Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old Concepts in Thermoelectric Materials. Angew. Chem. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357, 1369. [Google Scholar] [CrossRef] [PubMed]
- Russ, B.; Glaudell, A.; Urban, J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- D’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric Materials and Applications: A Review. Energies 2023, 16, 6409. [Google Scholar] [CrossRef]
- Ioffe, A.F. Semiconductor Thermoelements and Thermoelectric Cooling; Infosearch Ltd.: London, UK, 1957. [Google Scholar]
- Ioffe, A.F. The Revival of Thermoelectricity. Sci. Am. 1958, 199, 31–37. [Google Scholar]
- Vedernikov, M.V.; Iordanishvili, E.K. AF Ioffe and Origin of Modern Semiconductor Thermoelectric Energy Conversion. In Proceedings of the Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365), Nagoya, Japan, 28–28 May 1998; pp. 37–42. [Google Scholar]
- Walia, S.; Balendhran, S.; Nili, H.; Zhuiykov, S.; Rosengarten, G.; Wang, Q.H.; Bhaskaran, M.; Sriram, S.; Strano, M.S.; Kalantar-zadeh, K. Transition metal oxides—Thermoelectric properties. Progr. Mater. Sci. 2013, 58, 1443–1489. [Google Scholar] [CrossRef]
- Dolyniuk, J.-A.; Owens-Baird, B.; Wang, J.; Zaikina, J.V.; Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 2016, 108, 1–46. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, M.; Liu, Z. Research progress on preparation methods of skutterudite. Inorganics 2022, 10, 106. [Google Scholar] [CrossRef]
- Aversano, F.; Palumbo, M.; Ferrario, A.; Boldrini, S.; Fanciulli, C.; Baricco, M.; Castellero, A. Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes. Intermetallics 2020, 127, 106988. [Google Scholar] [CrossRef]
- Bano, S.; Chetty, R.; Jayachandran, B.; Mori, T. Mg3(Sb,Bi)2-based materials and devices rivalling bismuth telluride for thermoelectric power generation and cooling. Device 2024, 2, 100408. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, P.; Lou, Q.; Zhang, Z.; Huang, S.; Lu, Y.; He, J. Design guidelines for chalcogenide-based flexible thermoelectric materials. Mater. Adv. 2021, 2, 2584–2593. [Google Scholar] [CrossRef]
- Artini, C.; Pennelli, G.; Graziosi, P.; Li, Z.; Neophytou, N.; Melis, C.; Colombo, L.; Isotta, E.; Lohani, K.; Scardi, P.; et al. Roadmap on Thermoelectricity. Nanotechnology 2023, 34, 292001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, C.; Elquist, A.M.; Ghods, A.; Saravade, V.G.; Lu, N.; Ferguson, I. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications. In Proceedings of the Proceedings Volume 10533, Oxide-based Materials and Devices IX, San Francisco, CA, USA, 27 January–1 February 2018; p. 105331R. [Google Scholar]
- Zhou, B.; Chen, L.; Li, C.; Qi, N.; Chen, Z.; Su, X.; Thang, X.F. Significant Enhancement in the Thermoelectric Performance of Aluminum-doped ZnO Tuned by Pore Structure. ACS Appl. Mater. Interfaces 2020, 12, 51669–51678. [Google Scholar] [CrossRef]
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef]
- Noori, A.; Masoumi, S.; Hashemi, N. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films. J. Phys. Conf. Ser. 2017, 939, 012013. [Google Scholar] [CrossRef]
- Jia, J.; Oka, N.; Kusayanagi, M.; Nakatomi, S.; Shigesato, Y. Origin of Carrier Scattering in Polycrystalline Al-doped ZnO Films. Appl. Phys. Express 2014, 7, 105802. [Google Scholar] [CrossRef]
- Zhou, H.M.; Yi, D.; Yu, Z.; Xiao, L.; Li, J. Preparation of Aluminum Doped Zinc Oxide Films and the Study of their Microstructure, Electrical and Optical Properties. Thin Solid. Films 2007, 15, 6909–6914. [Google Scholar] [CrossRef]
- Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K. Effect on Substrate on Thermoelectric Properties of Al-doped ZnO Thin Films. Appl. Phys. Lett. 2013, 102, 253903. [Google Scholar] [CrossRef]
- Nam, W.H.; Lim, Y.S.; Choi, S.M.; Seo, W.S.; Lee, J.Y. High-Temperature Charge Transport and Thermoelectric Properties of a Degenerately Al-doped ZnO Nanocomposite. J. Mater. Chem. 2012, 22, 14633–14638. [Google Scholar] [CrossRef]
- Tonny, K.N.; Rafique, R.; Sharmin, A.; Bashar, M.S.; Mahmood, Z.H. Electrical, Optical and Structural Properties of Transparent Conducting Al doped ZnO (AZO) Deposited by Sol-Gel Spin Coating. AIP Adv. 2018, 8, 065307. [Google Scholar] [CrossRef]
- Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors. PRL 2006, 96, 045901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Minnich, A.J. The Best Nanoparticle Size Distribution for Minimum Thermal Conductivity. Sci. Rep. 2015, 5, 8995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, G.; Yang, J.; Mao, W.; Wang, J.; Liu, Z.; Dong, Y.; Yang, S.; Li, J. Fabrication of AZO and FAZO Films Using Low-cost Spin-Coating Method. Opt. Mater. 2022, 126, 112204. [Google Scholar] [CrossRef]
- Lee, W.; Leem, J.Y. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method. J. Korean Phys. Soc. 2018, 72, 610–614. [Google Scholar] [CrossRef]
- Nga, Z.N.; Chana, K.Y.; Tohsophonb, T. Effects of Annealing Temperature on ZnO and AZO Films Prepared by Sol–Gel Technique. Appl. Surf. Sci. 2012, 258, 9604–9609. [Google Scholar] [CrossRef]
- Kumar, K.D.A.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; AlFaify, S. Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: A film for key optoelectronic applications. Appl. Phys. A 2017, 123, 801. [Google Scholar] [CrossRef]
- Sengupta, J.; Sahoo, R.K.; Mukherjee, C.D. Effect of annealing on the structural, topographical and optical properties of sol–gel derived ZnO and AZO thin films. Mater. Lett. 2012, 83, 84–87. [Google Scholar] [CrossRef]
- Rijckaert, H. Preparation of the S/TEM Lamella of Commercial REBa2Cu3O7-x Coated Conductors by FIB. IEEE Trans. Appl. Supercond. 2024, 34, 7500707. [Google Scholar] [CrossRef]
- Baba, T.; Baba, T.; Mori, T. Fourier Transform Thermoreflectance method Under Front-Heat Front-Detect Configuration. Int. J. Thermophys. 2021, 45, 61. [Google Scholar] [CrossRef]
- Chen, X.; Guan, W.; Fang, G.; Zhao, X.Z. Influence of substrate temperature and port-treatment on the properties of AnO:Al thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 2005, 252, 1561–1567. [Google Scholar] [CrossRef]
- Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition. Eur. Phys. J. Plus 2016, 131, 328. [Google Scholar] [CrossRef]
- Wang, W.P.; Chen, Y.Y.; Hsu, J.C.; Wang, C. Structural, optical and electrical properties of aluminum doped ZnO films annealed in air and hydrogen atmosphere. J. Non-Cryst. Solids 2014, 383, 131–136. [Google Scholar] [CrossRef]
- Saadi, H.; Rhouma, F.I.H.; Benzarti, Z.; Bougrioua, Z.; Guemazi, S.; Khirouni, K. Electrical Conductivity Improvement of Fe doped ZnO Nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Abdullin, K.A.; Gabdullin, M.T.; Zhumagulov, S.K.; Ismailova, G.A.; Gritsenko, L.V.; Kedruk, Y.Y.; Mirzaeian, M. Stabilization of the Surface of ZnO Films and Elimination of the Aging Effect. Materials 2021, 14, 6535. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Ma, Y.; Xu, Z.; Wu, L.; Yang, Y.; Tsang, S.W.; Chen, S. The Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. J. Phys. Chem. Lett. 2020, 11, 5863–5870. [Google Scholar] [CrossRef]
- Darwish, A.M.; Muhammad, A.; Sarkisov, S.S.; Mele, P.; Saini, S.; Liu, J.; Shiomi, J. Thermoelectric Properties of Al-doped ZnO Composite Films with Polymer Nanoparticles Prepared by Pulsed Laser Deposition. Composites Part. B 2019, 167, 406–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giribaldi, A.; Giordani, C.; Latronico, G.; Bourgès, C.; Baba, T.; Piscino, C.; Marinova, M.; Mori, T.; Artini, C.; Rijckaert, H.; et al. Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings 2025, 15, 107. https://doi.org/10.3390/coatings15010107
Giribaldi A, Giordani C, Latronico G, Bourgès C, Baba T, Piscino C, Marinova M, Mori T, Artini C, Rijckaert H, et al. Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings. 2025; 15(1):107. https://doi.org/10.3390/coatings15010107
Chicago/Turabian StyleGiribaldi, Alberto, Cristiano Giordani, Giovanna Latronico, Cédric Bourgès, Takahiro Baba, Cecilia Piscino, Maya Marinova, Takao Mori, Cristina Artini, Hannes Rijckaert, and et al. 2025. "Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films" Coatings 15, no. 1: 107. https://doi.org/10.3390/coatings15010107
APA StyleGiribaldi, A., Giordani, C., Latronico, G., Bourgès, C., Baba, T., Piscino, C., Marinova, M., Mori, T., Artini, C., Rijckaert, H., & Mele, P. (2025). Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings, 15(1), 107. https://doi.org/10.3390/coatings15010107