Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of SiO2:HfO2 Thin-Film Heterostructures
2.2. Characterizations of the SiO2:HfO2 Heterostructure Films
3. Results
3.1. X-ray Reflectivity Analysis
3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3. Atomic Force Microscopy Investigations
3.4. Damage Performance of SiO2:HfO2 Heterostructures
3.5. Antireflection Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, C.; Zhu, M.; Zeng, T.; Song, C.; Chai, Y.; Shao, Y.; Zhang, R.; Zhao, J.; Li, D.; Shao, J. HfO2/SiO2 anti-reflection films for UV lasers via plasma-enhanced atomic layer deposition. J. Alloy. Compd. 2021, 859, 157875. [Google Scholar] [CrossRef]
- Torchio, P.; Gatto, A.; Alvisi, M.; Albrand, G.; Kaiser, N.; Amra, C. High-reflectivity HfO2/SiO2 ultraviolet mirrors. Appl. Opt. 2002, 41, 3256–3261. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhabadi, H.; Vaezzadeh, M.; Bananej, A.; Maleki, M.H. Band gap energy and refractive index dependence of femtosecond laser induced damage threshold in dielectric thin films. Thin Solid Film. 2017, 636, 289–295. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.A.; Cui, Y.; Wang, Y.; Peng, X.; Shan, C.; Zhu, M.; Wang, J.; Shao, J. Investigation on picosecond laser-induced damage in HfO2/SiO2 high-reflective coatings. Opt. Laser Technol. 2018, 106, 372–377. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, F.; Luo, J.; Wu, Q.; Wang, Z.; Wei, Y. Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition. J. Alloy. Compd. 2016, 659, 288–294. [Google Scholar] [CrossRef]
- Yuan, L.; Zhao, Y.; Shang, G.; Wang, C.; He, H.; Shao, J.; Fan, Z. Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector. J. Opt. Soc. Am. B 2007, 24, 538. [Google Scholar] [CrossRef]
- Pervak, V.; Krausz, F.; Apolonski, A. Hafnium oxide thin films deposited by reactive middle-frequency dual-magnetron sputtering. Thin Solid Film. 2007, 515, 7984–7989. [Google Scholar] [CrossRef]
- Gallais, L.; Commandré, M. Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 2014, 53, A186–A196. [Google Scholar] [CrossRef] [PubMed]
- Bartzsch, H.; Lange, S.; Frach, P.; Goedicke, K. Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering. Surf. Coat. Technol. 2004, 180–181, 616–620. [Google Scholar] [CrossRef]
- Hussin, R.; Choy, K.L.; Hou, X.H. Fabrication of Multilayer ZnO/TiO2/ZnO Thin Films with Enhancement of Optical Properties by Atomic Layer Deposition (ALD). AMM 2013, 465–466, 916–921. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Murphy, N.R.; Ramana, C.V. Structure and optical properties of nanocrystalline hafnium oxide thin films. Opt. Mater. 2014, 37, 621–628. [Google Scholar] [CrossRef]
- Lo Nigro, R.; Schilirò, E.; Mannino, G.; Di Franco, S.; Roccaforte, F. Comparison between thermal and plasma enhanced atomic layer deposition processes for the growth of HfO2 dielectric layers. J. Cryst. Growth 2020, 539, 125624. [Google Scholar] [CrossRef]
- Gallais, L.; Mangote, B.; Zerrad, M.; Commandré, M.; Melninkaitis, A.; Mirauskas, J.; Jeskevic, M.; Sirutkaitis, V. Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range. Appl. Opt. 2011, 50, C178–C187. [Google Scholar] [CrossRef]
- Abromavičius, G.; Kičas, S.; Buzelis, R. High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors. Opt. Mater. 2019, 95, 109245. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.F. Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 2004, 27, 383–387. [Google Scholar] [CrossRef]
- Aarik, J.; Mändar, H.; Kirm, M.; Pung, L. Optical characterization of HfO2 thin films grown by atomic layer deposition. Thin Solid Film. 2004, 466, 41–47. [Google Scholar] [CrossRef]
- Padma Kumar, H.; Vidya, S.; Saravana Kumar, S.; Vijayakumar, C.; Solomon, S.; Thomas, J.K. Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis. J. Asian Ceram. Soc. 2015, 3, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-M.; Jang, J.S.; Yoon, S.-G.; Yun, J.-Y.; Chung, N.-K. Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition. Materials 2020, 13, 2008. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.Z.; Werner, M.; Taylor, S.; Chalker, P. Dielectric relaxation of high-k oxides. Nanoscale Res. Lett. 2013, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Golosov, D.A.; Vilya, N.; Zavadski, S.M.; Melnikov, S.N.; Avramchuk, A.V.; Grekhov, M.M.; Kargin, N.I.; Komissarov, I.V. Influence of film thickness on the dielectric characteristics of hafnium oxide layers. Thin Solid Film. 2019, 690, 137517. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13010. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Atomic Layer Deposition for High Power Laser Applications: Al2O3 and HfO2. Ph.D. Dissertation, Leibniz University, Hannover, Germany, 2018. [Google Scholar]
- Kamiyama, S.; Miura, T.; Nara, Y. Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors. Thin Solid Film. 2006, 515, 1517–1521. [Google Scholar] [CrossRef]
- Choi, D.-w.; Chung, K.-B.; Park, J.-S. Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum. Mater. Chem. Phys. 2013, 142, 614–618. [Google Scholar] [CrossRef]
- Das, N.C.; Sahoo, N.K.; Bhattacharyya, D.; Thakur, S.; Kamble, N.M.; Nanda, D.; Hazra, S.; Bal, J.K.; Lee, J.F.; Tai, Y.L.; et al. Correlation between local structure and refractive index of e-beam evaporated (HfO2–SiO2) composite thin films. J. Appl. Phys. 2010, 108, 23515. [Google Scholar] [CrossRef]
- Dingemans, G.; van Helvoirt, C.; van de Sanden, M.C.M.; Kessels, W.M. Plasma-Assisted Atomic Layer Deposition of Low Temperature SiO2. ECS Trans. 2011, 35, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, K.; Shestaeva, S.; Bingel, A.; Munzert, P.; Ghazaryan, L.; van Helvoirt, C.; Kessels, W.M.M.; Sanli, U.T.; Grévent, C.; Schütz, G.; et al. Comparative study of ALD SiO2 thin films for optical applications. Opt. Mater. Express 2016, 6, 660. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, N.S.; Alam, S.; Alam, M. New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation; Morgan & Claypool Publishers: San Rafael, CA, USA, 2016; ISBN 9781627058551. [Google Scholar]
- Fabien, P. Plasma Assisted Chemical Deposition (CVD/ALD) and Integration of Ti(Al)N and Ta(Al)N for Sub-20 nm Metal Gate. Ph.D. Dissertation, Université de Grenoble, Grenoble, France, 2014. [Google Scholar]
- Li, D.-H.; Zhai, C.-H.; Zhou, W.-C.; Huang, Q.-H.; Wang, L.; Zheng, H.; Chen, L.; Chen, X.; Zhang, R.-J. Effects of Bilayer Thickness on the Morphological, Optical, and Electrical Properties of Al2O3/ZnO Nanolaminates. Nanoscale Res. Lett. 2017, 12, 563. [Google Scholar] [CrossRef]
- Mende, M.; Schrameyer, S.; Ehlers, H.; Ristau, D.; Gallais, L. Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings. Appl. Opt. 2013, 52, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Melnikaitis, A.; Gallais, L.; Kiáčas, S.; Drazdys, R.; Sirutkaitis, V.; Commandré, M. Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on niobia-silica and zirconia-silica mixtures. Opt. Express 2012, 20, 26089–26098. [Google Scholar] [CrossRef] [Green Version]
- Jena, S.; Tokas, R.B.; Kamble, N.M.; Thakur, S.; Sahoo, N.K. Optical properties and laser damage threshold of HfO2-SiO2 mixed composite thin films. Appl. Opt. 2014, 53, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Kukli, K.; Kemell, M.; Castán, H.; Dueñas, S.; Seemen, H.; Rähn, M.; Link, J.; Stern, R.; Ritala, M.; Leskelä, M. Atomic Layer Deposition and Properties of HfO2-Al2O3 Nanolaminates. ECS J. Solid State Sci. Technol. 2018, 7, P501–P508. [Google Scholar] [CrossRef] [Green Version]
- Kukli, K.; Kemell, M.; Heikkilä, M.J.; Castán, H.; Dueñas, S.; Mizohata, K.; Ritala, M.; Leskelä, M. Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane. Nanotechnology 2020, 31, 195713. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.O.; Mende, M.; Blaschke, H.; Ristau, D.; Nguyen, D.; Emmert, L.; Rudolph, W. Investigations on SiO2/HfO2 mixtures for nanosecond and femtosecond pulses. In Laser-Induced Damage in Optical Materials: 2010, Proceedings of the Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers, Boulder, CO, USA, 26–29 September 2010; Exarhos, G.J., Gruzdev, V.E., Menapace, J.A., Ristau, D., Soileau, M.J., Eds.; SPIE: Bellingham, WA, USA, 2010; p. 784207. [Google Scholar]
- Stolz, C.J.; Caputo, M.; Griffin, A.J.; Thomas, M.D. BDS thin film UV antireflection laser damage competition. In Laser-Induced Damage in Optical Materials: 2010, Proceedings of the Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers, Boulder, CO, USA, 26–29 September 2010; Exarhos, G.J., Gruzdev, V.E., Menapace, J.A., Ristau, D., Soileau, M.J., Eds.; SPIE: Bellingham, WA, USA, 2010; p. 784206. [Google Scholar]
- Yu, Z.; He, H.; He, K.; Qi, H.; Wei, S.; Chen, S. Mechanism for defect dependence of damage morphology in HfO2/SiO2 high reflectivity coating under nanosecond ultraviolet laser irradiation. Optik 2014, 125, 5323–5326. [Google Scholar] [CrossRef]
- Pu, Y.; Ma, P.; Chen, S.; Zhu, J.; Wang, G.; Pan, F.; Sun, P.; Zhu, X.; Zhu, J.; Xiao, D. Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films. J. Appl. Phys. 2012, 112, 23111. [Google Scholar] [CrossRef]
- Pu, Y.; Ma, P.; Lv, L.; Zhang, M.; Lu, Z.; Qiao, Z.; Qiu, F. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters. Appl. Surf. Sci. 2018, 440, 288–293. [Google Scholar] [CrossRef]
- Li, Y.; Shen, W.; Hao, X.; Lang, T.; Jin, S.; Liu, X. Rugate notch filter fabricated by atomic layer deposition. Appl. Opt. 2014, 53, A270–A275. [Google Scholar] [CrossRef]
- Tikhonravov, A.V.; Trubetskov, M.K.; Amotchkina, T.V.; Kokarev, M.A.; Kaiser, N.; Stenzel, O.; Wilbrandt, S.; Gäbler, D. New optimization algorithm for the synthesis of rugate optical coatings. Appl. Opt. 2006, 45, 1515–1524. [Google Scholar] [CrossRef]
- Schwartzberg, A.M.; Olynick, D. Complex Materials by Atomic Layer Deposition. Adv. Mater. 2015, 27, 5778–5784. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Xiong, L.-M.; Fang, M.; He, H.-B. Wide-angle and broadband graded-refractive-index antireflection coatings. Chin. Phys. B 2013, 22, 44201. [Google Scholar] [CrossRef]
- Herffurth, T.; Trost, M.; Schröder, S.; Täschner, K.; Bartzsch, H.; Frach, P.; Duparré, A.; Tünnermann, A. Roughness and optical losses of rugate coatings. Appl. Opt. 2014, 53, A351–A359. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qian, S.; Hou, X.; Mu, J.; He, J.; Chou, X. Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition. Adv. Condens. Matter Phys. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.N.; Brown, A.K.; Pung, A.J.; Johnson, E.G.; Talghader, J.J. Continuous-wave laser damage of uniform and nanolaminate hafnia and titania optical coatings. Opt. Lett. 2013, 38, 4292–4295. [Google Scholar] [CrossRef] [PubMed]
- Khoshman, J.M.; Khan, A.; Kordesch, M.E. Amorphous hafnium oxide thin films for antireflection optical coatings. Surf. Coat. Technol. 2008, 202, 2500–2502. [Google Scholar] [CrossRef]
- Liu, H.; Ma, P.; Pu, Y.; Zhao, Z. Atomic layer deposition of Al2O3 and HfO2 for high power laser application. J. Alloy. Compd. 2021, 859, 157751. [Google Scholar] [CrossRef]
- Lapteva, M.; Beladiya, V.; Riese, S.; Hanke, P.; Otto, F.; Fritz, T.; Schmitt, P.; Stenzel, O.; Tünnermann, A.; Szeghalmi, A. Influence of temperature and plasma parameters on the properties of PEALD HfO2. Opt. Mater. Express 2021, 11, 1918. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Davydov, A.V.; Chandler-Horowitz, D.; Frank, M.M. Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 2005, 87, 192903. [Google Scholar] [CrossRef]
- Neumayer, D.A.; Cartier, E. Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition. J. Appl. Phys. 2001, 90, 1801–1808. [Google Scholar] [CrossRef]
- Kariniemi, M.; Niinistö, J.; Vehkamäki, M.; Kemell, M.; Ritala, M.; Leskelä, M.; Putkonen, M. Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study. J. Vac. Sci. Technol. A Vac. Surf. Film. 2012, 30, 01A115. [Google Scholar] [CrossRef]
- Chaaya, A.A.; Viter, R.; Baleviciute, I.; Bechelany, M.; Ramanavicius, A.; Gertnere, Z.; Erts, D.; Smyntyna, V.; Miele, P. Tuning Optical Properties of Al2O3/ZnO Nanolaminates Synthesized by Atomic Layer Deposition. J. Phys. Chem. C 2014, 118, 3811–3819. [Google Scholar] [CrossRef]
- Mitchell, D.R.G.; Triani, G.; Attard, D.J.; Finnie, K.S.; Evans, P.J.; Barbé, C.J.; Bartlett, J.R. Atomic layer deposition of TiO2 and Al2O3 thin films and nanolaminates. Smart Mater. Struct. 2006, 15, S57–S64. [Google Scholar] [CrossRef]
- Homola, T.; Buršíková, V.; Ivanova, T.V.; Souček, P.; Maydannik, P.S.; Cameron, D.C.; Lackner, J.M. Mechanical properties of atomic layer deposited Al2O3/ZnO nanolaminates. Surf. Coat. Technol. 2015, 284, 198–205. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Ma, P.; Wei, Y.; Zheng, Y.; Pan, F.; Liu, H.; Tang, G. Characterization of 1064 nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition. Opt. Express 2012, 20, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jensen, L.; Ma, P.; Ristau, D. ALD anti-reflection coatings at 1ω, 2ω, 3ω, and 4ω for high-power ns-laser application. Adv. Opt. Technol. 2018, 7, 23–31. [Google Scholar] [CrossRef]
- Beladiya, V.; Becker, M.; Faraz, T.; Kessels, W.M.M.E.; Schenk, P.; Otto, F.; Fritz, T.; Gruenewald, M.; Helbing, C.; Jandt, K.D.; et al. Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: An experimental and computational study. Nanoscale 2020, 12, 2089–2102. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.E.; Keuning, W.; Langereis, E.; Dingemans, G.; van de Sanden, M.C.M.; Kessels, W.M.M. Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films. J. Electrochem. Soc. 2010, 157, P66. [Google Scholar] [CrossRef]
- Mäkelä, M.; Hatanpää, T.; Mizohata, K.; Meinander, K.; Niinistö, J.; Räisänen, J.; Ritala, M.; Leskelä, M. Studies on Thermal Atomic Layer Deposition of Silver Thin Films. Chem. Mater. 2017, 29, 2040–2045. [Google Scholar] [CrossRef]
- Van Beekum, E.R.J. PEALD and PECVD Inorganic Layers: Microstructure Characterization and Moisture Permeation Barrier Properties. Master‘s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2012. [Google Scholar]
- Stenzel, O.; Wilbrandt, S.; Friedrich, K.F.; Kaiser, N. Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells. VIP 2009, 21, 15–23. [Google Scholar] [CrossRef]
- Amotchkina, T.V.; Trubetskov, M.K.; Tikhonravov, A.V.; Janicki, V.; Sancho-Parramon, J.; Razskazovskaya, O.; Pervak, V. Oscillations in spectral behavior of total losses (1–R–T) in thin dielectric films. Opt. Express 2012, 20, 16129–16144. [Google Scholar] [CrossRef] [Green Version]
- Tikhonravov, A.V.; Trubetskov, M.K.; Amotchkina, T.V.; DeBell, G.; Pervak, V.; Sytchkova, A.K.; Grilli, M.L.; Ristau, D. Optical parameters of oxide films typically used in optical coating production. Appl. Opt. 2011, 50, C75–C85. [Google Scholar] [CrossRef]
- Gottwald, A.; Kroth, U.; Richter, M.; Schöppe, H.; Ulm, G. Ultraviolet and vacuum-ultraviolet detector-based radiometry at the Metrology Light Source. Meas. Sci. Technol. 2010, 21, 125101. [Google Scholar] [CrossRef]
- Gottwald, A.; Wiese, K.; Siefke, T.; Richter, M. Validation of thin film TiO2 optical constants by reflectometry and ellipsometry in the VUV spectral range. Meas. Sci. Technol. 2019, 30, 45201. [Google Scholar] [CrossRef]
- Ardigo, M.R.; Ahmed, M.; Besnard, A. Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer. AMR 2014, 996, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, S.; Kojima, R.; Kozuka, H. In-plane stress development in sol–gel-derived titania and silica thin films on Si(100) substrates. J. Sol-Gel Sci. Technol. 2020, 93, 506–516. [Google Scholar] [CrossRef]
- Besnard, A.; Ardigo, M.R.; Imhoff, L.; Jacquet, P. Curvature radius measurement by optical profiler and determination of the residual stress in thin films. Appl. Surf. Sci. 2019, 487, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M. Nanometric Structure-Property Relationship in Hafnium Oxide Thin Films Made by Sputter-Deposition. Master’s Thesis, University of Texas, El Paso, TX, USA, 2014. [Google Scholar]
- Wang, R. Nanostructuring and Understanding Nanostructuring and Understanding Morphology-Property Correlation in Semiconductor Thin Films. Ph.D. Dissertation, Technical University of Munich, Munich, Germany, 2018. [Google Scholar]
- Alqaheem, Y.; Alomair, A.A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Petrović, V. Boronic Acids in Molecular Layer Deposition. Master’s Thesis, University of Oslo, Oslo, Norway, 2019. [Google Scholar]
- Stratan, A.; Zorila, A.; Rusen, L.; Simion, S.; Blanaru, C.; Fenic, C.; Neagu, L.; Nemes, G. Automated test station for laser-induced damage threshold measurements according to ISO 21254-1,2,3,4 standards. Laser-Induc. Damage Opt. Mater. 2012, 8530, 85301Y. [Google Scholar] [CrossRef]
- Velpula, P.K.; Kramer, D.; Rus, B. Femtosecond Laser-Induced Damage Characterization of Multilayer Dielectric Coatings. Coatings 2020, 10, 603. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Potts, S.E.; Bol, A.A.; Kessels, W.M.M. Atomic Layer Deposition. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1101–1134. ISBN 9780444633040. [Google Scholar]
- Abromavičius, G. Microstructural and Optical Properties of Metal Oxide Optical Coatings Deposited by Ion Beam Sputtering and Their Application in UV Spectral Range. Ph.D. Dissertation, Vilnius University, Vilnius, Lithuania, 2020. [Google Scholar]
- Marine, C. Study of High Damage Threshold Optical Coatings Used in environment with Very Low Hygrometry for Fusion Class Laser System. Ph.D. Dissertation, University of Bordeaux, Bordeaux, France, 2019. [Google Scholar]
- Angelov, I.B.; von Pechmann, M.; Trubetskov, M.K.; Krausz, F.; Pervak, V. Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates. Opt. Express 2013, 21, 31453–31461. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.B. Evaporated HfO2/SiO2 Optical Coatings and Modifications for High-Power Laser Applications. Ph.D. Dissertation, University of Rochester, New York, NY, USA, 2012. [Google Scholar]
- Jinman, G.; Junhong, S.; Lei, C.; Junqi, X. Influence of Substrate Surface Properties on Laser-induced Damage Properties of TiO2 Thin Films. IJM 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Paul, P.; Hafiz, M.G.; Schmitt, P.; Patzig, C.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A. Optical bandgap control in Al2O3/TiO2 heterostructures by plasma enhanced atomic layer deposition: Toward quantizing structures and tailored binary oxides. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119508. [Google Scholar] [CrossRef]
- Puurunen, R.L.; Delabie, A.; van Elshocht, S.; Caymax, M.; Green, M.L.; Brijs, B.; Richard, O.; Bender, H.; Conard, T.; Hoflijk, I.; et al. Hafnium oxide films by atomic layer deposition for high-κ gate dielectric applications: Analysis of the density of nanometer-thin films. Appl. Phys. Lett. 2005, 86, 73116. [Google Scholar] [CrossRef]
- Buiu, O.; Davey, W.; Lu, Y.; Mitrovic, I.Z.; Hall, S. Ellipsometric analysis of mixed metal oxides thin films. Thin Solid Film. 2008, 517, 453–455. [Google Scholar] [CrossRef]
- Aygun, G.; Yildiz, I. Interfacial and structural properties of sputtered HfO2 layers. J. Appl. Phys. 2009, 106, 14312. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Zhu, M.; Chai, Y.; Yin, C.; Xu, N.; Yi, K.; Wang, Y.; Zhao, Y.; Hu, G.; Shao, J. Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings. Thin Solid Film. 2020, 697, 137826. [Google Scholar] [CrossRef]
- Kumar, S.; Shankar, A.; Kishore, N.; Mukherjee, C.; Kamparath, R.; Thakur, S. Laser-induced damage threshold study on TiO2/SiO2 multilayer reflective coatings. Indian J. Phys. 2020, 94, 105–115. [Google Scholar] [CrossRef]
- Mangote, B.; Gallais, L.; Commandré, M.; Mende, M.; Jensen, L.; Ehlers, H.; Jupé, M.; Ristau, D.; Melninkaitis, A.; Mirauskas, J.; et al. Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. Opt. Lett. 2012, 37, 1478–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, P.; Pu, Y.; Ma, P.; Zhu, J. The characterization and properties of mixed Sc2O3/SiO2 films. Thin Solid Film. 2020, 714, 138357. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, T.; Zhang, D.; Shao, J.; Fan, Z. Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings. Appl. Surf. Sci. 2005, 245, 335–339. [Google Scholar] [CrossRef]
- Bananej, A.; Hassanpour, A.; Razzaghi, H.; Vaez zade, M.; Mohammadi, A. The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films. Opt. Laser Technol. 2010, 42, 1187–1192. [Google Scholar] [CrossRef]
- Liu, M.; He, G.; Zhu, L.Q.; Fang, Q.; Li, G.H.; Zhang, L.D. Microstructure and interfacial properties of HfO2–Al2O3 nanolaminate films. Appl. Surf. Sci. 2006, 252, 6206–6211. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, W.; Shao, J.; Fan, Z. Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation. Appl. Surf. Sci. 2004, 227, 275–281. [Google Scholar] [CrossRef]
Thin Films | Precursor Pulse|Purge (s) | Co-Reactant Pulse|Purge (s) | O2 Flow (sccm) | Ar Flow (sccm) |
---|---|---|---|---|
SiO2 | BDEAS: SiH2(N(CH2CH3)2)2 0.32|5 | O2 Plasma 3|2 | 200 | 30 |
HfO2 | TDMAH: Hf(N(CH3)2)4 3|5 | O2 Plasma 5|5 | 200 | 160 |
Sample ID | ALD Cycles of SiO2 | ALD Cycles of HfO2 | Cycle Ratio SiO2:HfO2 | Number of Bilayers | Thickness (nm) ± 0.1 | Refractive Index (355 nm) ±0.01 | Refractive Index (1064 nm) ±0.01 |
---|---|---|---|---|---|---|---|
S1 | 2 | 2 | 1:1 | 615 | 307.1 | 1.83 | 1.76 |
S2 | 2 | 8 | 1:4 | 100 | 149.5 | 1.99 | 1.90 |
S3 | 2 | 16 | 1:8 | 98 | 293.3 | 2.01 | 1.92 |
S4 | 4 | 2 | 2:1 | 465 | 325.1 | 1.71 | 1.66 |
S5 | 4 | 4 | 1:1 | 315 | 323.6 | 1.82 | 1.75 |
S6 | 4 | 8 | 1:2 | 160 | 275.8 | 1.91 | 1.83 |
S7 | 4 | 16 | 1:4 | 87 | 271.1 | 1.97 | 1.88 |
S8 | 8 | 2 | 4:1 | 300 | 342.3 | 1.62 | 1.58 |
S9 | 8 | 4 | 2:1 | 230 | 324.8 | 1.73 | 1.67 |
S10 | 8 | 8 | 1:1 | 145 | 301.3 | 1.83 | 1.76 |
S11 | 8 | 16 | 1:2 | 76 | 260.6 | 1.93 | 1.84 |
S12 | 16 | 16 | 1:1 | 72 | 301.5 | 1.84 | 1.77 |
S13 | 64 | 2 | 32:1 | 20 | 160.5 | 1.50 | 1.47 |
S14 | 64 | 4 | 16:1 | 20 | 166.7 | 1.52 | 1.49 |
S15 | 64 | 8 | 8:1 | 20 | 180.7 | 1.57 | 1.53 |
S16 | 64 | 16 | 4:1 | 20 | 200.4 | 1.66 | 1.61 |
Wavelength | Pulse Length | Repetition Rate | Incident Angle | Spot Diameter | Test Method |
---|---|---|---|---|---|
355 nm | 7 ns | 10 Hz | 10° | 200 to 300 µm | R-on-1 |
Layer | Material | Physical Thickness (nm) | Optical Thickness (nm) | Refractive Index |
---|---|---|---|---|
1 | HfO2 | 13.5 | 26.1 | 1.93 |
2 | SiO2 | 23.8 | 34.6 | 1.45 |
3 | HfO2 | 48.6 | 93.9 | 1.93 |
4 | SiO2 | 66.4 | 96.4 | 1.45 |
- | - | Total = 152.3 | - | - |
Layer | Material | Composition | Physical Thickness (nm) | Fraction of HfO2 (%) | Refractive Index | Number of Cycles/ Bilayers |
---|---|---|---|---|---|---|
1 | HfO2 | Single layer | 4.7 | 100 | 1.93 | 29 |
2 | SiO2:HfO2 | 4:8 | 4.7 | 82.57 | 1.84 | 3 |
3 | SiO2:HfO2 | 8:8 | 4.7 | 51.71 | 1.70 | 2 |
4 | SiO2:HfO2 | 8:2 | 4.7 | 18.23 | 1.54 | 4 |
5 | SiO2 | Single layer | 9.3 | 0 | 1.45 | 80 |
6 | SiO2:HfO2 | 8:2 | 4.7 | 17.78 | 1.53 | 4 |
7 | SiO2:HfO2 | 8:8 | 4.7 | 48.43 | 1.68 | 2 |
8 | SiO2:HfO2 | 4:8 | 4.7 | 78.27 | 1.82 | 4 |
9 | SiO2:HfO2 | 2:8 | 4.7 | 96.31 | 1.91 | 3 |
10 | HfO2 | Single layer | 32.6 | 100 | 1.93 | 201 |
11 | SiO2:HfO2 | 4:8 | 4.7 | 76.04 | 1.81 | 3 |
12 | SiO2:HfO2 | 8:4 | 4.7 | 35.63 | 1.62 | 3 |
13 | SiO2:HfO2 | 64:2 | 4.7 | 4.26 | 1.47 | 1 |
14 | SiO2 | Single layer | 55.9 | 0 | 1.45 | 482 |
- | - | - | Total = 149.1 | - | - | - |
Type of Coating | Method: PCI (Unannealed) (ppm) | Method: LID (Unannealed) (ppm) | Method: LID (Annealed) (ppm) | LIDT (J/cm2) |
---|---|---|---|---|
Multilayer stack | 16.7 ± 5.1 | 86.5 ± 2.2 | 26.5 ± 3.5 | 29 ± 6 |
Rugate coating | 10.2 ± 3.2 | 85.3 ± 8.0 | 58.0 ± 7.5 | 31 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, S.; Paul, P.; Beladiya, V.; Schmitt, P.; Stenzel, O.; Trost, M.; Wilbrandt, S.; Mühlig, C.; Schröder, S.; Matthäus, G.; et al. Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition. Coatings 2023, 13, 278. https://doi.org/10.3390/coatings13020278
Alam S, Paul P, Beladiya V, Schmitt P, Stenzel O, Trost M, Wilbrandt S, Mühlig C, Schröder S, Matthäus G, et al. Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition. Coatings. 2023; 13(2):278. https://doi.org/10.3390/coatings13020278
Chicago/Turabian StyleAlam, Shawon, Pallabi Paul, Vivek Beladiya, Paul Schmitt, Olaf Stenzel, Marcus Trost, Steffen Wilbrandt, Christian Mühlig, Sven Schröder, Gabor Matthäus, and et al. 2023. "Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition" Coatings 13, no. 2: 278. https://doi.org/10.3390/coatings13020278
APA StyleAlam, S., Paul, P., Beladiya, V., Schmitt, P., Stenzel, O., Trost, M., Wilbrandt, S., Mühlig, C., Schröder, S., Matthäus, G., Nolte, S., Riese, S., Otto, F., Fritz, T., Gottwald, A., & Szeghalmi, A. (2023). Heterostructure Films of SiO2 and HfO2 for High-Power Laser Optics Prepared by Plasma-Enhanced Atomic Layer Deposition. Coatings, 13(2), 278. https://doi.org/10.3390/coatings13020278