micro-hardness of both CM and UVSM under high-speed dry milling conditions. At fz = 0.01 mm/z, the surface micro-hardness of CM and UVSM increases from 301.96 HV to 337.93 HV (up to 11.91%) and from 319.31 HV to 366.45 HV (up to 14.76%), respectively. At fz = 0.02 mm/z, the surface micro-hardness of CM and UVSM increased from 305.04 HV to 347.93 HV (up to 14.06%) and from 338.95 HV to 372.45 HV (up to 9.88%), respectively. When fz = 0.02 mm/z and v = 100 m/min, UVSM obtained the maximum surface micro-hardness of 372.45 HV.
- (4)
- The surface residual stresses produced by CM and UVSM were mainly residual compressive stresses. In addition, under high-speed dry milling conditions, the surface residual compressive stresses on both CM and UVSM decrease as the cutting speed increases. At fz = 0.02 mm/z, the surface residual compressive stress of UVSM decreases from −389.31 MPa to −220.55 MPa. Because of the intermittent cutting and ironing effect of UVSM, its surface residual compressive stress is much larger than that of CM. At fz = 0.02 mm/z and v = 40 mm/min, the maximum surface residual stress of UVSM is −389.31 MPa, which is 79% higher than that of CM.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyamekye, P.; Golroudbary, S.R.; Piili, H.; Luukka, P.; Kraslawski, A. Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries. Adv. Ind. Manuf. Eng. 2023, 6, 100112. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Yazdi, S.; Bozorg, M.; Ghasempour-Mouziraji, M.; Hosseinzadeh, M.; Zarrabian, M.; Cavaliere, P. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Axinte, D.; Soo, S.L.; Nobel, C.; Attia, H.; Kappmeyer, G.; Engin, S.; Sim, W.-M. High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann.-Manuf. Technol. 2015, 64, 557–580. [Google Scholar] [CrossRef]
- Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280. [Google Scholar] [CrossRef]
- Che-Haron, C.H.; Jawaid, A. The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V. J. Mater. Process. Technol. 2005, 166, 188–192. [Google Scholar] [CrossRef]
- Sun, J.; Guo, Y. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J. Mater. Process. Technol. 2009, 209, 4036–4042. [Google Scholar] [CrossRef]
- Diaz, O.G.; Luna, G.G.; Liao, Z.; Axinte, D. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity. Int. J. Mach. Tools Manuf. 2019, 139, 24–36. [Google Scholar] [CrossRef]
- Liao, Z.; Abdelhafeez, A.; Li, H.; Yang, Y.; Diaz, O.G.; Axinte, D. State-of-the-art of surface integrity in machining of metal matrix composites. Int. J. Mach. Tools Manuf. 2019, 143, 63–91. [Google Scholar] [CrossRef]
- Arrazola, P.J.; Garay, A.; Iriarte, L.M.; Armendia, M.; Marya, S.; Le Maître, F. Machinability of titanium alloys (Ti6Al4V and Ti555.3). J. Mater. Process. Technol. 2009, 209, 2223–2230. [Google Scholar] [CrossRef]
- Babitsky, V.I.; Kalashnikov, A.N.; Meadows, A.; Wijesundara, A. Ultrasonically assisted turning of aviation materials. J. Mater. Process. Technol. 2003, 132, 157–167. [Google Scholar] [CrossRef]
- Babitsky, V.I.; Mitrofanov, A.V.; Silberschmidt, V.V. Ultrasonically assisted turning of aviation materials: Simulations and experimental study. Ultrasonics 2004, 42, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Wang, F.; Yang, L.; Deng, J.; Lin, Y.; He, Q. Machining inclination selection method for surface milling of CFRP workpieces with low cutting-induced damage. Compos. Struct. 2023, 304, 116495. [Google Scholar] [CrossRef]
- Soni, R.; Verma, R.; Kumar Garg, R.; Sharma, V. A critical review of recent advances in the aerospace materials. Mater. Today Proc. 2024, 113, 180–184. [Google Scholar] [CrossRef]
- Sreenu, B.; Sarkar, R.; Kumar, S.S.; Chatterjee, S.; Rao, G.A. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, 797, 140254. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, Y. Experimental study on the microelectrodes fabrication using low speed wire electrical discharge turning (LS-WEDT) combined with multiple cutting strategy. J. Mater. Process. Technol. 2017, 250, 121–131. [Google Scholar] [CrossRef]
- Chen, S.; Ge, Q.; Chang, W.; Zhang, J.; Tang, H.; Yang, H. Low-speed machining of a Zr-based bulk metallic glass. J. Manuf. Process. 2021, 72, 565–581. [Google Scholar] [CrossRef]
- Lindvall, R.; Bermejo, J.M.B.; Bjerke, A.; Andersson, J.M.; Vikenadler, E.; M’Saoubi, R.; Bushlya, V. On the wear mechanisms of uncoated and coated carbide tools in milling titanium alloys. Int. J. Refract. Met. Hard Mat. 2024, 124, 106806. [Google Scholar] [CrossRef]
- Praetzas, C.; Teppernegg, T.; Mayr, J.; Czettl, C.; Schäfer, J.; Abele, E. Comparison of Tool Core Temperature and Active Force in Milling of Ti6Al4V under different Cooling Conditions. Procedia Manuf. 2018, 18, 81–88. [Google Scholar] [CrossRef]
- Xu, D.; Zan, S.; Liao, Z.; Yang, Y.; Gao, Y.; Fu, M. Investigation of surface integrity in grinding of nickel based superalloy under different cooling conditions. J. Manuf. Process. 2023, 107, 240–251. [Google Scholar] [CrossRef]
- Nath, C.; Rahman, M. Effect of machining parameters in ultrasonic vibration cutting. Int. J. Mach. Tools Manuf. 2008, 48, 965–974. [Google Scholar] [CrossRef]
- Rauf, A.; Khan, M.A.; Jaffery, S.H.I.; Butt, S.I. Effects of machining parameters, ultrasonic vibrations and cooling conditions on cutting forces and tool wear in meso scale ultrasonic vibrations assisted end-milling (UVAEM) of Ti–6Al–4V under dry, flooded, MQL and cryogenic environments–A statistical analysis. J. Mater. Res. Technol.-JMRT 2024, 30, 8287–8303. [Google Scholar] [CrossRef]
- He, Y.; Xiao, G.; Liu, Z.; Ni, Y.; Liu, S. Subsurface damage in laser-assisted machining titanium alloys. Int. J. Mech. Sci. 2023, 258, 108576. [Google Scholar] [CrossRef]
- Abu Qudeiri, J.E.; Mourad, A.-H.I.; Ziout, A.; Abidi, M.H.; Elkaseer, A. Electric discharge machining of titanium and its alloys: Review. Int. J. Adv. Manuf. Technol. 2018, 96, 1319–1339. [Google Scholar] [CrossRef]
- Hu, W.; Du, P.; Qiu, X.; Zhao, X.; Hu, Z.; Zhang, J.; Liu, Y. Enhanced dry machinability of TC4 titanium alloy by longitudinal-bending hybrid ultrasonic vibration-assisted milling. J. Clean. Prod. 2022, 379, 134866. [Google Scholar] [CrossRef]
- Gao, H.; Ma, B.; Zhu, Y.; Yang, H. Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions. Measurement 2022, 187, 110324. [Google Scholar] [CrossRef]
- Kitagawa, T.; Kubo, A.; Maekawa, K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti 6A 6V 2Sn. Wear 1997, 202, 142–148. [Google Scholar] [CrossRef]
- Krishnaraj, V.; Samsudeensadham, S.; Sindhumathi, R.; Kuppan, P. A study on High Speed End Milling of Titanium Alloy. Procedia Eng. 2014, 97, 251–257. [Google Scholar] [CrossRef]
- Wu, H.; To, S. Serrated chip formation and their adiabatic analysis by using the constitutive model of titanium alloy in high speed cutting. J. Alloys Compd. 2015, 629, 368–373. [Google Scholar] [CrossRef]
- Jamil, M.; Zhao, W.; He, N.; Gupta, M.K.; Sarikaya, M.; Khan, A.M.; Sanjay, M.R.; Siengchin, S.; Pimenov, D.Y. Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J. Clean. Prod. 2021, 281, 125374. [Google Scholar] [CrossRef]
- Liu, Z.; An, Q.; Xu, J.; Chen, M.; Han, S. Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear 2013, 305, 249–259. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, X.; Liu, L.; Xu, G.; Wang, G.; Zhao, M. Effect of high-speed ultrasonic vibration cutting on the microstructure, surface integrity, and wear behavior of titanium alloy. J. Mater. Res. Technol.-JMRT 2023, 24, 3870–3888. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, X.; Zhang, D. Effect of radial high-speed ultrasonic vibration cutting on machining performance during finish turning of hardened steel. Ultrasonics 2021, 111, 106340. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Zheng, K.; Liao, W.; Shu, J.; Miao, D. Experimental investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling. J. Eur. Ceram. Soc. 2021, 41, 3341–3356. [Google Scholar] [CrossRef]
- Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2008, 32, 153–172. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Y.; Zhao, S.; Li, X.; Geng, D.; Zhang, D. Tool wear and its effect on the surface integrity and fatigue behavior in high-speed ultrasonic peening milling of Inconel 718. Tribol. Int. 2023, 178, 108070. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhao, B.; Ding, W.; Zhao, Z.; Cui, H.; Wang, M. Effects of longitudinal ultrasonic vibration on tool wear behaviors in side milling of GH4169D superalloy. Tribol. Int. 2024, 198, 109918. [Google Scholar] [CrossRef]
- Chen, G.; Zou, Y.; Qin, X.; Liu, J.; Feng, Q.; Ren, C. Geometrical texture and surface integrity in helical milling and ultrasonic vibration helical milling of Ti-6Al-4V alloy. J. Mater. Process. Technol. 2020, 278, 116494. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, L.; Wiercigroch, M.; Ren, T.; Hao, Y.; Ning, J.; Zhao, J. Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling. Int. J. Mech. Sci. 2022, 227, 107375. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, D.; Zhang, D.; Zhai, Y.; Liu, L.; Sun, Z.; Shao, Z.; Zhang, M.; Jiang, X. Cutting performance and surface integrity for rotary ultrasonic elliptical milling of Inconel 718 with the ball end milling cutter. J. Mater. Process. Technol. 2023, 319, 118094. [Google Scholar] [CrossRef]
- Wei, R.; Xu, M.; Li, C.; Chen, J.; Li, S.; Li, P.; Ko, T.J. Cutting force modeling in the electrical discharge assisted milling of Ti-6Al-4V in a multi-hybrid energy field based on finite volume method. J. Mater. Process. Technol. 2023, 311, 117805. [Google Scholar] [CrossRef]
- Namlu, R.H.; Lotfi, B.; Kılıç, S.E. Enhancing machining efficiency of Ti-6Al-4V through multi-axial ultrasonic vibration-assisted machining and hybrid nanofluid minimum quantity lubrication. J. Manuf. Process. 2024, 119, 348–371. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Zhao, W.; Kumar Gupta, M.; Mashood Khan, A. Novel approach of cutting temperature measurement in sustainable milling of Ti-6Al-4V alloy. Measurement 2023, 214, 112837. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, X.; Zhang, D. Improvement of Ti–6Al–4V surface integrity through the use of high-speed ultrasonic vibration cutting. Tribol. Int. 2021, 160, 107025. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z. Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools. Tribol. Int. 2018, 121, 321–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, L.; Ye, Y.; Chi, Y.; Gao, L.; Zha, X.; Huang, T.; Zhang, Y.; Ding, H.; Ye, C. Exploring the strengthening mechanisms of additive manufactured metals treated by ultrasonic nanocrystal surface modification. Int. J. Fatigue 2025, 190, 108609. [Google Scholar] [CrossRef]
- Musfirah, A.H.; Ghani, J.A.; Haron, C.H.C. Tool wear and surface integrity of inconel 718 indry and cryogenic coolant at high cutting speed. Wear 2017, 376–377, 125–133. [Google Scholar] [CrossRef]
Ti | Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|---|
88.1–91 | 5.5–6.75 | 3.5–4.5 | ≤0.25 | ≤0.2 | ≤0.08 | ≤0.05 | ≤0.01 |
Density (kg/m3) | Hardness (HV) | Elastic Modulus (GPa) | Yield Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|
4429 | 300 | 114 | 835 | 905 |
Parameter (Unit) | Value |
---|---|
Material | Carbide |
Coating | PVD TiAlSiN |
Spiral length (mm) | 25 |
Cutting edges | 5 |
Diameter (mm) | 8 |
Helix angle (°) | 42 |
Rake angle (°) | 5 |
Parameters (Unit) | Value | ||
---|---|---|---|
Milling conditions | Axial cutting depth ap (mm) | 1 | |
Radial cutting depth ae (mm) | 2 | ||
Feed rate per tooth fz (mm/z) | 0.01, 0.02 | ||
Cutting speed v (m/min) | 40, 60, 80, 100 | ||
Vibration conditions | Milling process methods | CM | HVSM |
Frequency (Hz) | / | 19586 | |
Amplitude (μm) | / | 8 (peak to peak) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Han, A.; Han, J.; Zhang, M.; Yan, X.; Nie, F.; Peng, Z. Machining-Induced Surface Integrity Enhancement of Ti-6Al-4V Titanium Alloy via Ultrasonic Vibration Side Milling Under High-Speed Machining and Dry Conditions. Coatings 2025, 15, 662. https://doi.org/10.3390/coatings15060662
Wang D, Han A, Han J, Zhang M, Yan X, Nie F, Peng Z. Machining-Induced Surface Integrity Enhancement of Ti-6Al-4V Titanium Alloy via Ultrasonic Vibration Side Milling Under High-Speed Machining and Dry Conditions. Coatings. 2025; 15(6):662. https://doi.org/10.3390/coatings15060662
Chicago/Turabian StyleWang, Dong, Aowei Han, Jinyong Han, Mingliang Zhang, Xiaodong Yan, Fuquan Nie, and Zhenlong Peng. 2025. "Machining-Induced Surface Integrity Enhancement of Ti-6Al-4V Titanium Alloy via Ultrasonic Vibration Side Milling Under High-Speed Machining and Dry Conditions" Coatings 15, no. 6: 662. https://doi.org/10.3390/coatings15060662
APA StyleWang, D., Han, A., Han, J., Zhang, M., Yan, X., Nie, F., & Peng, Z. (2025). Machining-Induced Surface Integrity Enhancement of Ti-6Al-4V Titanium Alloy via Ultrasonic Vibration Side Milling Under High-Speed Machining and Dry Conditions. Coatings, 15(6), 662. https://doi.org/10.3390/coatings15060662