Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. C. spinosa Oil Extraction
2.3. Preparation of C. spinosa Oil Nanoemulgel
2.3.1. Preparation of C. spinosa Oil Nanoemulsion
2.3.2. Droplet Size and Polydispersity Index Analysis of C. spinosa Oil Nanoemulsion
2.3.3. Preparation of Carbopol 940 Hydrogel
2.3.4. Formulation of C. spinosa Oil Nanoemulgel
2.3.5. Physical Characterization of C. spinosa Oil Nanoemulgel
2.3.6. Analysis of the C. spinosa Oil Nanoemulgel Zeta Potential
2.3.7. Rheological Measurement of C. spinosa Oil Nanoemulgel
2.4. Antimicrobial Evaluation of C. spinosa Oil and Its Nanoemulgel
2.4.1. Antibacterial and Antifungal
2.4.2. Culture Media
2.5. Cytotoxicity Evaluation of C. spinosa Oil and Its Nanoemulgel
2.6. COX Enzyme Evaluation of C. spinosa Oil and Its Nanoemulgel
3. Results
3.1. Yield of C. spinosa Root Extraction
3.2. Droplet Size and PDI Analysis of C. spinosa Oil Nanoemulsion Formulations
3.3. C. spinosa Oil Nanoemulgel Formulations
3.4. Influence of Different Carbopol Concentrations on Droplet Size and PDI of C. spinosa Oil Nanoemulgel
3.5. Sensorial Property Analysis and Physical Characterization of C. spinosa Oil Nanoemulgel
3.6. Zeta Potential Measurement of C. spinosa Oil Nanoemulgel
3.7. The Rheological Behavior of C. spinosa Oil Nanoemulgel Formulations
3.8. Antibacterial Activity of C. spinosa Oil and Its Nanoemulgel
3.9. Cytotoxic Activity of C. spinosa Oil and Its Nanoemulgel
3.10. Anti-Inflammatory Activity of C. spinosa Oil and Its Nanoemulgel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ang, L.; Lee, H.W.; Kim, A.; Lee, J.A.; Zhang, J.; Lee, M.S. Herbal medicine for treatment of children diagnosed with COVID-19: A review of guidelines. Complement. Ther. Clin. Pract. 2020, 39, 101174. [Google Scholar] [CrossRef] [PubMed]
- Gunjan, M.; Naing, T.W.; Saini, R.S.; Ahmad, A.; Naidu, J.R.; Kumar, I. Marketing trends & future prospects of herbal medicine in the treatment of various disease. World J. Pharm. Res. 2015, 4, 132–155. [Google Scholar]
- Furman, B.L.; Candasamy, M.; Bhattamisra, S.K.; Veettil, S.K. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. J. Ethnopharmacol. 2020, 247, 112264. [Google Scholar] [CrossRef]
- Jain, S.; Buttar, H.S.; Chintameneni, M.; Kaur, G. Prevention of cardiovascular diseases with anti-inflammatory and anti-oxidant nutraceuticals and herbal products: An overview of pre-clinical and clinical studies. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Krug, K.; Kraus, K.I.; Herrmann, K.; Joos, S. Complementary and alternative medicine (CAM) as part of primary health care in Germany–comparison of patients consulting general practitioners and CAM practitioners: A cross-sectional study. BMC Complement. Altern. Med. 2016, 16, 409. [Google Scholar] [CrossRef] [PubMed]
- Upasani, S.V.; Beldar, V.G.; Tatiya, A.U.; Upasani, M.S.; Surana, S.J.; Patil, D.S. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr. Med. Res. 2017, 6, 114–130. [Google Scholar] [CrossRef]
- Vahid, H.; Rakhshandeh, H.; Ghorbani, A. Antidiabetic properties of Capparis spinosa L. and its components. Biomed. Pharmacother. 2017, 92, 293–302. [Google Scholar] [CrossRef]
- Saleem, H.; Khurshid, U.; Sarfraz, M.; Ahmad, I.; Alamri, A.; Anwar, S.; Alamri, A.S.; Locatelli, M.; Tartaglia, A.; Mahomoodally, M.F.; et al. Investigation into the biological properties, secondary metabolites composition, and toxicity of aerial and root parts of Capparis spinosa L.: An important medicinal food plant. Food Chem. Toxicol. 2021, 155, 112404. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, T.; Wang, C. Capparis spinosa L. as a potential source of nutrition and its health benefits in foods: A comprehensive review of its phytochemistry, bioactivities, safety, and application. Food Chem. 2023, 409, 135258. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef]
- Tir, M.; Feriani, A.; Labidi, A.; Mufti, A.; Saadaoui, E.; Nasri, N.; Khaldi, A.; El Cafsi, M.; Tlili, N. Protective effects of phytochemicals of Capparis spinosa seeds with cisplatin and CCl4 toxicity in mice. Food Biosci. 2019, 28, 42–48. [Google Scholar] [CrossRef]
- Tlili, N.; Khaldi, A.; Triki, S.; Munné-Bosch, S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Foods Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Elfalleh, W.; Saadaoui, E.; Khaldi, A.; Triki, S.; Nasri, N. The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia 2011, 82, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Annaz, H.; Sane, Y.; Bitchagno, G.T.M.; Bakrim, W.B.; Drissi, B.; Mahdi, I.; El Bouhssini, M.; Sobeh, M. Caper (Capparis spinosa L.): An updated review on its phytochemistry, nutritional value, traditional uses, and therapeutic potential. Front. Pharmacol. 2022, 13, 878749. [Google Scholar] [CrossRef]
- Alkhaibari, A.M.; Alanazi, A.D. Chemical composition and insecticidal, antiplasmodial, and anti-leishmanial activity of Capparis spinosa essential oil and its main constituents. Evid. -Based Complement. Altern. Med. 2022, 2022, 6371274. [Google Scholar] [CrossRef]
- Hamidi, M.; Kozani, P.S.; Kozani, P.S.; Pierre, G.; Michaud, P.; Delattre, C. Marine bacteria versus microalgae: Who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications? Mar. Drugs 2019, 18, 28. [Google Scholar] [CrossRef]
- Sadoughi, F.; Kazemy, Z.; Hamedan, F.; Owji, L.; Rahmanikatigari, M.; Azadboni, T.T. Artificial intelligence methods for the diagnosis of breast cancer by image processing: A review. Breast Cancer Targets Ther. 2018, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.-Y.; Liu, Y.; Chen, B.-W.; Liu, Y.-Y.; Wang, Y.-S.; Zhang, N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 2016, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Rahnavard, R.; Razavi, N. A review on the medical effects of Capparis spinosa L. Adv. Herb. Med. 2017, 3, 44–53. [Google Scholar]
- Al Badri, S.; Al Janabi, N. Estimation of the antioxidant activity of local Capparis spanosa leaves. Iraqi J. Agric. Sci. 2018, 49, 64–70. [Google Scholar]
- Al-Snafi, A.E. Medicinal plants with antimicrobial activities (part 2): Plant based review. Sch. Acad. J. Pharm. 2016, 5, 208–239. [Google Scholar] [CrossRef]
- Etemadi, E.; Fazilati, M.; Karimi, A.; Nazem, H.-A. Protective effect of hydroalcoholic extract of Capparis spinosa L. root on inflammatory factors of rheumatoid arthritis in rats. J. Isfahan Med. Sch. 2022, 40, 307–317. [Google Scholar]
- Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem. 2012, 132, 261–267. [Google Scholar] [CrossRef]
- Eid, A.M.; Jaradat, N.A.; Elmarzugi, N.A.; Alkowni, R.; Hussen, F.; Ayyash, L.A.; Sawafta, M.; Danaa, H. Anti-microbial and free radical scavenging activities of nigella sativa colloidal-emulgel. Lett. Drug Des. Discov. 2019, 16, 408–416. [Google Scholar] [CrossRef]
- Eid, A.M.; Jaradat, N.A.; Al-Masri, M.; Issa, L.; Zubidat, F.; Asrawi, H.; Ahmad, S. Development and antimicrobial evaluation of Eruca sativa oil nanoemulgel with determination of the oil antioxidant, sun protection factor and elastase inhibition. Curr. Pharm. Biotechnol. 2020, 21, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Istateyeh, I.; Salhi, N.; Istateyeh, T. Antibacterial activity of Fusidic acid and sodium Fusidate nanoparticles incorporated in pine oil nanoemulgel. Int. J. Nanomed. 2019, 14, 9411. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.R.; Stamenić, T.T.; Daniels, R.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm. 2015, 493, 40–54. [Google Scholar] [CrossRef]
- Eid, A.M.; Hawash, M. Biological evaluation of Safrole oil and Safrole oil Nanoemulgel as antioxidant, antidiabetic, antibacterial, antifungal and anticancer. BMC Complement. Med. Ther. 2021, 21, 159. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Hameedi, S.; Mousa, A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem. 2020, 14, 54. [Google Scholar] [CrossRef]
- Fitzpatrick, M.B.; Dube Mandishora, R.S.; Katzenstein, D.A.; McCarty, K.; Weber, J.; Sahoo, M.K.; Manasa, J.; Chirenje, Z.M.; Pinsky, B.A. hrHPV prevalence and type distribution in rural Zimbabwe: A community-based self-collection study using near-point-of-care GeneXpert HPV testing. Int. J. Infect. Dis. 2019, 82, 21–29. [Google Scholar] [CrossRef]
- Hernández-Silva, C.D.; Villegas-Pineda, J.C.; Pereira-Suárez, A.L. Expression and role of the G protein-coupled estrogen receptor (GPR30/GPER) in the development and immune response in female reproductive cancers. Front. Endocrinol. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hamid, N.M.; Abass, S.A.; Mohamed, A.A.; Hamid, D.M. Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed. Pharmacother. 2018, 107, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Steflitsch, W. Aromatherapy—from traditional and scientific evidence into clinical practice. Dtsch. Med. Wochenschr. 2017, 142, 1936–1942. [Google Scholar]
- Han, X.; Parker, T.L. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm. Biol. 2017, 55, 1619–1622. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, B.K.; Dubey, N.K. Encapsulation of essential oils-a booster to enhance their bio-efficacy as botanical preservatives. J. Sci. Res. 2020, 64, 175–178. [Google Scholar] [CrossRef]
- Ahmad, J.; Gautam, A.; Komath, S.; Bano, M.; Garg, A.; Jain, K. Topical nano-emulgel for skin disorders: Formulation approach and characterization. Recent Pat. Anti-Infect. Drug Discov. 2019, 14, 36–48. [Google Scholar] [CrossRef]
- Jadhav, R.P.; Koli, V.W.; Kamble, A.B.; Bhutkar, M.A. A review on nanoemulsion. Asian J. Res. Pharm. Sci. 2020, 10, 103–108. [Google Scholar] [CrossRef]
- Ranch, K.; Patel, H.; Chavda, L.; Koli, A.; Maulvi, F.; Parikh, R.K. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: A viable alternative to conventional eye drops. J. Appl. Pharm. Sci. 2017, 7, 101–108. [Google Scholar]
- Bouhoute, M.; Nakajima, M.; Isoda, H. Design of nanoemulgel using Argania spinosa microfibrillated cellulose and natural emulsifiers foreseeing melanogenesis enhancement. Carbohydr. Polym. 2021, 274, 118632. [Google Scholar] [CrossRef]
- Arriaga, L.R.; Drenckhan, W.; Salonen, A.; Rodrigues, J.A.; Iniguez-Palomares, R.; Rio, E.; Langevin, D. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. J. Soft Matter 2012, 8, 11085–11097. [Google Scholar] [CrossRef]
- Salim, N.; Basri, M.; Rahman, M.A.; Abdullah, D.; Basri, H.; Salleh, A. Phase behaviour, formation and characterization of palm-based esters nanoemulsion formulation containing ibuprofen. J. Nanomed. Nanotechnol. 2011, 2, 1–5. [Google Scholar] [CrossRef]
- Sungpud, C.; Panpipat, W.; Chaijan, M.; Sae Yoon, A. Techno-biofunctionality of mangostin extract-loaded virgin coconut oil nanoemulsion and nanoemulgel. PLoS ONE 2020, 15, e0227979. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Issa, L.; Al-Kharouf, O.; Jaber, R.; Hreash, F. Development of coriandrum sativum oil nanoemulgel and evaluation of its antimicrobial and anticancer activity. BioMed Res. Int. 2021, 2021, 5247816. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Gorain, B.; Pandey, M.; Chatterjee, L.A.; Sengupta, P.; Das, A.; Molugulu, N.; Kesharwani, P. Recent update on nanoemulgel as topical drug delivery system. J. Pharm. Sci. 2017, 106, 1736–1751. [Google Scholar] [CrossRef] [PubMed]
- Rosly, M.B.; Jusoh, N.; Othman, N.; Rahman, H.A.; Sulaiman, R.N.R.; Noah, N.F.M. Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal. Chem. Eng. Process.-Process Intensif. 2020, 148, 107790. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, Z.; Du, X.; Zhang, F.; Liu, Y.; Bai, X.; Sun, G. Impact of surfactants on nanoemulsions based on fractionated coconut oil: Emulsification stability and in vitro digestion. J. Oleo Sci. 2020, 69, 227–239. [Google Scholar] [CrossRef]
- Politova, N.I.; Tcholakova, S.; Tsibranska, S.; Denkov, N.D.; Muelheims, K. Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids Surf. A Physicochem. Eng. Asp. 2017, 531, 32–39. [Google Scholar] [CrossRef]
- Siddique, H.; Pendry, B.; Rashid, M.A.; Rahman, M.M. Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh–An ethnopharmacological perception. J. Herb. Med. 2021, 29, 100484. [Google Scholar] [CrossRef]
- Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol. 2016, 193, 456–465. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Rajabian, A.; Rajabi, H.; Vosough, E.M.; Mirkarimi, H.R.; Hasanpour, M.; Iranshahi, M.; Rakhshandeh, H.; Askari, V.R. The effects of hydro-ethanolic extract of Capparis spinosa (C. spinosa) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairment: Evidence from in vivo and in vitro studies. J. Ethnopharmacol. 2020, 256, 112706. [Google Scholar] [CrossRef]
Formulation | Tween 80 (%) | Span 80 (%) | C. spinosa Oil (%) | Droplet Size (nm ± SD) | PDI ± SD |
---|---|---|---|---|---|
1 | 35 | 15 | 50 | 150.03 ± 2.13 | 0.254 ± 0.07 |
2 | 28 | 12 | 60 | 119.87 ± 3.78 | 0.159 ± 0.09 |
3 | 51 | 13 | 36 | 164.85 ± 3.83 | 0.233 ± 0.06 |
4 | 40 | 10 | 50 | 194.48 ± 4.48 | 0.23 ± 0.07 |
Microorganisms | C. spinosa Oil | C. spinosa Oil Nanoemulgel | Ampicillin | Fluconazole |
---|---|---|---|---|
S. aureus (ATCC 25923) | 26 ± 1.2 mm | 37 ± 1.1 mm | 42 ± 0.7 mm | - |
MRSA | 25 ± 2.7 mm | 33 ± 1.9 mm | 26 ± 1.4 mm | - |
E. coli (ATCC 25922) | Resistance | Resistance | 33 ± 0.8 mm | - |
P. vulgaris (ATCC 8427) | 31 ± 1.6 mm | 38 ± 1.8 mm | 38 ± 2.8 mm | - |
K. pneumoniae (ATCC 13883) | 25 ± 1.7 mm | 30 ± 1.4 mm | 18 ± 1.4 mm | - |
P. aeruginosa (ATCC 9027) | 18 ± 1.4 mm | 22 ± 1.7 mm | 40 ± 0.7 mm | - |
C. albicans (ATCC 90028) | 11 ± 0.7 mm | 17 ± 0.5 mm | - | 12 ± 0.1 mm |
HepG2 | HeLa | MCF-7 | |
---|---|---|---|
C. spinosa oil IC50 (µg/mL) | 144.54 | 831.71 | 436.51 |
C. spinosa oil nanoemulgel IC50 (µg/mL) | 91.2 | 251.18 | 194.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eid, A.M.; Hawash, M.; Abualhasan, M.; Naser, S.; Dwaikat, M.; Mansour, M. Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel. Coatings 2023, 13, 1441. https://doi.org/10.3390/coatings13081441
Eid AM, Hawash M, Abualhasan M, Naser S, Dwaikat M, Mansour M. Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel. Coatings. 2023; 13(8):1441. https://doi.org/10.3390/coatings13081441
Chicago/Turabian StyleEid, Ahmad M., Mohammed Hawash, Murad Abualhasan, Sabreen Naser, Mjd Dwaikat, and Madleen Mansour. 2023. "Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel" Coatings 13, no. 8: 1441. https://doi.org/10.3390/coatings13081441
APA StyleEid, A. M., Hawash, M., Abualhasan, M., Naser, S., Dwaikat, M., & Mansour, M. (2023). Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel. Coatings, 13(8), 1441. https://doi.org/10.3390/coatings13081441