Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-xZnxTiO3 Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tkach, A.; Vilarinho, P. (Eds.) Strontium Titanate: Synthesis, Properties and Uses; Nova Science Publishers: New York, NY, USA, 2019. [Google Scholar]
- Kleemann, W.; Dec, J.; Tkach, A.; Vilarinho, P.M. SrTiO3—Glimpses of an inexhaustible source of novel solid state phenomena. Condens. Matter 2020, 5, 58. [Google Scholar] [CrossRef]
- Muller, K.A.; Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys Rev. B 1979, 19, 3593–3602. [Google Scholar] [CrossRef]
- Worlock, J.M.; Fleury, P.A. Electric field dependence of optical-phonon frequencies. Phys. Rev. Lett. 1967, 19, 1176–1179. [Google Scholar] [CrossRef]
- Uwe, H.; Sakudo, T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3. Phys. Rev. B 1976, 13, 271–286. [Google Scholar] [CrossRef]
- Lemanov, V.V. Phase transitions in SrTiO3 quantum paraelectric with impurities. Ferroelectrics 1999, 226, 133–146. [Google Scholar] [CrossRef]
- Porokhonskyy, V.; Pashkin, A.; Bovtun, V.; Petzelt, J.; Savinov, M.; Samoukhina, P.; Ostapchuk, T.; Pokorny, J.; Avdeev, M.; Kholkin, A.; et al. Broad-band dielectric spectroscopy of SrTiO3: Bi ceramics. Phys. Rev. B 2004, 69, 144104. [Google Scholar] [CrossRef]
- Tkach, A.; Vilarinho, P.M.; Nuzhnyy, D.; Petzelt, J. Sr- and Ti-site substitution, lattice dynamics, and octahedral tilt transition relationship in SrTiO3:Mn ceramics. Acta Mater. 2010, 58, 577–582. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O.; Reaney, I.; Vilarinho, P.M. Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films. J. Mater. Chem. C 2018, 6, 2467–2475. [Google Scholar] [CrossRef]
- Lemanov, V.V.; Smirnova, E.P.; Syrnikov, P.P.; Tarakanov, E.A. Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B 1996, 54, 3151–3157. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Sr1-xCaxTiO3: An XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 1984, 52, 2289–2293. [Google Scholar] [CrossRef]
- Kleemann, W.; Schäfer, F.J.; Müller, K.A.; Bednorz, J.G. Domain state properties of the random-field xy-model system Sr1-xCaxTiO3. Ferroelectrics 1988, 80, 297–300. [Google Scholar] [CrossRef]
- Tkach, A.; Vilarinho, P.M.; Kholkin, A.L. Polar behavior in Mn-doped SrTiO3 ceramics. Appl. Phys. Lett. 2005, 86, 172902. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z.; Vilarinho, P.M.; Baptista, J.L. Bi:SrTiO3: A quantum ferroelectric and a relaxor. Phys. Rev. B 1998, 57, 7403–7406. [Google Scholar] [CrossRef]
- Okhay, O.; Wu, A.; Vilarinho, P.M.; Tkach, A. Dielectric relaxation of Sr1-1.5xBixTiO3 sol-gel thin films. J. Appl. Phys. 2011, 109, 064103. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O.; Nuzhnyy, D.; Petzelt, J.; Vilarinho, P.M. Polar phonon behaviour in polycrystalline Bi-doped strontium titanate thin films. Materials 2021, 14, 6414. [Google Scholar] [CrossRef]
- Burn, I.; Neirman, S. Dielectric properties of donor-doped polycrystallineSrTiO3. J. Mater. Sci. 1982, 17, 3510–3524. [Google Scholar] [CrossRef]
- Tkach, A.; Vilarinho, P.M.; Almeida, A. Low-temperature dielectric relaxations in Y-doped strontium titanate ceramics. J. Phys. D Appl. Phys. 2015, 48, 085302. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O.; Almeida, A.; Vilarinho, P.M. Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere. Acta Mater. 2017, 130, 249–260. [Google Scholar] [CrossRef]
- Tkach, A.; Amaral, J.S.; Zlotnik, S.; Amaral, V.S.; Vilarinho, P.M. Enhancement of the dielectric permittivity and magnetic properties of Dy substituted strontium titanate ceramics. J. Eur. Ceram. Soc. 2018, 38, 605–611. [Google Scholar] [CrossRef]
- Fang, L.; Dong, W.; Zheng, F.; Shen, M. Effects of Gd substitution on microstructures and low temperature dielectric relaxation behaviours of SrTiO3 ceramics. J. Appl. Phys. 2012, 112, 034114. [Google Scholar] [CrossRef]
- Tkach, A.; Amaral, J.S.; Amaral, V.S.; Vilarinho, P.M. Dielectric spectroscopy and magnetometry investigation of Gd-doped strontium titanate ceramics. J. Eur. Ceram. Soc. 2017, 37, 2391–2397. [Google Scholar] [CrossRef]
- Tkach, A. Antiferrodistortive phase transition in doped strontium titanate ceramics: The role of the perovskite lattice vacancies. In Perovskite Ceramics; Clabel, J., Rivera, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Guo, Y.Y.; Guo, Y.J.; Liu, J.-M. Zn doping-induced enhanced dielectric response of quantum paraelectric SrTiO3. J. Appl. Phys. 2012, 111, 074108. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Xia, S.; Shi, P. Microwave dielectric properties and optical transmittance of SrTiO3/ZnTiO3 heterolayer thin films fabricated by sol–gel processing. J. Adv. Dielect. 2020, 10, 2050027. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O. Comment on “Giant dielectric response in (Nb + Zn) co-doped strontium titanate ceramics tailored by atmosphere”. Scr. Mater. 2020, 185, 19–20. [Google Scholar] [CrossRef]
- Okhay, O.; Vilarinho, P.M.; Tkach, A. Low-temperature dielectric response of strontium titanate thin films manipulated by Zn doping. Materials 2022, 15, 859. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
Zn Content, x | Average Film Thickness (nm) | Average Grain Size (nm) | RMS Roughness (nm) | Peak ε′ | Peak tan δ | tan δ Peak Temperature (K) |
---|---|---|---|---|---|---|
0.01 | 345 ± 30 | 141 ± 38 | 2.58 ± 0.08 | 412 | 0.046 | 85 |
0.05 | 260 ± 10 | 145 ± 41 | 0.88 ± 0.23 | 277 | 0.078 | 101 |
0.10 | 375 ± 5 | 86 ± 22 | 1.26 ± 0.36 | 229 | 0.097 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Vilarinho, P.M.; Tkach, A. Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-xZnxTiO3 Thin Films. Coatings 2023, 13, 165. https://doi.org/10.3390/coatings13010165
Okhay O, Vilarinho PM, Tkach A. Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-xZnxTiO3 Thin Films. Coatings. 2023; 13(1):165. https://doi.org/10.3390/coatings13010165
Chicago/Turabian StyleOkhay, Olena, Paula M. Vilarinho, and Alexander Tkach. 2023. "Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-xZnxTiO3 Thin Films" Coatings 13, no. 1: 165. https://doi.org/10.3390/coatings13010165
APA StyleOkhay, O., Vilarinho, P. M., & Tkach, A. (2023). Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-xZnxTiO3 Thin Films. Coatings, 13(1), 165. https://doi.org/10.3390/coatings13010165